B TABC41 ABAP Development Workbench
Basics 1/2

TABC41 1/2

R/3 System
Release 46B
17.06.2000

TABC41 ABAP Development WOrkbenCh BaSiCS 1/2........ccueicicrreseseeeesssesie e ssssss st sesssssssssssssssesens 01

(0 o)/ o o) 50T 02
Target GrOUDP TABCAD ...t bbb bbb bbb bbbk bbb bbb bbb bbbttt bbb bbbt 04
Course Prerequisites TABC40
SECLION OVEIVIBW ... senesenees

Section: BasiS TEChNOIOQY OVEIVIEW........c.ccuieeeiieeireeersees e sessessssss s sess s sss bbbt enais
Content: Basis TECANOIOGY OVEINVIEW ...t sse s 1-2

NN E= LY7o o] o OO TSSOSO SR TSP 2-1
NaVigation: BUSINESS SCENAITO.......uuirierieeerrieei sttt b e r s 2-2
L.0gging 0N t0 the R/S SYSLEM.......cciiicireerree ettt 2-3
SCIEEN ELEMENTS......ouiiieiieiecrrier ittt bbb bbb 2-4
SAP EASY ACCESS - SEANUAITccueveeeeteiriccie ettt bt s et bbb s s s s s s st bt 2-5
SEIECHING FUNCLIONS... ..ottt bbbt et b s bt s s s st sttt 2-6
FIEIO HEIP = FL, FA ottt bbb bbbttt 2-7
TN @ 01 1T 0= = o T O 2-8
SYSLEM FUNCLIONS = SEIVICES.....ccucuriieceeieirissisietsessss st s sessss s ssss s s s ssss s s s s sssessssssssesessssesesssesssnsessssssssssnesssnsesens 2-9
System FUNCLIONS = USEN PrOfIl@ ...ttt st snssssssnsnsesens 2-10
Table SttingS - EXAMPIE ...t bbb 2-11
Personalizing the FrONTENG ..ot 2-12
NaVIgatiON: UNIT SUMIMEIYcccvieerieeiereiesseesseessesessessssesessi st ssse st ssse s esessssssssasens 2-13
EXEICISES . ettt bR R R AR 2-14
SOIULIONS. ..ottt e e R bR bR 2-19

YA S 0 = 1S A O] 11 | T 31
ClENt / SEIVEL PHINCIPIES. ...ttt sttt bbb s st st bt 32
R/3 System Client / SErver ConfigUIationsS..........ccccurieciciiiesiseesese s se s sesssssssessssssssens 33
THE SYSLEM KEINEL ...ttt st a b s et s s s ana et sttt 34
ProCeSSING USEN REMQUESEScccurieriririeecieirisesesisssessessssesss s sesssssssssssssssssssssssessssssssessssssssessssssssssesssnssssessssssesesssnssnsass 35
R/3 DAtalase INTEITACE.........cirerereeeeeeeeee et n s 36
R/ APPIICALION SEIVICES.....ccecietreieeeeiriseisie s e ssss e sssss s saessssese s st et se e e s s eeesnsessesesssesessesnsnsesenssnsnsenssnsss 37
Locksin R/3 at the BUSINESS PrOCESS LEVEL..........coiirerireicieietiese et ses e 38
ASYNCNIONOUS UPABLE........ceierceesireeireettieees ettt st 39
LoNg-RUNNING ABAP PIOGIAIMSc.cviuiirriereeieeeiceeieesi st sssesssssssssssssens 310
BaCKGrOUNT PrOCESSINGc.cureerieerieeiersiesseessees sttt et b s 311
RIB PHINTEN SEIVICES.....covuiieetireeeirtie ettt e et bbb 312
TRER/BINSLANCE.......coieeiierieiriet et st 313
System Kernel: UNIit SUMMEIY ..ottt se sttt as et esssssessssssssesanns 314

COMMUNICALION: COMEENEScvvevrerererserseseeseeseeseeee s ses s ses s ss s s s e bbb eb bbb 4-1
COMMUNICALTON TNEEITACEScvevereeeeeeiceseeee et es s 4-2
Communication: R/3 1S an OPEN SYSLEM........cvcierrereeieirerisssesessssesesessssessesssssesssssssssssssssssessssesssssessssssssssssssssessens 4-3

(RS A (o (=T U [0 et (o 1O T 4-4

Office INtegration USING OLE ... s 4-6

BUSINESS ODJECIS BNU BAPIS ...ttt 4-7
AdMINISIFALiON: CONTENEScecvrieeiieeeee e es e ses e s bbbt p e s p s 51
SECUNTY 1N TNE RIS SYSEEM.....cvieiiecii ettt e 52
SYSEEM AAMINISIFALIONoeveereetreeer ettt e R e 53
Computing Center Management SyStemM (CCIMS) ... sss s sssssssssssssssssssssssssssens 54
MONITOITNG ATCRITECIUIE. ...ttt ettt st en s st s s antes 55
RemMOte SErviCeS ProVided DY SAP ...ttt st bt n s b s tnn 56
SAPNEL ...ttt E R AR AR AR £ E R AR e R AR bRttt 57
AdminiStration: UNIt SUMIMEIYc.cceieerieisienisisiessssesssssesessesssssssssesssssssssssssssssessssssssessssssssessssssssesssssssssssssssesesens 58
SYSLEIMEWIAE CONCEPLS.eveecietrericieiresessessesesss s ssesssssessesssssssesssssessssesssesssssssessssssssesassssssssassssnsessssssssesesssnssnsessssssesnsssnnsns 6-1
Enterprise StruCture TEIMMINOIOGYouceurerireeerireseeeresesesssesessssssesesssssssessssssssesssssssssssssssssssssssessssssssssessssssssssessnsess 6-2
Organi ZatioNal SEIUCIUINES - LEVEIScovureierecireeie et 6-3
Organizational StruCtures - BUSINESS FUNCLIONS..........ccrerireeereerree e ese s seseens 6-4
Master Data - CUSIOMEE IMESLEY ... 6-5
Customer Master - General and FiNaNCial DEata............cuueerirreerrenerieerrienee e seeseseens 6-6
CUSLOMEr MBSLEN = SAIES DALA.......c.cvieeeriereieretireseiei et

Master Data - Material Master

Transactions and Documents; Topic Objectives......................
Transaction - Using Master Data...........cccceveveeeenenecresesenens
Transaction - Using Organizational Units.........ccccoeevevevireneee.
IMESSAGE TYPES...c ettt ettt et b e s b bt se b e e bR et s e A e R e e e e A b e e rE b e Rt e e e b e be e b e s ebe e nenbene e e
SAP Business WOrKfIOW EXGMPIEc.cuvuivieereccrrisc sttt ssssssssssssss s sssssesssssssssssssssssesnns 6-13
L)Y TAN S o1] o PO TP 7-1
SAP SMEJOr INtEINEL TNITIALIVESveeeeieeecerect et 7-2
The Strategy: From Integration to Collaloration............c.vceerirrreesieeee e 7-3
PEOPIE ON TOP ..ttt et b e p s 7-4
MYSAP.COM: WHat OES It MEANTcecreereeiriercee ettt 7-5
WOrKplace: TOPIC ODJECLIVES ...ttt s e 7-6
Workplace Internet BUSINESS FIAMEWOTK ..o sess s e ssssssssssssssssssssssnsnes 7-7
MYSAP.COM WOTKPIACE - BENEFILS.......ecvciiicicsrece ettt tnn 7-8
Marketplace: TOPIC ODJECLIVESccviiciciriecie ettt s b ettt s st n s st s s antes 7-9
MYSAP.COM MAIKEIPIBCEvveveeecreirecste sttt bbbt n st s an st s e nntee 7-10
Buying and Selling 0N the MarketplaCe...........ccvrrreniriensississesse s ssss s ssesssss st sssssssssssessssssssees 7-11
MYSAP.COM Marketplace - BENEFITS......ccciiiicirrccesescse sttt sessssssnses 7-12
APPIICALION HOSLING TYPES cuevvririereeereesseeesesssstsisesessssssesessssesessssssssssssssssssssssssssssssssesssssssssssssssssessssssssesesssssssssssssssesesns 7-13
MY SAP.COM: UNIT SUMIMEIY ...vuiviiieieesisessees et ssse s s es e s e 7-14
Section: ABAP Workbench Concepts and TOOISc.cueerieerrierniieeieesisesi e sesessessssessssssssssssesssssssssssssssesans 81
Content: ABAP Workbench Concepts and TOOIS.........couueurrrerecrneereeneesseisessisesssess e sesessessssessessssesesseseens 82
MEIN BUSINESS SCENAITOceuvuvruireraereesersese ettt b e n e r s 83
Program FIOW in @n ABAP PrOgraiM ...t ss s ssssssssssssssesssssssssssssssssssssessesessessssns 91

ClENE | SEIVET ATCRITECIUN ...ttt sttt sttt e bt st et s b e s e et st et e be s e e e e b et e be st e st ebe st ere st esesbaesnnans 93

USEI-OFTENIEA VIBW ..ottt bbb 9-4
Program FIOW: WHat the USEI SEES ...ttt 95
INEraction BEIWEEN SEIVEN LAYEN'S ..ottt s ettt n s 96
OVEIVIEW. ...ttt s AR R s R bbb 9-7
Sample Program 1: Program SEAccccceeiieennieessssssesssesssessns 9-8
System Loads Program COMEXLcceiiecieinireieiseeste s essssssssssssssssessssssssessssssssessssssssessssssssesesssssssssssssssesens 99
Runtime System Sends SEIECHION SCIEEN ...ttt a s b et s s sntee 9-10
Selection Screen Entries Inserted int0 Data ObJECES ..ottt ss s 911
Program Reqguests Data Record from Dat@haSe...........cccccviercnnensensessissessssssssessssssssessssssssesssssssssssssssssssssssees 912
Database Returns Data RECOIrd t0 PrOQIaIM.......c.c.cccucureirieiresessesesessssssesssssssssssssssssessssssssesssssessssssssssssssssessssssssnss 913
RUNLIME SYSLEM SENAS LiSt......cviiiecerirecerieri st sesssssesesssssssesssssssssssssessessssssssssssssessssssssssssnssssessssesssess 914
OVEIVIBW. ...ttt es s s e AR 8RR b bt 9-15
Sample Program 2: Program SEAT ...t sesss st ssss e sssesssssssssssssens 9-16
ABAP RUNEIME SYStEM SENAS SCIEEN........cecveecrreeeirersereesies ettt ns s 917
USEr LEAVES SEIECHION SCIEENcevieiereietseetr ettt et 9-18
Program Reguests Data Record from Dat@haSe. ... ssesesssssessesenns
Database Returns Data Record

Program CallS SCreen........coccceveveeesesee e

ABAP Runtime System Sends Selection Screen.....................

User EXecutes USer ACHION. ..o

Processing of the ABAP Processing Block Resumes

OVEIVIBW.....orvrereeeeeeseesee e es s ese s R 9-25
Introduction to the ABAP WOIKIENCH ... 10-1
Overview: Introduction to the ABAP WOIKDENCH...........coiiierecrcee e 10-2
RIS REPOSITONY ...eoereeatieessieeseisese e ses e e 10-3
SErUCEUrE Of thE REPOSITONYvuevvierrieirietriet et e 10-4
SAP APPHICELION HIEIAICHY ..o e 10-5
REPOSITOry INFOrMEatiON SYSLEMocuiireicrreetree e e 10-6
ABAP WOIKDENCN TOOIS ... s 10-7
Screen Structure in the OBJECE NAVIGALONccceurirecieisesie e s et ss s 10-8
Navigation FUNCtionsin the HIErarChy ATEa........ccceceiiiecceseee ettt nane 10-9
Displaying Program Objects in the ObjeCt WINAOWcccoierrerrensescse s ssesssse s ssssssssssssesees 10-10
ANalyzing an EXiStiNG PrOgramottt sesssssssssssssss st ssssssssssssssssssssssssssessssssssessssssnses 10-11
Determining the Functional Scope: EXECUtiNG @ Program.........ccocceenesenenesesesssesssssessssssssssessssssssssssssssesees 10-12
Static View of Program Objects. The OBJECE LiSt......ccocvviierrerrrrreccsirescsses s ssesesssssssessssssesssssnses 10-13
SEAMTING PrOGIAITISoevuieeeaereesetsiet et es bbb 10-14
Determining the Sequential Use of Program Objects: Debugging MOTE............ccveerecenieeeniieensreesrseerseesnenns 10-15
Breakpointsin the DebUGQiNG MOE........c.ocrcirierieieree et 10-16
GENEIAl ABAP SYNEAX.......ctiiirieerieaerieier sttt ees e ses s st s et 10-17
Chained Statements a0 COMIMENTS ..ot esees 10-18

KEYWOId DOCUMENTBLI ONoueevreeerereeessesesseses s sesesseseesse s sess s es s bbb nae 10-20

SaMPI e Program SOUICE COUE.........c.oueuiureiieeieeesiseseisess e sese s ses s es s 10-21
Data ObjeCtS and SElECLION SCIEENS.........cuecrecereeeerieeertieesi e sese s res s s s 10-22
Database DIiGlOg Lcvereeeerrieemreeerereser st ts st es bbb 10-23
DAtaDase DIGlOg 2:coeiureeerrieerrirerneresersees ettt sess s es bbb 10-24
PrOCESSING SCIEENS.....cocteveieteteieietete ettt ettt a sttt et et b e b as bt ebese b b e bebe b b et e b et e b et et et e b et e ae b b et e s et b et esn b et e bebnt et bnsnsnbesnsee 10-25
L@ 1] o TR 10-26
Overview: Introduction to the ABAP WOIKDENCN...........coeirrcrne et 10-27
LTS B 0T 1= ox TR 10-28
Transporting REPOSITONY ODJECES.....cucuiirerecrieirisesiesesessesesesste s sesssssssssssssesesssssssssssssssssssssssssssssssessssssssessssssnses

Sample Project: TraiNing BCAODccviieeirresieisesste s sessstsssesssssssesssssessssssssesssssssssssssssssessssssssssesssnsssssssssssess
Project Representation in the Workbench OrganiZEr ... sesessssssesessssssesesees
Completing the DEVE OPIMENT PrOCESS..........criuruiiretireseisese s sttt sssssssssnes
COPYING PrOGIAIMS ...ovuitiaereeserseses et sessesesessss s ses bbb es b s bbb en s
SAVING PrOGIAITISouviateeiaereesersesessese et es st ees s ese s es e s s bRt e n s
AlloCatioN t0 8 ChaNQe REGUESL.........cocciieeieeeiere ettt s s
AGJUSEING SNOI TEXES ..ottt b bbb
Adapting Source Code................

Making Changesto Screens
Saving and ACIVALiNG........ccccovrrveerereeee e
Introduction to the ABAP Workbench: Unit Summary

SOIULTONS......verererereeeeee s r s s s es s E R r AR AR RS E bR
ABAP Statements and Data DEClaraliONS...........occeeeeererrerrerrerereeeseeseeseeeesse e sssssssneens
The R/3 ClIent/SErver ATCIITECIUIE.cvii ettt s
OVEIVI B TYPES....eutesereserrise s sses st se s s R8st b bbb 11-3
USING TYPES...eerteerteresteressisessisese s ses e s s e s s e R Rt b p e 11-4
Local and GlODal Da@ TYPES......ccvuueurerrrrerreerreesreseerteesstiessse s sese st r s r s 11-5
Using Elementary DiCtiONArY TYPES. ..ottt sssssssssessssesssssss s ssssessssesssssssssssssens 11-6
FINding ABAP DICLONAIY TYPES L...vcuiicieiiirieieiristsisiststsisisssssissesssssnes 11-7
Finding ABAP DICtIONAIY TYPES 2cccveiiericieireieietsessss et ssessssssssssssessssssstessssssssesssssssssssssssssessssnssesssssssessssssssess 11-8
Local Data TYPESIN PIOGIAMScccuieicieiisesieteese ettt se e sttt bbb s st et es s snae s s s nntse 11-9
OVEINVIEW: Data ODJECEScucviecicirieciete sttt s s s bttt s s s s s ae b et s s s et e s s nnaesesnanantes 11-10
(D= H o R o = r= W o] = £ 11-11
Overview: Elementary Data ObJECES........ccouceurirerriririsieresssestsssssssssssessssssssssssssesssssssssssssssssessssssssssesssssssssssssess 11-12
Data Objects in aProgram’'s ODJECE LiSt........cucrrirrrreceeiniressssesesessses s ssessssssssessssssssessssssssssssssssssssssssssssnses 11-13
Defining Elementary Data OJECES.......cocuicrrieirieirieertieesi e s s 11-14
LiteralS @N0 CONSLANES.......ovuereeeeieerereier sttt es bbb bbb 11-15
Changing Variables: Copy and INitiali ZBHION..........ccvverreerrieeirereresenee e sesesssees 11-16
PErforming CalCUIBLIONS..........c.cuiveririereetreer ettt es bbbt 11-17
EVAlUBEING FIEI O COMENTS........c.cvieerireiereeeteer et es bbbt 11-18

Observing Data Flow in the Debugger: WatChpOIN.........c.occueeeireerrineneeereeieesss e sesessesees 11-20

OVEIVIBIW: SEIUCKTUIES ...ttt s bbb 11-21
Defining Structures with aDictionary TYPe REFEIENCE..........ccvererreereerersee e 11-22
Addressing FieldS iN SITUCLUMESc.ceiieeeer ettt e 11-23
ASSIGNING VAlUES FIeld fOr FIEIA ..ot e 11-24
SEFUCLUIES iN thE DEDUGGEN..... vttt a st s s sesn s en s e nn e s s e e 11-25
OVEIVIEW: INEEMNEL TAIDIES......c..cvireretet ettt bbbt
QLI o] £ N 57/ o 1= TSRO
QLI o] 1= N 8/ 0= OO

Declaring Internal Tableswith aDictionary Type Reference
Processing SINGIE RECOIS........ccviiurricierisisie ettt s st s s ss s st et s st easnnsesnesennes
Processing SELS Of RECOIUS.......ccieirirerie st s e sss s se s s s se s st s s sesesnseasennanssesennes
FUIhEr ProCeSSING OPLIONS......c.ouueuieeierreerrees ettt sese s ses bbbt
Example: Filling Internal TableS LiNE DY LiNE ..ot
Example: Reading Internal Table ContentS USING @ L 00Dcccueerrieerreenmrerrenesreesseessesessssessssessssssessssessesesneans
Example: Reading Internal Tables USiNG the INAEX.........cucicrieireneseeeseeesesiees e
Example: Reading Internal TableS USING KEYS........ccoiicceeresnessses s ssens
Internal Tablesin Debugging Mode..........ccccovvvvvvvvesessinene
Internal Tableswith Header Lines..........coveveernernerneeneeneencenenn.
Overview: ABAP Statement Attributes..........ccoocveveverrerneeneens
ABAP Statement Return Codes...........ceeeereemerernernerneeseeneeneens
User Messages. An Overview

Syntax: MESSAGE SEALEMENTS ..ottt
RUNtiME BENAVIOF Of MESSAGESuceeerieeceeiririricireesssesesessss s sssstsesesss st ss s ssessssssssesnsssessssssssssessenssnsssnsnses
ABAP Statements and Data Declarations: Unit SUMMEIY ..o ssesessesessesees
XN CISES .. utieetee ettt bbb R AR R R
0] 111 (0] U SETSOT OSSPSR
DAtaDESE DIGlOGS |ouieeriereerieeciieeeee et e
Information about DataDAse TADIES.........cocrrerrire e 12-2
Information iN the ABAP DICHONGIYccvurirereiiiireresisisesssesesesssesesesssssssssssssessnes 12-3
FiNding Database TADIESccvieerecce st ettt s et st et es s nntee 12-4
Flight Data Model for ABAP TraiNiNG COUISEScciiieiniiecereisesseessssssstessssssssesssssssessssssssessssssssessssssssessssssssess 12-5
DBLAIMOUEL ..ottt 12-6
Realization in the ABAP DiClIONAIY: ..ot sessssssssesss s ssss s ssssssssssssssssssssssssssessssssssessssssssessssssssess 12-7
Key Fields and SECONUArY INUEXES........cccciririeirriresesesie s sesssesesesss et sssssessssssssssssssssesssssssssssssssssesssssssess 12-8
REadiNG DAtaNase TaADIES.......c.ccurererrerrie sttt sse e s st nsesne e snses e e snsen 12-9
SELECT OVEIVIEW c..vveeeeeirireseeeresesses s esesssstseseessssssesssssessesesssssssssssssssssesssssessesssssssssssssssssssssssessssnssesesssnssssessenssnses 12-10
QUENYING thE DALADASE........ceecreeetee ettt 12-11
ProcesSiNg SINGIE RECOITS........ciueuireiirricrreer ettt es s es bbb 12-12
SELECT LOOPS.....ciiiucieiiriirieisesisisssessssss st s st b s bbb bbb na s 12-13

ATTAY FEICN ...t bR 12-14

INTO CORRESPONDING FIELDS.......ooiirtcrrecenresiere e ssesssss s ssssessssssessssesnsnes 12-16

AULNOTTZEETON CHECKSvatictiee i 12-17
The AULNOTTZBETON CONCEPL......coverieeerieeeieeeei et er s bbb ien 12-18
Authorization CheckSin ABAP PrOgIaIMS.........ciriciriciienieieeesisessssess s sess s sessssessessssssssssssssssessssesssseeas 12-19
Authorization Objects and AULNOIIZALTONS..........ccvreciecre e e 12-20
AUTHORITY-CHECK ..ottt ettt 12-21
Inserting AUTHORITY-CHECK iN PrOGramSccccocvieieieneiseisesss st sssssssesssssssessssssssssessssssssssssssseseses 12-22
Reading Multiple Database TaDIES.........ccccvicirieccrsece sttt s st s s 12-23
Overview: Reading Multiple Datahase TabIES.........ccccceiiircinresessese st sssssssssssssssnses 12-24
ABAP DiCHONGIY: VIBWS.....ccieiierierietrisesseesessssteresessssssasssssssssssssse s ssssssssssssssessssssssssesssssssssssssssesesssnssssessssssssessssssess 12-25
Database Dialogs |1 UNIit SUMIMEIYccoceiiieirerisesesesessssesssssssssssssssssssssssessssssssssssssssssssssssssessssssssssesssssssssssnnes 12-26
Datenbankdial 0gE 1: EXEITISEScovvurieereeiriririeeresesssesesesssstsssessssssssessssssssesssssessssssssssssssssssssssssssessssssssnsesssnsssssssnses 12-27
SOIULIONS ..ttt R 8RR 12-32
Internal Program MOGUIIZAETONc.cueeeeerieecirieereieeei st 13-1
Possible Elements of an ABAP PrOgram ... sssss s ssssssssssssens 13-2
For example: ABAP Program with Event Blocks and a SeleCtion SCreen..........ocrnecrneeeneeerneressessesesseenns 13-3
Sample Program RUNEIME BENAVION ...t sses s

Event Blocks in Executable Programs..........ccccccvvvvvvevenisenene
Syntax: EVEnt BIOCKS.........cccmriiereecce et
Program with Subroutines..........
Subroutinesin the Object List

Syntax Example: SUDFOULINE INLEITACEccceureecirricecte sttt
Calling Subroutines: RUNLIME BENAVIONc.ccccueireerieirsesesis st ssssssssesssssssssssssessssssssssssssnsssssssssssnses
Caling by Value and DY REFEIENCE.........cvireirecrirercre st snssssasassssssesnnnsnsns
Syntax Example: Calling SUDIOULINES ..ottt ssssssses
Internal Program Modularization: UNit SUMIMEYcccrerrenminenee s sessssessssessesssesessssessssesssesssseens
EXEICISES . utieetee ettt R SRR R R R
0] 111 (0] U SP SO ST PP T T PPO

USEl DIBIOGS. LISES....eivuireuirrieerieereseiessesessees ettt s bbb 14-1
LTSS ettt bttt e b £ R £ A b £ A A £ R E e E b £ £ LR A A et AR AR E b e b b e bbbt 14-2
LTS @] o= (o] 1O 14-3
PAgE HEAETS ...ttt sttt bbb bbbt A et b e Rt e A bt s et et n et et st ee 14-4
U o TU = @ o =1 o1 TR 14-5
LiStSiN EXECULADIE PrOGIAIMScccveireierieiiisisietsessssssssessssee s sesssssssssssssssssssssssessssssssesssssssssssssssssessssssssesesnssssesssssssess 14-6
DIELAI LiSES.....eueiueeieresterestireseiseseiseee s ses s b s a sttt 14-7
Example: A SIMPIE DELAIT LiSt.....ccceveireeirirerieiresesesisesessee s sesssesesessssesessssssssesssssessessssssssesssssessssssssssssssssessssssssess 14-8
Syntax: A SIMPIE DELAI LiSh.....c.cciirreerieireericei ettt 14-9
EXAMPIE: DA ISES....eeuiveeceeeeieeciret ettt 14-10
I T LN = OO 14-11
LINE SEIECTION.... ettt e b bR 14-12

LiNE SEIECHION: SYNMEAX......oeueriecrirerereser sttt es bbbt 14-13

USEr Dialogs - LiStS: EXEICISES ..ottt 14-15

SOIULIONS ..ttt e R8s 8 e 14-17
USEr Dial0gS. SEIECTION SCIEENS........ceiveeeerrierriieirei ettt ese s bbb 15-1
SEIECLION SCIEEN......cuteetreectriee ettt bRt eb b 15-2
THE SEIECTTION SCIEEN.......ceectctc bbb bbbt 15-3
ENEEITNG SEIECHIONS......ocvcveicieteteie ettt ettt bttt et s st bttt b e ettt et ettt et et b st et s s et s sneen 154
= ot I = o TR 15-5
SEIECHION TEXES ...cvueeeeeeeseeseeeeet ettt es s b 15-6
VAITANES ..ottt 15-7
RECAD: PARAMETERS ...ttt 15-8
DBEA TTANSPOM.......ceceeirerteeertrie ettt ettt b bt se b e e bR et s e A e b e e e e R b e e re e b e be e e e b e b e e s e b ebe e senbene e e
Using Parameters in the SELECT SAt@MENT L.......cccvecenienrrrreeeessessesessessssssesesessssssessssssssssesssssssssssssssesenees
SELECT -OPTIONS......co ettt sttt sttt sttt se st b et e et st ns sttt e
[z e B =T 0] ST
Using Parametersin the SELECT SEAEMENE 2.........ccoiririineeeereie s ssssesneans
SEIECHION SCIEEN EVENTS......cooiricrie ettt et
Error Dialogsin AT SELECTION-SCREEN. ..o sssessssesssens
AT SELECTION-SCREEN SyntaX.......cccoovvverererereresereresesenens

User Dialogs: Selection Screens: Unit Summary

Selection Screen: Exercises

SOIULIONS.....coerererereeeeieeeeeeens
USET DiAlOQS: SCIEENS.....cucviuireeetetrisssteasessssssssessstsssssssssesssssssssssssssssesssssssssssssssssessssssssesasssssessssssssessssssssesassssnsessssssssesasns

SCIEENS. SITENQLNS......vcvecre e b et s b et ee e sn st e e s beas 16-2
USING SCIEENS......ccueereerreetresessseeesessssssesesssssessesssssesssssssssssssssssessssesssnsessssssesessssssnsessssssnsesasnssnsessssssnsesssssnssesesssnsessssssssess 16-3
EXBIMPIE! SCIBEN ..ottt R 16-4
PAITS OF QUSCIEEN ...ttt e 16-5
SEEP 11 CrEAING @ SCIEENceveeteteesee ettt a e es bbb b 16-6
Creating a Screen: SCreen AttHULES ... s 16-7
Input Fields from the DiCtioNary SLIUCIUIE ..o naes 16-8
Changing Field AtIFTDULES.......cocoiie ettt 16-9
Field AttribULES: The EIEMENT LiSt.....c.cooeeecererierrersetneireisei et 16-10
S (= o DTS o K= Y [To [- - TSR 16-11
SCIEEN INEEITECES. .. .o veeeeeceee ettt bbb bR bbb 16-12
Data Transport from the Program to the SCreen ...ttt es 16-13
Data Transport from the SCreen to the PrOgram ...t ssssss s sssssssssssssenees 16-14
DIBLA FIOW.....eeeeeeee et e 16-15
SYNEBX FOI LEVEL 2.ttt 16-16
Step 3: DEfiNiNg PUSNDULTONS........cciieiieiieiesee et 16-17
Defining Pushbuttons/ Assigning FUNCLION COUES...........uereeineeerieeerreresersesss s ssssesneans 16-18
Assigning aField Name to the OK_CODE FIeld ... ssesesssesssesssseens 16-19
IVIOTUIES.....cecoieece ettt es s e R Rt 16-20

Static NEXt SCrEEN = SCIEEN NUMDETcoieiice ettt sttt et te st e s e et st e st sbe st et st e st sbe st et sbesessssbesssraneas 16-22

Setting the Next SCreen DYNAMICEITY ..ot 16-23
PrOGIAIM LOGIC ... cevaeeaieresseesesseee st ses e bbb 16-24
Forward Navigation: Creating MOUUIES ...t nnans 16-25
USING e "SAVE FUNCEION......coieiiiieteeret et 16-26
User Dialogs: SCreens: UNIt SUMIMEIYcccccueieieinieieisieissssssssss s esssssesesssssesssssssesssssssesssssssesesssssesesssssasesesass 16-27
EEXEICISES . vttt bbb 16-28
SOIULTONS ... veteeetet et e b bbb bR bbb E bbb bbbt 16-34
REUSE COMPONENES......vetivieeieieisisietetsisietetssstssessssts e ss st essssbebsssssbebesesebebesasabebesabebebebababebebababebebebabebebebabebebebebebesnbnbebebnsatesnsas 17-1
Techniques for Encapsulating BUSINESS LOJICccuvuerrireierieinesisssssesssssessessssssssssssssssssssssesssssssssssssssssssssssssesesns 17-2
Function Groups and FUNCLION MOQUIESccuruirueirrccics sttt sssssssssssssssssnsnes 17-3
FFUNCLION GIOUPDcuetrieereeieiseseseeiseessesesessses e sesssessessssssssesessse s s sesssessssesssesessesssnsesssssnsesssnssnsssesssnsesssesnsesnsnssnsesssesssnss 17-4
FUNCLION IMOQUI ... bbb 17-5
FUNCLION GrOUP: DALA FIOWvieiiecieieicisesei ettt 17-6
Example: The Cancel DidlOg BOX........ccrrrrieiicinieesiessisess s sssse s sssssssssssssens 17-7
Requirement: Function Module for Standard Dial0g..........cccuueerreerneerieeninnseseses s ssessssesseseens 17-8
Finding the Function Module
Function Module Interface.........
Documentation and Testing.......
Syntax: Calling the Function Module..........ccccooveeveneiccninnnas

Inserting a Function Module Call in a Program
L@ o TT= i 1= Lo Y =1 0o TR

Example Scenario: REDOOKING @ FlTGNL ..o
ODJeCtS Are INSEANCES OF B ClASS.....c.eucrieceiieeiiririee et eaeen
Program FIOW in an ABAP PrOGIaIM ...t sess st sesssssssssssssssssss s essssssssssssssssens
Application Areas 0f ABAP ODJECLS ..ot ssss s esssseeas
Controls: Technical BaCKgrOUNG [...t ss s snsssssnnas
EXaMPIE ALV GIid CONEIOL ..ottt s b ettt sen st s s
Program using ALYV Grid CONLIOLccccciiiiiectrericerises ettt ssssse e ss st se s s sessssssssesessssssssesssnssessssnnes
Objects and Classes for the ALYV Grid CONLIOL..........ccccevieieinninsereseseesesssssessesssssssesssssesssssssssssssssssssssssssnses
CL_GUI_CONTROL_CONTAINER woovvveeeeeeereseseseeeeeeeeeeseesssssssseesssesssssssssssssssssessssssssssssssssssesssssssssssesesssssessseeees
CL_GUI_ ALV _GRID oo seseeeeeeeeeeeeeeessss s essssesssesssessssseesssssssssssssssssssssessssssssssessssssssessssssssssesesssssssssseees
Creating a Custom Control SCreen EIEMENt ...t esessssssssessssss e sssssssssssssssssesesssnses
Syntax Example: Defining Reference Variables...........coceiennncneeeneesies e sesesneees
Syntax Example; CREATE OBJECT ... resesesesesessssesesessssssssessssssssessssssssssssssessssssssesssssssssssssnsssss
Syntax Example: Calling MENOUS...........ccoeiricee e sees
BUSINESS ODJECIS BNU BAPIS ...ttt e

Example: FlightBooking BUSINESS ODJECLcvueuiereiieeieresirese s ssessssesssssssesssessssesessssesssssssssssssssssssssesssans
BAPL EXPIOTES ..ottt ettt s bbb
BAPI EXPIOTES = LEJENG ..ottt et
Business ObjectS in the BAPI EXPIOTEL.........co e snens
BAPIS TN the BAPI EXPIOFEN ...ttt ssse sttt
BUSINESS ODJECE BUIITESvcvcieieteeetetctee ettt bbbttt bbbttt bbb bbbttt s st b enee
SEANUAIT BAPIS......co ittt ees s b bbb bbb

BAPIs Are Implemented as Function Modules.
Calling aBAPI from an ABAP PrOgraMccccceieeienesessssssesssesssssssssssssssssesssssssssssssssssessssssssssessssssssssssssess
BAPIS: EXCEPION HANAIING ...vvececeeiecccie sttt sss st s st es st esssnnsnsnsnennes
[0 Lo I = a = = T
Reading LogiCally DePendent Data.........cccovureeererirererereseeinesessssesesesssssssesssssessssssssssssssssssssesssssesssssssssssssssssssssssnses
LOQiCal DELBDASES........coeureeeerreeeteeeiser ettt ees bbb bbb
Controlling an LDB from Within @ Program...........coccerneine s sssessesessssessesessssnes
Event BIOCKS iN LOQICal DALBIESES..........ccrverreecirieeirieeetisesisess e sess s st seans
EXaMPlel EVENE SEOUENCINGcotverireericrieci ettt sss s st

-_ .

ABAP Development
Workbench Basics

Part 1 of#2

m R/3 System

= May 2000
M number 50039583

Copyright 2000 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may

be copied or reproduced in any form or by any means,

or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

a4 SAPAG 1999

Trademarks:

Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®,
Multimedia Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ®
are registered trademarks of Microsoft Corporation.

Lotus ScreenCam ® is aregistered trademark of Lotus Development Corporation.

Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.

ARIS Toolset ® isaregistered Trademark of IDS Prof. Scheer GmbH, Saarbriicken
Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.

TouchSend Index ® is aregistered trademark of TouchSend Corporation.

Viso ® isaregistered trademark of Visio Corporation.

IBM ®, OS2 ®, DB2/6000 ® and AIX ® are aregistered trademark of IBM Corporation.
Indeo ® is aregistered trademark of Intel Corporation.

Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.

OSF/Matif ® is aregigtered trademark of Open Software Foundation.

ORACLE ® isaregistered trademark of ORACLE Corporation, California, USA.
INFORMIX ®-OnLinefor SAPis aregistered trademark of Informix Software Incorporated.
UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.
ADABAS® isaregistered trademark of Software AG

m Thefollowing are trademarks or registered trademarks of SAP AG; ABAP/4, InterSAP, RIVA, R/2,
R/3, R/3 Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript,
SAPtime, SAPtronic, SAP-EDI, SAP EarlyWatch, SAP ArchivelLink, SAP Business Workflow, and
ALE/WEB. The SAP logo and all other SAP products, services, logos, or brand names included
herein are also trademarks or registered trademarks of SAP AG.

m Other products, services, logos, or brand names included herein are trademarks or registered
trademarks of their respective owners.

Target Group TABC40

® Audience:
m future ABAP Consultants
m Consultants from SAP Partners

m Project team members from SAP Customers

® Duration: 5weeks

a4 SAPAG 1999

Course Prerequisites TABC40 H’
SAF

® Sound IT know-how ,preferably operating system know-how
Experience in another programming language

® Basic Knowledge of graphical user interfaces (GUI) such as
Microsoft Windows

a4 SAPAG 1999

Section Overview !’
DA

Section Basis Technology Overview

Section ABAP Workbench Concepts and Tools
Section Managing ABAP Development Projects
Section ABAP Dictionary

Section ABAP Programming Techniques

Section Techniques for List Creation and SAP Query
Section Transaction Programming

Section Programming Database Updates

Section Enhancements and Modifications

Section Data Transfer

a4 SAPAG 1999

Section: Basis Technology Overview

8 SAP AG 1999

Content: Basis Technology Overview Hr
A

Unit Navigation Unit System-wide Concepts
Unit The System Kernel Unit mySAP.com
Unit Communication

Unit Administration

a4 SAPAG 1999

Navigation F'
SAP

Contents:

® Basic features

® User-specific settings

8 SAP AG 1999

Navigation: Business Scenario

® New users need to familiarize themselves with the
DD screens in the R/3 System and define their
personal default settings

a4 SAPAG 1999

Logging on to the R/3 System

User System Help
gl seHCcee CHB DooD HE @O
SAP R/3

8 SAP AG 1999

m The R/3 System is aclient system. The client concept enables the joint operation, in one system, of
severd enterprises that are independent of each other in business terms. During each user session
you can only access the data of the client selected during the logon.

A client is, in organizational terms, an independent unit in the R/3 System. Each client hasits own
data environment and therefore its own master data and transaction data, assigned user master
records and charts of accounts, and specific customizing parameters.

A user master record linked to the relevant client must be created for users to be able to log on to the
system.

To protect access, a password is required for logon.
The password is hidden as you type (you only see asterisks).

SAP systems are available in several languages. Use the Language input field to select the logon
language for each session.

Multiple logons are aways logged in the system beginning with Release 4.6. Thisis for security as
well aslicensing reasons. A warning message appears if the same user attemptsto log on twice or
more. This message offers three options:

* Continue with current logon and end any other logons in the system
» Continue with current logon without ending any other logons in the system (logged in system)
e Terminate current logon

Screen Elements

Commanusieio Siznclaic iooloar

Menu Edit Favorites Extras System Help w | o OptIOI’]S
G s[iH ee SHE Doos BE HReS=
[System function name : Activity |

R = = R A= e

: : Soalleation tooloar
B | Input field

Overview i -..I.'I Tab

& 1st selection

Sl Radio buiion
~ 4thselection

5th selection

- :

| Gieckbores

B eewe | BUsnouiion

This screen is made
up of various screen
elements. It does not
exist in the system.

8 SAP AG 1999

Command field: Y ou can use the command field to go to applications directly by entering the
transaction code. Y ou can find the transaction code either in the SAP Easy Access menu tree (see
next dide) or in the relevant application under Systen®® Status.

Menu bar: The menus shown here depend on which application you are working in. These menus
contain cascading menu options.

Standard toolbar: Theiconsin the system function bar are available on al R/3 screens. Any icons
that you cannot use on a particular screen are dimmed. If you leave the cursor on anicon for a
moment, asmall flag will appear with the name (or function) of that icon. Y ou will aso see the
corresponding function key. The application toolbar shows you which functions are available in the
current application.

Title bar: Thetitle bar displays your current position and activity in the system.

Check boxes: Checkboxes alow you to select severa options smultaneoudy within a group.

Radio buttons: Radio buttons alow you to select one option only.

Status bar: The status bar displays information on the current system status, for example, warning
and error messages.

A tab provides aclearer overview of severa information screens.

Options: You can set your font size, list colors, and so on here.

SAP Easy Access - Standard

Menu Edit Favorites Extras System Help
& |l ajald g8 DHE hhman BE &
SAP Easy Access
|3||3 | #5 || dL othermenu | | G B2 | = & [|create menu | [Assign users B Documentation

= _1 Favorites
= |1 Accounts receivable
[create FDO1
Change FD02
[# Display FD0O3
[1 Inbox
[+ [_] Accounts payable
 _1 SAP standard menu
B [office
I+ LI Logistics
[|1 Accounting
'3 Human Resources
PPMDT - Manager's Desktop
_1 Personnel management
—1 Time management
—1 Payroll accounting
1 Training and events
0
=1
=

=

Organizational management

Travel management

Information system
Information Systems

[
B
{5
k
[
&
I+
[
|1 Tools

| [2@ w@on) 2] iwdfaoaz NS

a4 SAPAG 1999

m SAP Easy Accessisthe standard entry screen displayed after logon. Using the menu path Extras®
Set start transaction you can select atransaction of your choice to be the default entry screen after
logon.

m Y ou navigate through the system using a compact tree structure that you can adapt to your own
specific requirements. Use the menu path Extras® Settings to change your view of the tree
structure. Y ou can use thisto display technical names (transaction codes).

m You can aso create aFavoriteslist of the transactions, reports, files and Web sites you use most.

m You can add itemsto your favorites list using the Favorites menu option or by smply dragging &
dropping them with the mouse.

Selecting Functions...

Menu Edit Favorites Extras

System Help

G| Create session B onon AR @B
SAP Easy Access End session
= User profile S S :
L_ﬁ B | [‘ ,5% Other menu ',p i m Create menu | == Assign users E’ Documentation |
[_1 Favorites Utilities
> (1 SAP standard menu List
Workflow

Links

us | n g Private notes
Own spool requests

Favorites or the ownjos
tree structure | Shertmessages

Status...
Log off

...using the menu path

/nFDO3 &

...using the technical name
(transaction codes)

a4 SAPAG 1999

Y ou can select system functions in the following ways:
m Use the mouse to choose
* Menu options
* Favorites
* Other optionsin the tree structure (tree control)
m Usethe keyboard (ALT + the underlined letter of the relevant menu option)
m Enter atransaction code in the command field:
* A transaction code (T-Code) is assigned to each function in R/3 (not each screen).
* You can access the assigned transaction code from any screen in the R/3 System.

* You can find the transaction code for the function you are working in under the Status option of
the Systemmenu.

* For example, to display Accounts receivable master data, enter “/n” and the appropriate
transaction code (in this case “/nfd03”).

* Other possible entries:
“/n” ends the current transaction. “/i” ends the current session.
“/osm04” creates a new session and goes to the transaction specified (SM04).

* You can aso use the keyboard to get to the command field. Usethe CTRL + TAB key
combination to make the cursor move from one (input) field group to the next. Use TAB to move
between fields within a group.

Field Help - F1, F4

Display Customer: Initial Screen

& RlaH T SHE BDLSIME Gm

Display Customer: Initial Screen

)=

T i
o & 02 %
Help - Display Customer: Initial Screen

| Customer account number
A unique key is used to clearly identify the customer
within the SAP system.

Procedure
When creating a customer master record, the user
either enters the account number of the customer or
has the system determine the number when the
record is saved, depending on the type of number
assignmentused..

| Technicalinfo 3§

:ﬂ m| Application help

8 SAP AG 1999

| Display Customer: Initial Screen
I

Company code 2000

Restrict Value Range

Restrictions

Customer])
Company code - 4
Company name i
ciy i
Currency

Restrict number to 581 | No restriction

Possibl
entries =

Poa | oo
-

m Use F1 for help on fields, menus, functions and messages.

m F1 help aso provides technical information on the relevant field. Thisincludes, for example, the
parameter |1D, which you can use to assign values to the field for your user.

m Use F4 for information on what values you can enter. Y ou can aso access F4 help for a selected
field using the button immediately to the right of that field.

m |f input fields are marked with a small icon with a checkmark, then you can only continue in that

application by entering a permitted value.

* You can flag many fields in an application to make them either required entry fields or optional
entry fields. Y ou can aso hide fields using transaction or screen variants or Customizing.

SAP Online Help Hr
A

Menu Edit Favorites Extras System Help

DYDY
E) HSAP Library

E g Release notes

B Basis

H‘* Service

H@ Cross-Application Components
Irlﬁ Financials

m@ Human Resources

E@ Logistics

ITIQ Copyright_and Conventions

@l q '@‘@ﬁ Application help
= SAP library

Glossary
Release notes

SAPNet
Eeedback

Settings...

Getting started

a SAP AG 1999

m The R/3 System provides comprehensive online help. Y ou can display the help from any screenin
the system. Y ou can always request help using the Help menu or using the relevant icon.

m The Hep menu contains the following options:

Application help: Displays comprehensive help on the current application. Selecting this menu
option in the initial screen displays help on getting started with R/3.

SAP Library: Thisiswhere al online documentation can be found.

Glossary: Enables you to search for definitions of terms.

Release notes: Displays notes which describe functional changes that occur between R/3 releases.
SAPNet: Enables you to log on to SAPNet.

Feedback: Enables you to send a message to the SAPNet R/3 Frontend, SAP' s service system.
Settings: Enables you to select settings for help.

System Functions - Services

Menu Edit Favorites Extras System Help

& || Bl < create session 90400 IEE @o
SAP Easy Access End session
User profile K e P :
L_ﬁ B | b ‘ 6% Other menu | Services "| Reporting D‘{ Documentatio.r)“"i
B Utilities + Quick Viewer
[» L1 SAP standard menu List + Qutput controller
Workflow + Table maintenance
Links Batch input
Private notes Fast entry
Own spool requests Direct input
Own jobs CATT
Short messages Jobs
Status... Qt_;ue
Log off SAP Service
Appointment calendar
Business Workplace

a4 SAPAG 1999

m The System menu contains, among others, the following options:

Create/end session: Enables you to create and end sessions. Y ou can work with up to 6 sessions at
atime.

User profile: Thisiswhere you can enter user-specific settings.
Services: Takes you to important service functions (see below).

List: Contains important list functions, such as searching for character strings, saving in PC files,
printing, and so on.

Status. Enables you to display important user and system data.
Log off: Ends the SAP R/3 session with a confirmation prompt.

m The System® Services menu contains, among others, the following options:

Reporting: Starts reports (ABAP programs).

Output controller: Thisiswhere you manage user-specific print requests.

Table maintenance: Thisis where you process tables and views.

Batch input: Administers batch input sessions and data transfer.

Jobs: This is where you can administer jobs that are processed in the background.
SAP Service: Enables you to log on to SAP' s SAPNet R/3 Frontend.

Use the menu option System® User profile® Own data to set your own persona profile. You can
choose between the Address, Defaults and Parameters tabs.

* Address: You can create and maintain persona data here, for example, name,function, room
number, telephone number, e-mail addresses and so on.

» Defaults: Defaults include the date display format, the decimal notation format, the default
printer, the logon language, and so on.

* Parameters: Use this to assign entries to commonly-used fields. Thisis only available for
input fields that have been alocated a parameter ID.
Procedure for finding out a field’s Parameter ID: Go to the input field to which
you want to assign a value. Choose F1, then the “Technical info” pushbutton. This
opens awindow that displays the corresponding parameter 1D (if one has been
alocated to the fidd) in the “Field data’ section.

The User profile menu also contains, among others, the following options.

* Hold data, Set data, Delete data. Use Hold data to keep data values that you have entered in fields
in an application for the duration of a user session. When you call up the application again, you
can overwrite these values. Once you have Set data, you can no longer overwrite these values and
have to use Deletedata if you want to enter different values.

Use the Table Settings function to change, in the table control, the individual basic table settings that
are supplied with the system. Thisis particularly useful for tables where you do not need all the
columns. Y ou can use the mouse to drag & drop column positions and widths, or even make the
column disappear.

Save the changed table settings as a variant. The number of different variants you can create per
tableis not restricted.

The first variant is caled the basic setting; the SAP System defines this setting. Y ou cannot delete
the basic setting (you can delete the variants you define yourself).

The table settings are stored with your user name. The system uses the variant currently valid until
you exit the relevant application. If you then select the application again, the system will use the
standard settings valid for thistable.

Note: you can change table settings wherever you see the table control icon in the top right-hand
corner of atable.

m The R/3 System provides numerous options for settings and adjustments:
* Define default values for input fields
* Hide screen dements

» Deactivate screen elements (shaded out).
Y ou can do this by, for example, defining transaction variants.
If you preallocate all necessary parameters for parameter transactions, you do not need to go

through the initial screen.
These functions have been available in R/3 for several releases.

m SAP now aso includesthe GuiXT. In addition to al the above functions, you can now:
* Include graphics
» Convert fields and add pushbuttons and text
* Changeinput fields (or their F4 help results) into radio buttons

m The GuiXT scripts are stored on the frontend. In accordance with local scripts, the GuiXT scripts
determine how data sent from the application server is displayed. These scripts can be standard
throughout a company, or they can be different for each frontend.

m Asof Release 4.6, GuiXT is part of the SAP standard system.

\ Unit: Navigation

Topic: Basic features

*ee

At the conclusion of this exercise, you will be able to:
Log onto agiven R/3 System
Find transaction codes

Access the SAP Library
Use F1 help to find field information
Use F4 help to search for possible field entries

\ > . Asanew user of the R/3 System, you begin to navigate the system using
/ /

the menu paths and transaction codes. Y ou also begin to access various

1-1

1-2

1-3

online help and discover the kinds of information each provides.

Logging on to the R/3 System

Select the appropriate R/3 System for this course. Use the client, user name, initia
password and logon language specified by the instructor. The first time you log on,
you will get a prompt in which you must enter your new password twice. Make a
note of the following:

Client: _ User: Password: Language:

What is the maximum number of sessions you can have open simultaneously?

Identify the screen names and find the transaction codes that correspond to the
following menu paths?

1-3-1 Tools® Administration® Monitor ® System Monitoring® User
Overview

Name of screen:

Transaction:

1-3-2 Accounting® Financial Accounting® Accountsreceivable®
Master records® Display

~
—

\\I//
—~

~ Enter Customer 1000 and Company code 1000 to get to the next
screen.

Name of screen:

Transaction:

Help

1-4-1 If you choose Application help in the SAP Easy Access screen, which area of
the SAP Library doesit take you to ?

\\I//
—

- ~ To answer the questions below, you will need to go to the Display
Customer: Initial Screen

1-4-2 Use F4 help on the Customer field to find the customer number for
Becker ##.

Note: ## corresponds to your assigned group number.

1-4-3 Use F1 help on the Customer field. What is the use of this field? Please
write a brief summary of the business-related information.

1-4-4 Use F1 help on the Company code field. If you choose the Application help
button from the F1 help screen, which area of the SAP Library doesit take
you to?

1-4-5 Which pushbutton do you need to use on the F1 help screen to find the
parameter ID for the Company code field?

N\ Unit: Navigation

Topic: User-specific settings

At the conclusion of this exercise, you will be able to:

Set a user parameter for afield

*ee

Set various user defaults such as language, date format, and decimal

notation
Create folders and add transactions to your Favorites

Select a start transaction of your choice as the default displayed after
logging on (optional)

\ . You begin to set various user-specific settings to personalize the system
/) / toyour liking.

Exercises marked * are optional.

2-1 Setting user parameters.
2-1-1 Assign a parameter vaue for the Company code field to your user profile.

Note: The instructor will tell youwhat parameter value to enter.
Parameter ID:

Parameter value:

2-2 Setting user defaults.

2-2-1 Inyour user profile, set your logon language to the value used for the
course.

2-2-2 Inyour user profile, select the decimal notation and date format that you
desire.

2-3 Defining favorites of your choice.
2-3-1 Insert at least one new folder under the Favorites folder.
2-3-2 Add any two of your “favorite”’ transactions to the corresponding folder(s).

2-3-3 Add the Internet address “http://www.sap.com” under the text “SAP
Homepage”.

2-3-4 Add the Internet address for the online evaluation (the instructor will tell
you the URL) under the text “Online Evauation”.

2-4-1 Enter atransaction of your choice as the initial transaction. Y ou will then
need to log off and on again for the change to take effect.

Note: If desired, you can change the initial transaction back to the system default (SAP
Easy Access).

7

1-1

1-2

1-4

Unit: Navigation
Topic: Basic features

Log on to the system specified by the instructor and change your initial password.

Y ou can open and close sessions using System ® Create session (or using the
appropriate icon) and System ® End session.
The maximum number of sessions you can have open simultaneoudly is 6.

To find the transaction code, select System ® Status. These screen names and
transaction codes correspond to the menu paths:

1-3-1
1-3-2

Help
1-4-1

1-4-2

1-4-3

1-4-4
1-4-5

Transaction: SM04 for Screen Name: User list
Transaction: FDO3 for Screen Name: Display Customer: General data

The entire SAP Library is available including Getting Started.
Help® Application help
T-COOSA## (## corresponds to your assigned group number)

When you select F4 in the Customer field, the Restrict Value Range window
appears. Y ou can explore the various tabs to see the different search criteria
available. Find atab that includes the Name field and enter the following:

Field Name Values

Name Becker ##

Select the Continue Enter pushbutton. A window now appears listing the
customer account numbers that match your search criteria. Select the line
that corresponds to Becker ##, then select the Copy Enter pushbutton. This
automatically copies the customer account number into the Customer field.

Suggestion: The customer is a unique key (account number) used to clearly
identify the customer within the system.

FI — Accounts Receivable and Accounts Payable
Use the Technical Info pushbutton to find the Parameter 1d: BUK.

7

2-1

2-2

Unit: Navigation
Topic: User-specific settings

Setting user parameters.

2-1-1

To assign a parameter value to a field you will need the parameter ID of the
field. First you need to select a transaction that contains thisfield. For
example, Company code can be found in transaction FD03. Next, place the
cursor on that field (just click on it with the mouse). Accessing:

F1® Technical Info® Parameter ID

gives you the required information. For the Company code field, the
parameter ID is BUK.

Finally, you enter the parameter ID and desired value in your user profile:
System ® User profile® Own data

On the Parameter tab you enter the parameter ID and value that you want to
be entered into the field. Save your entries.

Setting user defaults.

2-2-1

2-2-2

To set the logon language, go to your user profile:
System ® User profile® Own data

On the Defaults tab, enter the language of your choice in the Logon
language field.

To set the decimal notation and date format, remain on the Defaultstab in
your user profile. Select the indicator adjacent to the notation and format
you desire. Save your selections.

Defining favorites of your choice.

2-3-1

2-3-2

Favorites® Insert folder

Type any name for the folder then select Enter. Y ou can add as many
folders as you desire. Once created, folders can be dragged and dropped to
position them where you want.

To create favorites, select specific applications (transactions) that you need
as favorites for your daily work from the menu tree of the SAP standard
menu. Add them to your Favorites list by selecting them and choosing
Favorites® Add from the menu bar. Alternatively, use the mouse to drag &
drop favorites to afolder. You can also use the menu path Favorites ®

I nsert transaction to add using a transaction code.. Finally, you can move
existing favorites to different folders later using Favorites® Move or using
drag & drop.

2-4

2-3-3 Create Internet addresses using Favorites® Add Web address or file
When you select SAP Homepage from your favorites, an Internet browser
will open and you will be connected to SAP' s homepage.

2-3-4 Favorites® Add Web addressor file

You will usethislink at the end of the course to fill out the course
evaluation.

Setting a start transaction.

2-4-1 Extras® Set start transaction

Enter a transaction of your choice then select the Enter pushbutton. Notice
the system message on the status bar indicates that your selected transaction
has been set as the start transaction. The next time you log on, the system
will go directly to your start transaction.

Note: To change back to SAP Easy Access as the initia screen, follow the
menu path again, delete the transaction code and select Enter. The
next time you log on, SAP Easy Access will be the initial screen.

Kernel: Contents

Flow of user requests through the system

® Communication between the application layer and the
database

® The processes on the frontend and application layers
® Asynchronous update

Background processing and the spool system

8 SAP AG 1999

Client / Server Principles

Client
Hardware- s
oriented . |
~ View i“_g
) AVttt oy
S
Client i Server
Service requeste: Software-
Process 1 < Process 2 oriented

% Service provided k é -~ View

a4 SAPAG 1999

m |n SAP terminology, a service means a service provided by a software component (software-oriented
view). This component can consist of a process (compare work process) or a group of processes
(compare application server) and is then called a server for that service.

m Software components that use this service are called clients. At the same time, clients can also be
servers for specific services.

m A server often also means a computer (host) on which software components that provide specific
services are running (hardware-oriented view).

R/3 System Client / Server Configurations

One-tier Two-tier Three-tier
configuration configuration configuration

|
Presentation El - ”E [!}“_ L. \;:

Presentation processes (Z %

Application

Application processes

\/
|

Database flf . =n =n

-

Database processes

Database, application, Database,
presentation processes application processes

a4 SAPAG 1999

m The fundamental servicesin abusiness application system are presentation services, application
services, and database services.

m In aone-tier R/3 System configuration, all processing tasks are performed on one server, asin classic
mainframe processing.

m Two-tier R/3 System configurations are usualy implemented using special presentation servers that
are responsible solely for formatting the graphical user interface. Many R/3 System users use
Windows PCs for example as presentation servers. An aternative two-tier configuration (not shown)
istoinstall powerful desktop systems and to use these for presentation and applications also (two-tier
client/server). Thistype of configuration is particularly useful for processing-intensive applications
(such as smulations) or for software developers, but due to the additional administration
requirements is usually used for test purposes only.

m |n athree-tier configuration, separate servers are used for each tier. Using data from the database
server, severa different application servers can operate at the same time. To ensure that the load on
individual serversis as even as possible and to achieve optimal performance, you can use specia
application servers for individual application areas such as distribution or financial accounting
(logon and load balancing).

The System Kernel

User interface

8 SAP AG 1999

m |n this unit, we discuss the centra processes of the R/3 Basis System. This includes an explanation of
how a user request is sent to and processed by the application layer, and which process types are
involved in processing the request. Data entered by the user is sent through the user interface (the
SAP GUI) to the dispatcher, which coordinates further processing. The work processes used are
those that map to the same source code as the dispatcher and whose substructures such as Screen
Interpreter and ABAP Interpreter are presented here. Another topic is data exchange with the
database.

Processing User Requests

Presentation

Ty

| Communication

Application
Dispatcher
Work Work Work Buffer
process process process
Database
Database processes

a4 SAPAG 1999

m The centra processin the R/3 application layer is the dispatcher. Together with the operating system,
the dispatcher controls the resources for the R/3 applications. The main tasks of the dispatcher
include distributing transaction load to the wark processes, connecting to the presentation layer, and
organizing communication.

m User screen input is received by the SAP presentation program SAP GUI, converted into its own
format, and then sent to the dispatcher. The processing requests are then saved by the dispatcher in
request queues and processed according to “first in/ first out”.

m The dispatcher distributes (dispatches) the requests one after the other to the available work
processes. Datais actually processed in the work process. The user that sent the request through the
SAP GUI isusualy not assigned the same work process, because there is no fixed assignment of
work processes to users.

m Once the data has been processed, the processing result from the work process is sent through the
dispatcher back to the SAP GUI. The SAP GUI interprets this data and generates the output screen
for the user with the help of the operating system on the frontend computer.

m During initiaization of the R/3 System, the digpatcher executes the following actions, among others:
it reads the system profile parameters, starts work processes, and logs onto the message server (this
service will be explained later).

R/3 Database Interface

r-!-lu'

Application server Database server

Database

Data
SELECT * HEE

FROM . .. OPEN SQL Native SQL

Database data H
EXEC SQ. Native SOL

SELECT . .. *.'

END EXEC. % H

Database data

8 SAP AG 1999

m Today, large amounts of data are usually administered using relational database management
systems (RDBMS). These systems store the data and the rel ationships between the data in two-
dimensional tables, which are known for their logical simplicity. The definitions of the data, tables,
and table relationships are stored in the data dictionary of the RDBMS.

Within ABAP, SAP OPEN SQL is used to access application data in the database, independent of
the corresponding RDBMS. The R/3 database interface converts the open SQL statements from the
ABAP statements into the corresponding database statements. This means that application programs
written in ABAP are database-independent. Native SQL commands can be used in ABAP.

When interpreting open SQL statements, the R/3 database interface checks the syntax of these
statements and automatically ensures the local SAP buffersin the shared memory of the application
server are utilized optimally. Data frequently required by the applicationsis stored in these buffers so
that the system does not have to access the database server to read this data. In particular, al

technical data such as ABAP programs, screens, and ABAP Dictionary information, as well as some
business process parameters usualy remain unchanged in a running system, making them ideal
buffering candidates. The same applies to certain business application data, which is accessed as
read-only.

R/3 Application Services H’
DA

Message server

D||5p' I Disp.

Disp.

Disp.
| |

SAP Dispatcher |Lock admin.

Spool g E Gateway server

wfg’li R/2 R/3

a4 SAPAG 1999

m The operating system views the R/3 runtime system as a group of parallel, cooperating processes. On
each application server these processes include the dispatcher as well as work processes; the number
of work processes depends on the available resources. Work processes may be installed for dialog
processing, update, dialog free background processing and spooling.

m In addition to these work process types (dialog processing (D), update (V: for the German
“Verbuchung”), lock management (E), background processing (B), spoal (S), the R/3 runtime
system provides two additional services for internal and external communication (below are the
restrictions on the number of work processes):

* The message server (MS or M) communicates between the distributed dispatchers within the
R/3 System and is therefore the prerequisite for scalability using severa parall el-processing
application servers.

* The gateway server (GW or G) alows communication between R/3, R/2 and external
application systems.

» Dialog: Every dispatcher requires at least two dialog work processes
* Spool: At least one for each R/3 System (more than one allowed for each dispatcher)
* Update: At least one for each R/3 System (more than one alowed for each dispatcher)

* Background processing: At least two for each R/3 System (more than one allowed for each
dispatcher)

* Enqueue: Only one enqueue work process is needed for each system

Locks in R/3 at the Business Process Level !r
ol

D WP E WP WP D WP

Change access At most read access

. : XXX Ixxxx {xxxx | xxx xxx__fxx UUJuuuu_ Juuu u

UUU | uuuul uuuul uuu uuu Jluu

a4 SAPAG 1999

m Thelock mechanismsin today’s relational database systems are usually not able to handle business
data objects (such as customer orders) that affect severa database tables. To coordinate several
applications simultaneously accessing the same business object, the SAP System provides its own
lock management, controlled by the enqueue work process.

m |n order for the system to execute lock requests, you must first define alock object in the ABAP
Dictionary. The lock object contains tables whose entries are to be locked. A lock object consists of a
primary table. Y ou can also define additional secondary tables using foreign key relationships (the
name of a user-defined lock object must begin with "EY™ or "EZ").

m You can specify the lock mode ("S’: shared lock or "E”: exclusive lock) for alock object. An
exclusive lock (mode "E") can only be set if no other user has set alock (“E” or “S’) on the data
record. The same user can request additional "E" or "S" locks within a program call sequence (call
chain).

m If alock object is activated, the system generates an ENQUEUE and a DEQUEUE function module.
These function modules are called ENQUEUE_<object nhame> and DEQUEUE_<object_name> and
are used in ABAP code to lock and unlock data.

Asynchronous Update

First chage Second ghange Save / éncel
=HE==0=-{0=
D-WP 0 D-WP 2 D-WP 2
<+—> CS—> C—> +“—>
commit L3 @mit w @‘nmit)
Change noted Change noted COMMIT
i WORK
v
WP
K>
Changes to
BWL tables
«—> «—» —> — —>
DB DB DB DB DB
LUW LUW LUW LUW LUW
< >

SAP Logical Unit of Work

a4 SAPAG 1999

m A transaction corresponds to alogical unit of work (LUW).

m However, astoday’ s database systems do not support cross-process transaction flow, we must
differentiate between the elementary processing steps (LUWS) in the SAP System and those in the
database system (SAP- LUW / DB - LUW). A DB - LUW is either committed or not updated
(rollback). The DB - LUW moves the database from one consistent state to the next. This means that
the data must be logical and correct before as well as after the LUW; this applies to both DB - LUW
and SAP - LUW.

m The start of an SAP transaction is aso the start of an SAP - LUW. SAP - LUWSs are completed either
by a"COMMIT WORK" in the ABAP code, or by the completion of the corresponding
asynchronous update (second part of the SAP - LUW). As explained previoudy, each didog step in
an SAP - LUW is processed by one work process, asisthe case for the DB - LUW. Each database
change is executed in its own DB-LUW.

m The asynchronous updating usualy used in an SAP - LUW alows the system to temporarily collect
changes made by users and then, at the end of the dialog phase (in the second part of the SAP -
LUW), make the necessary changes to the database in a separate update work process. To ensure
data consistency, the resulting database change (which includes every “dialog step change”) is
executed in only onefinal DB - LUW.

m Diadog work processes should not be loaded down with long-running dialog steps, as these work
processes would then not be available to other users. The remaining dialog work processes would
have to handle many more users, thus considerably increasing response times.

m Thisisthe reason for the parameter rdisp/max_wprun_time (default setting: 300 seconds), which sets
the maximum time a dialog step is alowed to remain in a dialog work process. If thistime is
exceeded by more than double, the dialog step is terminated and the started transaction terminates
with an error. This allows the administrator to ensure that users execute long-running actions only in
the background work processes, which are designed for these types of long-running actions.

m Background work processes are designed for periodic tasks such as reorganization or the automatic
transfer of data from an external system to the R/3 System.

m Background processing is scheduled in the form of jobs. Each job consists of one or more steps
(ABAP reports, external programs, or other operating system calls), that are processed sequentialy.
You can aso set priorities (from "C" to "A") so that certain jobs are prioritized.

m Job processing is not generaly triggered immediately (immediate start). Instead you specify a start
date and time when you schedule the job. It may aso be necessary to start jobs periodicaly, for
example, system control jobs repeated on afixed cycle. Using the program SAPEVT, you can trigger
ajob start a the operating system level.

m The background scheduler is responsible for automatically triggering the job at the specified time.
The background scheduler is an ABAP program that regularly looks in the scheduling table for jobs
to be executed and then ensures that they are executed (RDISP/IBTCTIME, default 60).

m Spooling refers to the buffered transfer of data to output devices such as printers, fax devices, and so
on. In distributed systems, networked administration is necessary for this output.

m The R/3 System spool mechanism can supply print requests to printers and externa spoolers both
within aloca network as well as across wide-area networks (WANS). The spool mechanism works
with the local spool system on each server.

m Spool requests are generated in dialog mode or during background processing and are then set in the
spool database with details about the printer and the print format. The data itself is stored in the
TemSe (TEMporary SEquential object) database.

m When datais to be printed, a print request is generated for a spool request. This print request is
processed by a spool work process.

m Once the spool work process has formatted the data for output, it returns the print request to the
operating system spool system.

m The operating system spool takes over queue management and ensures that the required datais
passed to the output device.

An instance is an administrative unit that combines R/3 System components providing one or more
services. The services provided by an instance are started or stopped together. Y ou use a common
instance profile to set parameters for al the components of an instance.

A central R/3 System consists of a single instance providing all the necessary R/3 System services.
Each instance has its own SAP buffer areas.

The example illustrates how an additiona background processing server (a) and dialog server (b) are
set up. These instances, which provide specific services, generally run on separate servers, but can
aso run on the same server, if needed.

The message server provides the application servers with a central message service for interna
communication (for example, trigger update, request and remove locks, trigger background
requests).

The dispatchers for the individua application servers communicate through the message server,
which isinstalled once in each R/3 System (it is configured in the R/3 System profile files).

Presentation servers can aso log on to an application server through the message server. This means
that you can use the message server performance database for automatic load distribution (logon load
balancing).

Communication: Contents F'
A

® Interfaces to the R/3 System:
® Remote Function Call (RFC)
® Object Linking and Embedding (OLE)
® Connecting R/3 to the Internet
® Electronic Data Interchange (EDI)

® Data transfer interfaces

8 SAP AG 1999

Communication Interfaces “r
kh‘- d

Communication Interface

a4 SAPAG 1999

m The R/3 System ensures portability by using industry-standard interfaces that support the interaction
of applications, data, and user interfaces. The system can interact with various operating systems,
databases, and networks. The R/3 System uses open industry standards, such as TCP/IP, EDI, OLE,
and open interfaces.

Communication: R/3is an Open System

HTTP

D

fa\
t

TCP/IP

a4 SAPAG 1999

m The R/3 System is an open system. It supports a variety of network communication protocols.
Information can be exchanged between R/3 Systems and other R/3, R2, or non-SAP systems acrossa
network.

m SAP supports the Transmission Control Protocol / Internet Protocol (TCP/IP) and System Network
Architecture; Logical Unit 6.2 (SNA LUG6.2) protocols. Communication within the R/3 System uses
the standard protocol TCP/IP. LU6.2 was developed by IBM and is used to communicate with
mainframe-based R/2 Systems.

m R/3 application programming supports the following communication interfaces. common
programming interface communication (CPI-C), remote function call (RFC), and object linking and
embedding (OLE) automation.

m For more information about communication, see the online documentation. Y ou can also order an
“Interface Adviser” Knowledge CD from SAP that uses many practical examplesto explain
communication in the R/3 System. SAPNet a so contains additional information, such as under the
dlias /int-adviser.

Remote Function Call

R/3 System External System R/2 System
_. _._ __._ PR
ABAP T External ABAP
program program program
RFC interface | RFC interface | RFC interface |

. s

SNA Gateway |

\ 4

RFC interface '
Z ABAP program ABAP program ABAP program
R/3 System

a4 SAPAG 1999

m Remote Function Call (RFC) is a communications interface based on CPI-C, but with more functions
and easier for application programmersto use. Y ou can use R/3 and R/2 Systems as well as externd
applications as RFC communication partners.

m For communicating with R/2 Systems, additional software (SNA gateway) is required on at least one
goplication server. See dso R/3 Note 13903.

m RFC isthe protocol for caling specia subroutines (function modules) over the network. Function
modules are comparable with C functions or PASCAL procedures. They have a defined interface
through which data, tables and return codes can be exchanged. Function modules are managed in the
R/3 System in their own function library, caled the Function Builder.

m The Function Builder (transaction SM37) provides application programmers with a useful
environment for programming, documenting and testing function modules that can be called locally
aswell asremotely. The R/3 System automatically generates the additional code (RFC stub) needed
for remote calls.

m You maintain the parameters for RFC connections using transaction SM59. The R/3 System isaso
delivered with an RFC-SDK (Software Development Kit) that uses extensive C librariesto alow
external programs to be connected to the R/3 System.

RFC From SAP System to SAP System Hr
DA

Calling system Called system

RFC DESTI NATI ON
R/ 2

R/ 3
I—DEST

CALL FUNCTI ON XY FUNCTI ON Y.

DESTI NATI ON DEST
EXPORTI NG. . .

| MPORTI NG. . . ENDFUNCTI ON.

RFC interface ' RFC interface |

8 SAP AG 1999

m The only difference between aremote call of afunction module to another server and alocal cal isa
specia parameter (destination) that specifies the target server on which the program is to be
executed.

m There are three types of RFC calls:

» Synchronous RFC cal: The calling program stops until the function module has been processed
on the target server and any results have been returned to the caller. Only then does the calling
program continue processing.

* Asynchronous RFC call: The cdling program runs paralel to and independently of function
module processing in the target system. Programmers are responsible for the processing of the
results. In addition, the target system must aso be available at the time of the RFC call.

» Transactional RFC call: Severa function modules can be grouped into one transaction. They are
processed only once in the target system, within an LUW, and in the sequence in which they were
caled. In the case of an error, amessage is sent to the calling system that you can analyze using
transaction SM58. For transactional RFC, the target system does not have to be available at the
time of the RFC call. In addition, you can configure the frequency and intervals of individual
queries.

Office Integration Using OLE

Frontend SAP System

\

SAP GUI 5

D ABAP program GE)

0

PC program g
B

PC program H 5

L

-

o

Function module

RFC interface | RFC interface I

a4 SAPAG 1999

m Object linking and embedding (OLE) is an object-oriented method for program-to-program
communication. Y ou can connect office applications that support OLE2 automation (for example,
Word and Excdl) to the R/3 System. In this way, users can use the R/3 functions within their usual
desktop environment.

m The office programs OLE functions are specified in the R/3 System in the type information. This
information contains a description of the methods, attributes and parameters. Type information can
be language-independent.

m When using OLE, the R/3 System can play two separate roles:

* |f the R/3 System is acting as an OL E client, then the user cals the desktop program from the
ABAP application. OLE commands are transferred from the ABAP code as remote function cals
(RFC) through the SAP GUI to the PC. The SAP GUI maps RFC calls to OLE commands for the
PC application.

* |f the R/3 System is acting as an OL E server, R/3 functions can be called from the desktop
application. OLE commands are sent to the SAP automation server. The server converts them into
RFC calls and passes them on to the R/3 System. In the R/3 System, function calls and BAPIs are
triggered by business objects. After the data is processed successfully, the business object sends
the data back to the desktop program through the SAP automation server.

Business Objects and BAPIs H'
>

Business Object Repository (BOR) BAPIs are used for:

Distributed scenarios (ALE%:M“
1 R/3 components ®®Q

Business Object (BO)
(for example, sales order)

Internet / Intrane

Business workflow ch {;

i
External programs =2

Business Application - JAVA
Programming Interface (BAPI) Customer and partner developments

(for example, create an order)) H|
|

8 SAP AG 1999

m Business objects form the basis for communicating on high (user-friendly) network layers. For
example, they enable the R/3 System to support the Internet, and desktop programs to be connected.
The goa of SAP's object-oriented strategy is to integrate objects at a business level rather than on a
purely technical level.

m Business objects:
* Form the basis of well-defined communication between client / server systems.
* Are business-oriented: there are objects such as “customer”, “order” or “employee’.

* Provide business functions (methods). For a*“customer” object, for example, there are
“Create customer” and “View customer” methods. These names support clear and therefore
error-free programming.

» Are managed centrally in the R/3 System in the Business Object Repository (BOR).

m Business Application Programming Interfaces (BAPIs) are functional interfaces. They use the
business methods from the business objects. BAPIs may be addresses within or outside the R/3
System.

m For specifications and more information about BAPIs, see the dias “bapi” in SAPNet.

Administration: Contents H'
A

Security concepts in the R/3 System

Important administration functions
The Computing Center Management System (CCMS)
SAPNet and SAPNet - R/3 Frontend

8 SAP AG 1999

Security in the R/3 System

Network / Communication

. Client, LAN . .
Client, WAN Application
(SAPGUIl) _—_. - =H Server
- LY
r
|
— B
Application
) Server Database
Internet Transaction Server

Server (ITS), A Gate
Web Server

Web Browser and ITS W Gate

Internet

a4 SAPAG 1999

R/3 System technology integrates security mechanisms on severa levels.

*Presentation: The SAP GUI software uses check sums to check for integrity each time the R/3
frontend is started. This also recognizes any computer viruses.

*Network / Communication: A firewall and the SAProuter protect the internal network. Y ou can
also use additional security mechanisms by integrating external security products such as SECUDE
(or Kerberos).

* Application: The authorization concept prevents unauthorized access to data and transactions.
Users must authenticate themselves using their user 1D and password. The lock mechanism within
the R/3 System a so prevents users from making changes to the same data simultaneoudly.

*Internet: The R/3 System supports current Internet security standards, such asHTTPS.

*Database: Only database administrators can access data in the R/3 database from outside the R/3
System. The database manufacturer's security mechanism is active here.

*Passwords: Preconfigured users exist in clients 000 and 001 after the R/3 System has been
installed. These default users, DDIC and SAP*, have comprehensive authorizations. Y ou should,
therefore, change their initial passwords as soon as possible.

*For more information about security, see the SAP Notes, the installation guide, the online
documentation, and the security guide.

System Administration H’
A

Background job monitor | @
Display application servers | %
Manage user sessions @ ALO8
Manage work processes |® %
Administration Administer lock entries @
functions
Administer update records | @ @
Analyze system logs @

Send system messages | @
(Cross-system) monitoring @

8 SAP AG 1999

m The R/3 System provides system administrators with a number of powerful tools to perform their
daily tasks.
Y ou can find the following functions in some of the transactions listed above:

* Digplay server, user, work process, and background job overviews

Manage locks and updates
Lock transaction codes
Create system messages

Monitor system and cross-system components (see related information)

Computing Center Management System (CCMS) H’

CCMS provides:

® System administration (starting / stopping, system
configuration)

Background processing and job scheduling

System fine-tuning

Administration of system profiles

Database administration (backup)
Dynamic load balancing

System monitoring

And so on

a4 SAPAG 1999

m Using the Computing Center Management System (CCMS) you can monitor, control and configure
an R/3 System. Y ou can use the tools to analyze system load and determine the resource
consumption of various system components, among other tasks.

m CCMS provides you with anumber of graphical monitors and administration functions:
» Starting and stopping the R/3 System
* R/3 System monitoring and analysis
* Automatic reporting of system alerts
* Dynamic user distribution
* R/3 System configuration: Editing system profiles (not authorization profiles)
* Processing and controlling background jobs, scheduling database backups

Monitoring Architecture

2 views: current system status /
open alerts

Monitor Edit Goto Views Exiras System Help

GO0 CHR DTDLO BE B
SAP CCMS MoMmplates (Entire System)

[i €3] openalerts [H T Pproperties = e S [HE

View: Current system status (17.02.2000 , 16:00:37)

Expert analysis
[Ertire Eyeten @ <€ Virtual monitor tree element |
[bEY L]
fa [AppTICALIDn Servee @ i
e 4 Monitor summary nodesl
B [Bechprowd @
= | bialop a
I—Ei [tedinimz pev_oe & €————— Monitoring object l
:bﬂmﬂ'lm . E 545 mgac Green 17.02.2000 , 16:16:44
. L FromuerdRespormsT ne 1142 mamc . = . = Yellow 17.02.2000, 16:16:51
Highest alarms Lﬂﬁzﬁ E_‘j w3 Monitoring attribute: | Green 17.02.2000 , 16:16:44
L 4 e 2 mI=c “ ” Green 17.02.2000, 16:16:44
reported . CeRequestTine & 247 wser Type performance Green 17.02.2000 , 16:16:44
L WHiTisation [Green 17.02.2000, 16:17:00 =
T T T T F——L_ nksrimigils &5 Green 17.02.2000 , 16:16:44 =
i | I lalir

{ [[Eon = wormena (o

a4 SAPAG 1999

Transaction RZ20 provides a system monitoring structure allowing centralized monitoring of many
system parameters and includes links to other analysis tools.

Open interfaces alow the incorporation of other system monitoring tools (including non-SAP toals).
Severa R/3 Systems can be monitored provided an RFC connection with the other system is possible
and configured.

Y ou can create your own system monitor views. These can be used to provide specific people with
only those derts they are interested in.

All threshold values can be easily changed.

The average dialog response time in the last 15 minutes is an example of atypical monitoring
attribute.

Remote Services Provided by SAP H’
DA

SAPNet (incl.SAP Note database)
GoingLive and EarlyWatch services

Remote consulting

v v vV

Other services

a4 SAPAG 1999

m SAPNet - R/3 Frontend

* SAPNet - R/3 Frontend provides SAP' s extensive database of notes, which users can consult if
they have any questions or if any problems occur, before they create a problem message.

* In SAPNet you can find current messages, documentation, tools (QuickSizer) and much more.
Y ou can aso use the discussion forums to offer and search for information. Our goal isto make
the vast store of customer knowledge available to a wide audience.

m GoingLive and EarlyWatch:

» The GoingLive check occurs shortly before an R/3 System is used in production. Thistest checks
that the system meets the requirements set. An EarlyWatch session recognizes performance
bottlenecks in an R/3 System before they become a problem, and proposes suitable solutions.

m Remote consulting:

 During aremote consulting session, an SAP consultant accesses your SAP System at atime you
specify and attempts to analyze and solve the problem in your system from their workstation.

m Additiona services. Remote upgrade, remote archiving, conversion, migration, security, and euro
services.

Hot News
Problem Messages

@

Training Information

NS

Online Correction Support

/

Service Requests SAP Software Upgrade Registration

a4 SAPAG 1999

In SAPNet, you can:

m Write system problem messages to SAP

m Search the Note database for help

m Read SAP HotNews, which contains information about Support Packages or new SAPNet functions
m Regquest developer keys for devel opers and for SAP standard objects

m Use Support Packagesto install correctionsin your R/3 System

m Find up-to-date SAP training information

m Allow an SAP employeeto dia in to your system for fast problem solving (through a service
connection).

Administration: Unit Summary

. You are now able to:

® Name some of the security aspects of the R/3
System

® Name some basic administration functions

® Use SAPNet as an information source

a4 SAPAG 1999

System-wide Concepts

Contents:

® Organizational Units and Master Data
® Transactions and Documents
® Authorizations

® Analysis and Reports

a8 SAP AG 1999

Enterprise Structure Terminology

Enterprise > Client
'___________I ___________ j-_-—-—-—-————-——"—----- R
Company Subsidiary > Company
Code
Factory > Plant
Sales > Sales
Organization Organization
""""""" """""'"“7e'“"“""T""""“"\('"""""""""""""""""'
Department Division Business _, Division
Area
Storage
> !
Warehouses Locations
a8 SAP AG 1999

m An enterprise structure is mapped to SAP applications using organizational units. Organizationa
units handle specific business functions.

m Organizationa units may be assigned to a single application (such as a sales organization assigned to
Sales and Distribution, or to several applications (such as a plant assigned to Materials Management

and Production Planning).

Organizational Structures - Levels

Client
Company Code Company Code
1000 3000

T

Controlling Area
2000

EeReTe]E e
ru sfefe]l=]e]e]

Storage Storage Storage
Location Location Location
0001 0002 0003

a4 SAP AG 1999

m The highest-level element of all organizational unitsisthe client. The client can be an enterprise
group with several subsidiaries. All of the enterprise datain an R/3 System implementation is split
into at least the client area, and usually into lower level organizational structures aswell.

m Flexible organizational unitsin the R/3 System enable more complex enterprise structures to be
represented. If there are many organizationa units, the legal and organizational structure of an
enterprise can be presented in different views.

m By linking the organizational units, the separate enterprise areas can be integrated and the structure
of the whole enterprise represented in the R/3 System.

Organizational Structures - Business Functions H’

Business Organizational Units
Enterprise Client
Financial Accounting/ Company Code Sales Organization
Sales 1000 an 1000

X

Controlling Area
1000

. . . Plant |Plant DistributionI
Production/ Distribution 1000 1100 Channel 10

Storage Storage Storage
Inventory Management Location] |Location] |Location
0001 0002 0003

Cost Accounting

a4 SAP AG 1999

m An enterpriseis structured in the SAP R/3 System according to business functions that must
correspond to the functionality assigned to the organizationa units.

m Examples:

* A Company Code is a unit included in the balance sheet of alegally-independent enterprise. It is
the central organizational element of Financial Accounting.

* The Controlling Areais the business unit where Cost Accounting is carried out. Usualy thereisa
1.1 relationship between the controlling area and the company code. For the purpose of company-
wide cost accounting, one controlling area can handle cost accounting for several company codes
in one enterprise.

* In the context of Sales and Distribution, the Sales Organization is central organizationa € ement
that controls the terms of sale to the customer. Distribution Channel is the element that describes
through what channel goods and/or services will be distributed to the customer.

* In the context of Production Planning and Control, the Plant is the central organizationa unit. A
plant is the place of production or simply a collection of severa locations of material stocksin
close physical proximity.

» A Storage Location is a storage area comprising warehouses in close proximity. Material stocks
can be differentiated within one plant according to storage location (inventory management).

Master Data - Customer Master H’
DA

ustomer Master Date

Master Data
u

(only sales-

g relevant data
Accounting

Data

ﬁonly relevant foﬂ

a4 SAP AG 1999

Data records that remain in the database for along period of time are called master data. Master data
includes creditors, vendors, materials, accounts, and so on.

Master datais created centrally and can be used in all applications.
Example:

* A customer is master data that can be used in customer requests, deliveries, invoices, and
payments.

Master data also has an organizational aspect asit is assigned to organizationa units.

Master data has cross-component usage
Examples:.

» Customer master data uses the same data for financial accounting and sales

* Customer master records can be assigned to the following organizational units:
- company code
- sales organization
- distribution channel

- divison

Customer Master - General and Financial Data

General Data

Name 1

Client Name 2
Address

Telephone
Bank Information
DE 500 500 10 123 456 78

Company Codes
1000 3000
Company Code Data Company Code Data
Reconciliation account nnnnnn Reconciliation account nnnnnn
Terms of payment ZB01 Terms of.payment ZB20
Item sorting 0005 ltem sorting 0001
Dunning procedure 0001 Dunning procedure 0002

a4 SAP AG 1999

m When creating a customer master record, you enter:
* Shared data on the client level
* Company code-specific data for each company code

m Data on the client level can be used by all company codes. The customer account number is assigned
on thislevel. That means, the same customer has an explicit accounts receivable number in all
company codes from afinancial view.

Customer Master - Sales Data

General Data

Name

Address
Telephone C| ient

Company Code Data Company Code Data Sales Organization Data
Company Code Company Code Sales Organization
1000 3000 1000
Financial Accounting Sales

a4 SAP AG 1999

m |f you aso have SAP Sales and Distribution implemented, there are additiona fields you can
maintain. These fields contain information and control data that are necessary for processing the
business activities in the Sales area.

m Fieldsfor customer master data are divided into Accounting and Sales areas. Address datais used
from both areas. In the Sales area, information recorded can be accessed by Financial Accounting
and vice versa

Note:

The structural logic for customer master records/accounts receivable is also valid for vendor
master records/accounts payable.

Master Data - Material Master

Views of the Material Master Record

PR KR
\‘

MM

\\ \ o\\&\a; S
AR

SY
Plant/¥

Financ)

Accountin

Storage
¢\

\

a4 SAP AG 1999

m The material master represents the central source for releasing material-specific data. It is used by all
of the SAP Logistics components in the R/3 System.

m Integrating dl of the material datain one single database object means that the problem of data
redundancy is not an issue. The stored data can be used by al areas, such as purchasing, inventory
management, materias planning, invoice verification, and so on.

m The data contained in the material master is required, for example, by the following functions in the
SAP Logistics component:

* Ordering in Purchasing
* Updating movement of goods and managing the physical inventory in Inventory Management
* Pogting invoices in Invoice Verification
* Processing sales ordersin Sales
* Planning requirements, scheduling work in Production Planning and Control
m The structura logic that applies to vendors and customers is also valid for material master records.

Transactions and Documents: Topic Objectives H’

a4 SAP AG 1999

At the conclusion of this topic, you will be able to:

® Explain how organizational units and master
data are integrated during business
transaction processing

® Define Documents in the R/3 System and
describe how they are generated during
transactional processing

® Explain how SAP Workflow can support
business processes

m When creating an order for a customer, you must take transport agreements, delivery and payment
conditions, and so on, with business partners into consideration. To avoid re-entering this
information each time for every activity related to these business partners, relevant data for the
activity from the master record of the business partner is ssimply copied.

m |n the same way, the material master record stores information, such as the price per unit of quantity,
and stock per storage location that is processed during order entry. This concept is valid for
processing data for each master record included in the activity.

m When performing each transaction, applicable organizational units must be assigned. Assgnmentsto

the enterprise structure in the document are generated in addition to the information stored for the
customer and material.

m The document generated by the transaction contains al relevant pre-defined information from the
master data and organizational units.

m A document is generated for each transaction carried out in the R/3 System.

m Each time you save a quotation request, order, outline agreement, delivery note, production papers
and so on, an output format is generated by the document. This output format represents a message
(message type). The message is then placed in the message queue and it can be released for printing
or output via EDI, for example. Messages can be released either automatically or manually using a
message control program.

m You can release individual messages during processing using different communication media,
provided that the relevant message types and communication media have been pre-defined. Y ou can
define when and how messages are sent for each document type.

m A form can be defined for each message type that contains the format for the message.
m Message control can be adefault value from the master record of the business partner.

The SAP Business Workflow is a support tool that can be used to optimize the execution of
activities. Work steps carried out consecutively can be automated to coordinate flow of information.
Workflows enable the electronic workflow management of structured flows that:

* Cover asequence of activities
* Always occur in the same or similar form
* Involve severd departments or people

Workflows control the information process flow according to a predefined model and are especidly
suited for structured organizations divided into departments/divisions.

Workflows bring the “right” work in the “right” order at the “right” time to the “right” people. This
can be achieved through automated mail or through a workflow item.

A workflow item is aworkflow task that has itself been generated from a Workflow and appearsin
the inbox of the office component. If human/manua intervention is required, employees can handle
the messages from their electronic mail boxes.

What Workflows are not: E-mail, EDI, ALE, or screen sequence management within a transaction.
Workflows use all these processes.

Contents:

mySAP.com strategy
Workplace
Marketplace

mySAP.com Business Scenarios

Application Hosting

a8 SAP AG 1999

SAP’s Major Internet Initiatives H’
DA

® Buy-Side (SAP Business-to-Business Procurement)
m Targets a business’ purchasing processes
® Sell-Side (SAP Online Store)
m Business-to-Consumer
m Business-to-Business
® Intranet/Self-Service (SAP Employee Self-Service)
m Targets internal corporate users
® mySAP.com
m Marketplace Portal

m Workplace

a4 SAP AG 1999

m SAP Business-to-Business Procurement is a solution for the entire procurement cycle for
maintenance, repair and operations (MRO) items and services.

m SAP Online Store lets customers market their products and services on the Internet. To tap the full
benefits of SAP Online Store, customers need only a standard Web browser, and the online store
provider must implement the functionality of R/3 Sales and Distribution. The business-to-consumer
sector represents the classic playground for this type of sales front-end.

m Employee Self Service (ESS) functionality gives employees complete control of their own data -
they can request vacation at their PCs, enter trip costs, and record working hours using the browser
of their company's intranet system.

m mySAP.com is acomprehensive, open, e-business solutions environment comprising of portals,
industry-specific enterprise applications, Internet applications and services, as well as XML -based
technology - al of which combine to enable companies to participate in the Internet economy.

The Strategy: From Integration to Collaboration H’

il mygorcom
e.,, I y orkplaces Mark
“ Portals
Employee Self Business Customer Relatlonshlp 3
Services eCommerce Intelligence Managemerijt]
,, . - Business
SAR E-‘~3| J J J J J Scenarios
Industry Supply Chain |
Solutions Management
» XML-enabling
Business : J

Internet Application

Framework :
: Components

Technology, BAPIs

il

m Integration in the “old” economy meant business process integration.
* ERP made SAP R/3 aworldwide standard system
* Since 1996 SAP R/3 has been e-commerce capable

» SAP products incorporated business technology for the future alowing customers to be ready for
the future without system change

m Integration in the “new” economy requires integration of processes between enterprises.
* Collaboration
* More than working together

* Processes, where many users participate, can be executed simultaneously as one-step-business

People on Top H’
DA

People
in
business scenarios

Roles

Industry Solutions

Very short Marketplace New¢ Directories Sales
innovation cycles Workplace Catalogs ESS 32B Procurement SOFTWARE &
Service Selling B|W| T . A[?]%Ié(t:iantigon COMPSOENREVI\IS'E
Marketin mplementation (Examples)
Relatively ValugeSAPKW Outsoureing AP0
stable Financials Cogistics oman Payroll
Internet

architecture Internet Business Framework

a4 SAPAG 1999

m All products offered by SAP today will be made available with the mySAP.com system. The focal
point is the role-specific menus that are used to select the required function. In practice, it looks like
this: A user is assigned to one or more roles. Business Scenarios contain various roles. The Business
Scenarios reflect functionality used in the different industries.In addition to the R/3 System, there are
the New Dimension Products and industry-specific solutions. All the functions provided on the
Solution Map are organized according to Business Scenarios (for example, Purchasing or Employee
Sdf-Service viathe Internet).

mySAP.com: What does it mean?

PERSONALIZED

through the Workplace SOLUTIONS ON DEMAND

a4 SAPAG 1999

through SAP Products and Services

COLLABORATIVE

through the Marketplace

m mySAP.com places the Internet at the center of SAP's activities. It leverages al of SAP's key assets,
including its extensive product portfolio, customer base, partner community, and expertisein
integrating business processes.

m mySAP.com is the collaborative environment providing personaized business solutions on demand.

Workplace: Topic Objectives Hr
SAF

o At the conclusion of this topic, you will be able to:

® Briefly discuss the concepts of the Workplace

a4 SAP AG 1999

Workplace Internet Business Framework

standard

single my T Tom

Workplace
industry-specific
role-based
personalized
drag & relate

Web browser access

~

mySAP.com Internet services)

&

Cother Internet services 8@

¢

a4 SAPAG 1999

m The Workplace contains links inside and outside a company's boundaries. Links can be made to:
* Non mySAP.com components. Externa systems using open internet standards

* mySAP.com components. Classical and new web-based R/3 transactions (R/3 Standard System,
New Dimensions, industry solutions) , Reports (for example, Business Information Warehouse
reports with BW 2.0a) , Knowledge Warehouse contents

* mySAP.com Internet services: my.SAP.com Marketplace
* Any Internet or intranet web sites

mySAP.com Workplace - Benefits

Key Benefits

® Access to all necessary internal and external services
through one screen

Seamless integration in mySAP.com environment
Portal is tailored to the user’s role in the company
Single sign-on access all services

User friendly Web browser interface

Access via the Internet anytime, anywhere

a4 SAPAG 1999

Marketplace: Topic Objectives Hr
SAF

o At the conclusion of this topic, you will be able to:

® Briefly discuss the concepts of the Marketplace

a4 SAP AG 1999

m The mySAP.com Marketplace consists of the four majoe el ements:
e Community
* Content
* Commerce
* Collaboration

m Marketplace Portal is a place on the Web where communities can exchange goods and services
electronically.

m Workplace is an application on a users desktop that cooperates with a Web browser and provides a
personalized, role-specific view on the entire business world. This business world includes
marketplaces, applications, services, and content provided by a company over the Intranet or other
companies via the Internet.

m The business objectives of mySAP.com are to empower people, create value, and enable one-step
business transactions. mySAP.com places the Internet at the center of SAP's activities. It leverages
al of SAPskey assets, including its extensive product portfolio, customer base, partner community,
and expertise in integrating business processes.

m The definitions above describe the Application Hosting options available.

Section: ABAP Workbench Concepts and Tools

8 SAP AG 1999

Content: ABAP Workbench Concepts and Tools H’
A

Unit

Unit
Unit

Unit

Program Flow in an
ABAP Program

ABAP Workbench

ABAP Statements and
Data Declarations

Database Dialogs |
(Reading from the
Database)

Unit

Unit
Unit

Unit
Unit

Internal Program
Modularization

User Dialogs: Lists

User Dialogs: Selection
Screen

User Dialogs: Screen

Reuse Components

a4 SAPAG 1999

Main Business Scenario

Departure City

8 SAP AG 1999

b »
In this course, you will develop several Destination
programs meant to assist travel agencies.
Some of their typical needs include: ‘

e Determining flight connections on specific dates
e Processing bookings for specific flights
e Evaluating additional flight information, such as
® Price
e Capacity

Destination City

Program Flow in an ABAP Program

Contents:

Client / server architecture
Sample program with data displayed in list form

Sample program with data displayed on a screen

Which ABAP program components are discussed in
which units?

8 SAP AG 1999

z-!, :l h'

, Client / server architecture

Sample program with data displayed in list form

Sample program with data displayed on the screen

Which ABAP program components are discussed

in which units?

a4 SAPAG 1999

Client / Server Architecture

Presentation

Server

Layer

Application | , ¢

Server o . L

Layer L Work Work : Work Work Lo
o Process| |[Process| ! i |Process Process| |
‘ Work Work Work Work i

database Process| |Process Process Process :

a8 SAP AG 1999 e

m The R/3 System has a modular software architecture that follows softwar e-oriented client/server
principles.

m The R/3 System allocates presentation, applications, and data storage to different computers. This
serves as the basis for the scalability of the R/3 system.

m Thelowest leve is the database level. Here data is managed with the help of arelational database
management system (RDBMYS). In addition to master data and transaction data, programs and the
metadata that describe the R/3 System are stored and managed here.

m ABAP programs run at the application level, both the applications provided by SAP and the ones
you develop yourself. ABAP programs work with data called up from the database level and store
new data there as well.

m The third levd is the presentation level (SAPGUI). Thislevel contains the user interface, in which
an end user can access an application, enter new data and receive the results of awork process.

m Thetechnica distribution of software isindependent of its physical location on the hardware.
Verticaly, al levels can be installed on top of each other on one computer or each level on a separate
computer. Horizontally, application and presentation level components can be divided among any
number of computers. The horizontal distribution of database components, however, depends on the
type of database installed.

User-Oriented View

Presentation
Server | i
Layer | i
— + Work Process| i
App“cation % ABAP Program E
Server ‘
Layer
1
Database = jl !
; = i i
a SAP AG 1999 e

m Thisgraphic can be simplified for most topics discussed during this course. The interaction between
ABAP programs and their users will be of primary interest to us during this course. The exact
processes involved in user dispatching on an application server are secondary to understanding how
to write an ABAP program. Therefore we will be working with a smplified graphic that does not
explicitly show the dispatcher and the work process. Certain dides will, however, be enhanced to
include these details whenever they are relevant to ABAP programming.

m ABAP programs are processed on the application server. The design of the user dialogs and the
database dialogs is therefore of particular importance when writing application programs.

Program Flow: What the User Sees

Selection Screen

Black Box

.=
7
W,

a4 SAP AG 1999 ‘I'i me

The user is primarily interested in how his or her business transaction flows and in how data can be
input into and displayed from the transaction. Technica details, such as whether a single programis
running or multiple programs are called implicitly, or the technical differences between the kind of
screens being displayed, are usually less important to the user. The user does not need to know the
precise flow of the ABAP program on the application server. Users see the R/3 System with
application servers and database as a black box.

There are, however, three technically distinct screen types (screens, selection screens, and lists) that
offer the user different services. It is the developer's job to determine which type of user dialog is
most suitable to the user's needs.

Interaction Between Server Layers

—_— i
1 : _‘
i o
| Program oo ABAP Program
: Start T
| o ABAP
i o Processing
| 8 2 Block
| 1.
i —
1 4 |
1 : }
1 ! |
1 ! |
1 1 |
: H—P> -
: o ABAP
' 8 i Processing
i ! 1 Block
1 i |
| A
| % | |
1 : :
| 0
| oo
: A
1 : |
| 18
1 ! |
4 SAPAG 1999 v

Database
Table

m When the user performs a user action (choosing Enter, afunction key, a menu function or a
pushbutton, for example), control is handed over from the presentation server to the application
server and certain parts of the ABAP program are processed. If further user dialog is triggered within
the ABAP program, the system sends a screen to the presentation server and control is once again
handed over to the presentation server.

r-!‘ *l"'
Client / server architecture

, Sample program with data displayed in list form

Sample program with data displayed on the screen

Which ABAP program components are discussed

in which units?

a4 SAPAG 1999

m |nthis part of the unit, the user has chosen to start a program where an airline ID can be entered on
theinitial selection screen. The program subsequently uses this information to retrieve the ‘Long
name of airline’ and the 'Local currency of airline from the database and display them for the user in
list form.

—
S
©
—
0p)
S
@®©
S
(@)
2
o
—
S
=
(@)}
2
o
@
o
S
©
0p)

Repository |!

Yime

]

SAP AG 1999

a

m Whenever auser logs on to the system, a screen is displayed. From this screen, the user can start a

program by using its menu path.

System Loads Program Context Hr
DA

ABAP Program —— Repository

Selection Screen

Data Objects

ABAP
Processing
Block

ABAP Runtime System

a4 SAP AG 1999 ‘I'i me

m If the user has triggered a program with a user action, then the program context is loaded on the
application server. The program context contains memory areas for variables and complex data
objects, information on the screens for user dialogs and ABAP processing blocks. The runtime
system gets the program information from the Repository, which is a specia part of the database.

m The sample program has a selection screen as the user dialog, a variable and a structure as data
objects and one ABAP processing block. Thelist that is used to display the datais created
dynamically at runtime.

m The subsequent flow of the program is controlled by the ABAP runtime system.

m Since the program contains a selection screen, the ABAP runtime system sendsit to the presentation
server at the beginning of program processing. The presentation server controls the program flow for
as long as the user fillsin the input fields.

m Selection screens allow users to enter selection criteria required by the program.

m As soon as the user has finished entering data on the selection screen, he or she can trigger further
processing by choosing 'Execute’. All data input on the selection screen is the automatically placed in
its corresponding data object in the program and the ABAP runtime system resumes control of

processing. Our sample program contains only one ABAP processing block. The runtime system
triggers sequential processing of this ABAP processing block.

m |f the entries made by the user do not have the correct type, then an error message is automatically
triggered. The user must correct his’her entries.

m The ABAP processing block contains a read access to the database that has been programmed into it.
The program a so passes the database information about which database table to access and which
line in the table to read.

m The database returns the requested data record to the program and the runtime system ensures that
this data is stored in the appropriate data objects. Normally a structure is the target field when a
single record is accessed. The structure contains variables for al fields requested from the database.

m Thelayout of the subsequent list display has aso been programmed into the processing block. After
all processing has ended, the runtime system sends the list screen to the presentation server.

m Inthis part of the unit, the user starts a second sample program where an airline ID can be entered on
theinitial selection screen. This program subsequently uses the information input on the selection
screen to retrieve the 'Long name of airline' and the 'Local currency of airline' from the database and

display them for the user on asscr een.

m When the user starts the program, the program context is loaded first. This time, however, our
sample program contains three processing blocks, a selection screen, and a screen, and a variable and
two structures as its data objects.

m Since the program contains a selection screen, the ABAP runtime system sends it to the presentation
server at the beginning of program processing.

m As soon as the user has finished entering data on the selection screen, he or she can trigger further
processing by choosing 'Execute’. All data input on the selection screen is then automatically placed
in its corresponding data object in the program and the ABAP runtime system resumes control of

processing. The runtime system then triggers sequentia processing of the ABAP processing block
that comes after the selection screen.

m The ABAP processing block contains a read access to the database that has been programmed into it.
The program also passes the database information about which database table to access and which
line in the table to read.

m The database returns the requested data record to the program and the runtime system ensures that
this data is stored in the appropriate data objects. Normally a structure is the target field when a
single record is accessed. The structure contains variables for all fields requested from the database.

m The ABAP processing block now triggers screen processing. Thisis often expressed smply by
saying 'The program calls the screen’. However, in redlity, each screen possesses its own processing
block that is sequentially processed before the runtime system sends the screen to the presentation
server (Process Before Output). This allows screens to be used in avery flexible manner.

m After the screen's processing block has been processed, the ABAP runtime system sends the screen
to the presentation server. During this process, data is transported into the screen's fields from a
structure that serves as an interface for the screen.

m Once the user performs a user action (choosing Enter, afunction key, amenu function or a
pushbutton, for example), control is handed over to the runtime system on the application server
again. The screen fields are transported into the structure that serves as the screen's interface and a
specia processing block belonging to the screen is triggered. This processing block is always
processed immediately following a user action (Process After | nput).

m After the 'Process After Input' processing block has been processed, the sample program continues
processing the ABAP processing block that called the screen in the first place.

Introduction to the ABAP Workbench H'
A

Contents:

® Repository and Workbench
® Analyzing an Existing Program

® First project: Adjusting a copy of an existing program to
fulfill special requirements

8 SAP AG 1999

m Thedatabase contains, aong with the Repository, application and customizing tables that are usually
client-specific.

m The Repository contains al development objects, for example, programs, definitions of database
tables and global types. Development objects are therefore aso known as Repository objects.
Repository objects are not client-specific. They can therefore be viewed and used in al clients.

All development objects created with the development tools found in the ABAP Workbench are
classified as Repository objectsand are stored centrally in the R/3 Repository.

The R/3 Repository is a specia part of the SAP system's central database.

The Repository is organized according to application. Each application is further divided into logical
subdivisions called development classes.

Repository objects are often made up of sub-objects that are themselves Repository objects.
Each Repository object must be assigned to a development class when it is created.

Y ou can use the Repository | nformation System to search for Repository objects according to
various criteria.

m You can view the Repository structure in the application hierarchy. Y ou can navigate to the
application hierarchy from theinitial screen using Tools-> ABAP Workbench -> Overview ->
Application Hierarchy. (Transaction SE81).

m The application components are displayed in atree structure in the application hierarchy. Expanding
a component displays al the development classes that are assigned to that component.

m You can select a sub-tree and navigate from the application hierarchy to the Repository Information
System. The system then collects all development classes for the sub-tree selected and passes them
to the Information System.

m You can use the Repository Information System to search for specific Repository objects. Search
criteria are available for the various kinds of Repository objects.

m Y ou can navigate to the Repository Information System using
* The Information system pushbutton in the application hierarchy
* The menu path Tools -> ABAP Workbench -> Overview -> Information System

e Transaction SE84 in the command field.

The ABAP Workbench contains different tools for editing Repository objects. These tools provide
you with awide range of assistance that covers the entire software devel opment cycle.
The most important tools for creating and editing Repository objects are:

ABAP Editor for writing and editing program code
ABAP Dictionary for processing database table definitions and retrieving globa types

Menu Painter for designing the user interface (menu bar, standard toolbar, application toolbar,
function key assignment)
(see Interfaces)

Screen Painter for designing screens (dynamic programs) for user diaogs

Function Builder for displaying and processing function modules (routines with defined interfaces
that are available throughout the system)

ClassBuilder for displaying and processing central classes
There are two different ways to go about using these tools:

* Either you call each individud tool and edit the corresponding Repository objects.
Y ou must then call the next tool for the next set of objects...

* Or you work with the Object Navigator: This transaction provides you with atree-like overview
of dl
objects within a development class or program.

m The Object Navigator screen is divided into two areas.
* Anarea for displaying an object list as a hierarchy
* The object window, in which objects can be displayed and edited.

m You can hide the hierarchy area using the 'Close browser' pushbutton.

m You can display the object list for the object currently displayed in the object window using the
'Object list' icon.

m You can select functions from a context menu in both screen areas. Y ou are only given a choice of
those functions that are relevant to displaying or editing the object on which the cursor is positioned.
Right-click with the mouse to display the context menu. (Left-click if you have set up your mouse
for left-handers).

Repository objects are organized in a hierarchy:
m Each application component consists of multiple development classes

m Each development class can contain several different kinds of Repository objects:
programs, function groups, ABAP Dictionary objects, ...

m Each Repository object can consist of different object types:
Programs can contain: global data, types, fields, events, ...
Function groups can contain: global data, function modules, ...

Y ou can enter the type of object list and the object name in the upper part of the hierarchy area. The
object list is then displayed in the hierarchy area.

Double-clicking on a sub-object in an object list displays the object list for the selected object in the
hierarchy area.

Double-clicking on an object that does not have an object list displays that object in the object
window.

Y ou can use the icons to navigate by history or hierarchy between the object lists.
Y ou can add object lists that you edit frequently to your favorites.

m Y ou can use the context menu to display objects from an object list. The system then automatically
selects the correct tool for processing the object sel ected.

m |f the object you require from the object list is not available in the system, you can create it by
double-clicking. Thisis caled forward navigation.

m There are various ways of starting a program:
* You can start a program from the Object Navigator object list using the context menu or using the
Test' icon.
* |f the program has a transaction code, then this can be added to a menu. Then all you haveto do is
click on the menu option with the mouse.

* You can add programs to the favorites list on the initial screen. Programs can also be made
available using the activity groups on the initial screen. Then al you have to do is select the
program in the hierarchy on theinitial screen.

m You can determine the functional scope by executing the program.

m On any screen, you can access information about the program name and the screen number using
System -> Satus. A standard selection screen has the screen number 1000.

m You can access information on the field name and field type for any field on the screen using F1 ->
Technical Info.

m You can display an overview of the program objects using the program object list in the Object
Navigator.

m The hierarchy only shows those object types for which objects exist.

m You can display the abjects in the Object Navigator details window by double-clicking or using the
context menu.

m If you start a program from the Object Navigator object list using the context menu, then you have
two options.

* Choose Execute -> Direct to execute the program directly.
» Choose Execute -> Debugging to execute the program in the debugging mode.

m Starting the program in the debugging mode alows you to execute the program line by line using the
'Single Step' icon. You can display up to eight variables. To trace the variable values, enter the field
names in the left input field. Y ou can aso see this entry by double-clicking on the field name in the
code displayed.

m You can set abreakpoint by double-clicking in front of aline of source code in the debugging mode.

If you then click on the ‘Continue' icon, the program will be executed up to the point where the next
breakpoint is defined.

m You can find information on content-related breakpoints in the ABAP Satements and Data
Declarations unit.

ABAP programs are made up of individual statements.
Each statement ends with a period.

Thefirst word in a statement is called a keyword.
Words must aways be separated by at least one space.
Statements can be indented.

Statements can take up more than one line.

Y ou may have multiple statementsin asingle line.

Consecutive statements with identical initial keywor ds can be condensed into one chained
Statement.

* In chained statements, the initial part of the statement containing the keyword must be followed by
acolon.

* Individua elementsthat come after the colon must always be separated by commeas.
* Blank spaces are allowed before and after all punctuation (colons, commas, periods).

* Beawarethat the system still considers the individua parts of a chained statement to be complete
statements that are independent of one another.

There are two ways to insert comments into a program:
* A star (*) in column 1 alows you to designate the whole line as a comment.
* Quotation marks (") in the middle of aline designate the remainder of the line as a comment.

m You can display detailed information on single objectsin the Editor by double-clicking:

* Double-clicking on the name of a database table displays the database table definition using the
ABAP Dictionary in the object window of the Object Navigator.

* Double-clicking on afidd name displays the part of the program source code where the data
object is defined.

* Double-clicking on ascreen number displays the screen using the Screen Painter in the object
window of the Object Navigator.

m Use the Back function to get back to the program source code display in the Editor.

m You can aso set a breakpoint in any line of source code in the Editor. Then start the program
without selecting the debugging mode. The program will now be executed up to the point where the
breakpoint is defined. At this point, the debugging mode is started.

m There are various ways of navigating to keyword documentation for an ABAP statement:
* F1 onakeyword displays the documentation for the statement on which the cursor is positioned.

* TheInformation icon displays a dialog box offering you various views of the keyword
documentation.

m If you need more precise information on parts of the source code, you can analyze the source code.
The following dides explain the most important statements in the sample program.

m There are various statements that you can use to define data objects.

* The TABLES statement always refers to the global type of aflat structure that is defined in the
ABAP Dictionary. The structure type for the data object in the program is taken from the
Dictionary. The data object name isidentical to the name of the structure type. They are normally
used as an interface to the screen.

» The DATA statement is usually used to define local data objects. The data object type is specified
using the TYPE addition.

* The PARAMETERS statement defines not only an elementary data object, but also an input field
on the standard selection screen that is processed at the start of the program.

m When you activate a program, an internal load version is generated. A selection screen is generated
from the PARANMETERS statement. When the program starts, memory areas are made available for
the data objects.

m You can find further information on data objects in the unit entitted ABAP Statements and Data
Declarations, or in the keyword documentation.

m The SELECT statement ensures that datais read from the database. In order to read arecord from a
database table, the following information must be passed to the database:

* From which database table is the data read? (FROMclause)
* How many lines are read? The SI NGLE addition showsthat only one line is read.

* Which line is read? The WHERE clause shows which columns of the database table have which
values. For a SELECT SI NGLE, the condition must be formulated so that one line is specified
unambiguoudly.

m The data supplied by the database is put into local data objects. The | NTO clause specifies the data
objects into which you want to copy the data. In this example, the datais copied to the components
of the same name in structure wa_sbc400.

The statement CALL SCREEN callsascreen
A screen must be created using the Screen Painter tool.
A screen is an independent Repository object, but belongs to the program.

Y ou can define input fields on a screen that refer to the ABAP Dictionary. Screens automatically
perform consistency checks on al input and provide any error dialogs that may be needed. Thus,
screens are more than just templates for entering data, they are, in fact, dynamic programs
(dynpros).

The statement TABLES declares a structure object that serves as an interface for the screen. All data
from this structure is automatically inserted into its corresponding screen fields when the screen is
cdled by the CALL SCREEN statement. Data entered by the user on the screen is transferred to its
corresponding fields in the program after each user action (after choosing Enter, for example).

m ABAP contains statements (WRI TE, SKI P, ULI NE) that allow you to create alist.
m V\RI TE statements display field contents, formatted according to their datatype, asalist.

m Consecutive WRI TE statements display output in the same output line. Output continues in the next
line when the present oneisfull.

m You can place a position entry in front of any output value. This allows you to determine carriage
feed (/), output length (I) and where a column begins (p). More detailed information about
formatting options can be found in the keyword documentation under WRI TE

m List output can be displayed in color.
m The complete list appears automatically at the end of the processing block.

m Thefirst project isto extend an existing program. As no extensions are allowed in the program and
modifications are to be avoided, the first step isto copy the program and then change it.

m You must allocate changes to existing programs to a project in the system, just as you would for
creating copies of programs or creating new programs. Therefore the following dides deal first with
how a project is represented in the R/3 System.

m Projects are always implemented in a development system and then transported to the next system. A
decisive criterion for the combination of projects is therefore which Repository objects need to be
transported together because of their dependencies. More detailed information on project
organization is available in the unit entitled Software Logistics and Software Adjustment.

m Repository objects are automatically linked to correction and transport systems when they are
assigned to a transportable devel opment class (not $STMP).

m After development has ended, Repository objects are transported into the test systems or production
systems by way of certain prescribed pathways.

m The ABAP Workbench tool Workbench Organizer (WBO) organizes al development tasks
pertaining to Repository objects.

m Each project requires the following information:
* Name of the Project Manager?

» What functional scope isto be covered by the object? Which Repository objects are to be changed
or created?

* What is the timeframe for the project?
* Names of the project participants?

m Asan example, we are going to organize Course BC400 as a project.
* Thetrainer isthe Project Manager.

* Programs need to be developed for each topic. (These are the trainer's sample programs and the
exercise groups exercises)

* This project isto be completed by 3:00 p.m. on Friday.
* The user names of the participants (in this case, the exercise groups) are BC400-XX.

m At the beginning of a development project, the project manager must create a change request. The
project manager assigns al project team members to the change request. The Workbench Organizer
assigns a project number to the change request (<sd>K9<nnnnn>. Example: C11K900001). <sid> is
the system number.

m Next, the Workbench Organizer (WBO) creates atask for each employee assigned to the change
request. From now on whenever an employee all ocates a Repository object to that change request,
the Repository object will automatically be filed away in that employee'stask. Thus al Repository
objects that an employee works on during a development program are collected within his or her task
folder.

m When changing a Repository object, a developer assignsiit to a change request. Unlike the logical
functiona divisions that separate different development classes, change requests are project-related.
Thus, athough a program aways belongs to only one development class, it can, at different times,
belong to different change requests.

When development is finished, the developer carries out afina quality check and releasesthe task.
The objects and object locks are passed from the task to the change request. However, al employees
assigned to the change request can still make changes to the object because the Workbench
Organizer will automatically create anew task should the need arise.

When the project is complete, the Project Manager checks the consistency of the request and the
Proj ect Manager releases the change request. The locks on the objects in the request are rel eased.

The Repository objects are then exported to the centra transport directory.

The objects are not imported automatically into the target system. Instead, the system administrator
uses the transport control program tp at the operating system level. Afterwards, the developers check
the import log.

m Program names beginning with Y or Z, or with SAPMZ or SAPMY, are reserved for customer
developments. Y ou can also have a namespace reserved for customer developments. Detailed
information on customer namespaces for various Repository objectsis available in the SAP Library
under Basis Components -> Change and Transport System(BC-CTS) -> BC Namespaces and
Naming Conventions.

m You can copy aprogram from the object list of a development class or program. To do so, Smply
place your cursor on the name of the program you want to copy and click with the right mouse
button. Choose Copy. The system displays a diaog box where you can enter a new name for your
copy. Confirming your entries using the appropriate pushbutton in the application toolbar causes the
system to display a diaog box where you can select the sub-objects that you want to copy with the
program. Thus, you should decide which sub-objects you want to copy with the program BEFORE
you begin the copy procedure. After you confirm these entries, the system displays yet another
dialog box where you can save Repository objects.

m |f you are copying a program that contains includes, another dialog box is displayed before this one,
where you can choose which includes you want to copy and enter new names for them.

m Assign the program to a development class, in order to be able to save it. Y our name is automatically
entered into the system as the person responsible for the new program copy. Check all entries to see
if they are correct and then choose Save.

m All Repository objects that are created or changed must be assigned to the change request for their
corresponding project. For thistraining course, the trainer has created a change request for the
project 'Exercises for Participants on Course BC400 as of May 8, 2000'. Each group has atask within

this change request. Assign all of your Repository objects (devel opment classes, programs, and so
forth) to this change request.

m You can display all change requests in which you have atask using the 'Own regquests pushbutton.

m For more information about project organization from the project management point of view
(including creating tasks), refer to the unit on software logistics.

m You can adjust the short text (= title) as follows:

Double click on program object types in the Object Navigator object list.
Choose attributes.

Click on the 'Change' icon.

If the original language of the source program is not identical to your logon language, a dialog box
appears to ask you whether you want to change the title in the origina language or if you want to
change the origina language.

* Now you can adjust the title.
m The atered title appears as short text next to the program name in the Object Navigator object list.

m In order to adapt the source code, navigate to the Editor (context menu).

m To adapt the list, supplement a ULI NE statement and aVRI TE statement. Y ou can find further
information on these statements in the keyword documentation.

m You can carry out asyntax check after you have changed the source code.

m Y ou can change a screen using the Screen Painter. To change the layout, first use the context menu
for the screen in the object list to navigate to the Screen Painter and then from there use the 'Layout’
icon to navigate to the graphic Layout Editor.

m This contains an icon for creating input/output fields with reference to global types. Enter a structure
type that is defined in the ABAP Dictionary. All fields for this structure type are displayed for
selection. Y ou cannot select fields that are already contained on the screen. Thisis shown by a small
padlock next to the field.

m Thetool for displaying and maintaining global typesis caled the ABAP Dictionary. Y ou can find
more detailed information on global types in the ABAP Statements and Data Declarations unit.

m A syntax check started from the Editor always relates to the current contents of the Editor.

m Assoon as you have saved the program, this source code is visible throughout the system. Y ou can
use the context menu to carry out a syntax check that encompasses al program components. Starting
the program from the abject list context menu ensures that the active version is started.

m Assoon as you have activated the program, the active version can be executed throughout the
system.

m Y ou can run an extended program check for activated programs using the context menu or the menu
option. These checks are considerably more extensive than the syntax check.

Unit: ABAP Workbench
Topic: Analyzing a program

At the conclusion of these exercises, you will be able to:

Use the navigation functions to examine the structure of a program

The program SAPBC400WBT_GETTING_STARTED contains a
selection screen that allows the user to enter an airline code. The airline
details then appear on a screen. When the user presses Enter, the datais
then displayed on alist.

Navigate through the program code and other components to help you
understand the structure and flow of the program.

Program: SAPBCA00WVBT_GETTI NG_STARTED

Open the object list for development class BC400. Find the program
SAPBCA00WBT _GETTI NG_STARTED, and open its object list. Throughout the
exercise, make sure that you remain in display mode.

Run the program to find out how it works. Thereis an input field on the selection

®

®

&

Yo,

P -

11

1.2
Screen.
121
1-2-2
1-2-3
1.2.4
1.2.5

1-3

What information must you pass to the program? (Use the F1 help for the
input field)

What values can you enter? (Use the possible entries help F4)
What information does the program provide?

What user dialogs does the program contain? Find out the number of the
selection screen and the dynpro screen by choosing System ® Status.

What are the names of the input field on the selection screen and the output
fields on the screen? To find out the names, use the F1 help for each field
then choose Technical info.

Use the object list in the Object Navigator to examine the program.

1-3-1

What data objects are there? (Use the program object list) Where are they
defined? (Use navigation) Where are they used? (Use the where-used list).

1-4

1-3-2 What data object in the ABAP program corresponds to the input field on the
selection screen? (Look in the object list for a data object with the same
name as the field that you found out in step 1-2-5.)

1-3-3 Which statement processes the screen? (Look in the source code or use a
where-used list for the screen number.)

1-3-4 Navigate to the screen, and from there to the graphical layout. Click an
output field. Where in the graphical layout editor does the field name
appear that you found out in step 1-2-5?

Navigate to the program source code.

1-4-1 Which statement constructs the list? Open the keyword documentation for
this statement. How do you create a line break?

1-4-2 Which statement is responsible for the database dialog? From which
database table is the data read? Navigate to the database table definition.
What columns are in the table?

1-4-3 Only one lineis read fromthe database table. In which data object is the
information as to which line should be read? When is the variable
containing the information about the line of the database to be read filled?

Unit: ABAP Workbench
Topic: Adapting a Program to Special Requirements

At the conclusion of these exercises, you will be able to:

Copy programs and change them using the ABAP Editor and the
Screen Painter

*ee

Use the syntax check to identify smple errors

N

P - Program: ZBC400_## GETTI NG _STARTED
||| m || m || m || Templatee SAPBC400WBT _GETTI NG _STARTED
Model solution: SAPBC400V\BS _GETTI NG_STARTED

2-1 Copy the program SAPBCA00WBT_GETTI NG_STARTED with all of its
componentsto ZBC400_##_ GETTI NG STARTED and assign it to your

development class ZB C400_## and the change request for your project,
“BC400...". (## is your group number.)

2-2 Extend the program as follows:

2-2-1 Add the statement “ULI NE.” to the program and do a syntax check. Make a

deliberate syntax error and use the syntax check to find it. Activate the
program and start it again. What has changed? Run the extended program
check.

2-2-2 Change the program so that input fields occur on the screen for the user
name, atime, and adate. Navigate to the Screen Painter by double-clicking
on the screen number. This takes you to the screen's flow logic. Check that
the graphical layout editor is active (Utilities ® Settings). Start the graphical
layout editor by choosing the relevant pushbutton in the application toolbar.
Check that you are in change mode. Define the additional fields with
reference to the ABAP Dictionary. Asyour reference structure, use
SBC400_CARRI ER and select the fields UNAME, UZEI T, and DATUM
Activate the screen.

2-3

Display the extrafields in the list. Use the WRI TE statement. Display the

data on a new line, separated from the other fields by a horizontal line. To
do this, use the ABAP keywords SKI P and ULI NE. Check your program

for syntax errors, then activate it, and run it.

7

1-2

1-3

Unit: ABAP Workbench
Topic: Analyzing a program

Analyzing by executing a program:

1-2-1

1-2-2

1-2-3

1-2-4

1-2-5

Y ou need to add the code for an airline to the program. This information can
be displayed from the input field using F1.

The values permitted here depend on the contents of database table SCARR.
Y ou can display possible entries help from the input field using F4.

The program displays detailed information on the airline company selected.
This information is first displayed on the screen and then as alist.

The program contains a selection screen with screen number 1000, ascreen
with number 100 and alist.

The field name of the input field on the selection screenispa_car andthe
names of the output fields on the screen aresbc400_carri er-carri d,
sbc400 carrier-carrnane andsbc400_carri er-currcode.

Y ou can display the field namesusing F1 ® technical info, then see the
box with the heading Field description for batch input.

Analyzing using the program's object list

1-3-1

1-3-2
1-3-3
1-3-4

1-4-1

1-4-2

1-4-3

The program has the structuressbc400_carri er andwa_sbc400 and
the elementary data object pa car.

Thevariablepa_car beongsto the input field of the same name.
Screen 100 is processed using the statement CALL SCREEN 100. .

The field name appears in an input field above the area for the screen layout.

The list is structured using the WRI TE statement. The symbol / after the
V\RI TE statement creates a line break.

The SELECT statement is responsible for the database dialog. The datais
read from the database table SCARR. The database table name is specified in
the FROMclause of the SELECT statement. The database table has the fields
MANDT, CARRI D, CARRNAME, CURRCODE and URL.

The information on the line to be read isin data object pa_car . Thisisin
the WHERE clause of the SELECT statement. Data object pa car is
automatically filled with the selection screen input value as soon as the user
chooses the Execute function on the selection screen.

Unit: ABAP Workbench
/ Topic: Adapting a Program to Special Requirements

Mode solution SAPBC400WBS GETTING_STARTED

* & __ *
*& Report SAPBCA00WBS_GETTI NG_STARTED *
* & __ *

REPORT sapbc400wbs_getting_started

TABLES: sbc400_carrier.
DATA: wa_sbc400 TYPE sbc400_carrier.
PARAVETERS: pa_car TYPE scarr-carrid.

START- CF- SELECTI ON.
* Select all fields of one dataset from database table SCARR
SELECT SINGLE * FROM scarr | NTO CORRESPONDI NG FI ELDS OF wa_shc400
WHERE carrid = pa_car.
* At | east one record could be sel ected
| F sy-subrc = 0.
* Copy fields with correspondi ng nanes
MOVE- CORRESPONDI NG wa_sbc400 TO shbc400 carrier.
CALL SCREEN 100.
* Copy fields with correspondi ng nanmes back
MOVE- CORRESPONDI NG sbc400_carrier TO wa_sbc400.

* Wite data on |ist
WRI TE: / wa_sbc400-carrid COLOR COL_KEY,
wa_shbc400-car r nane,
wa_sbc400-curr code.

* add an enpty line
SKI P.
* add a horizontal line
ULl NE.
* wite usernane, tinme and date on |i st
WRI TE: / wa_sbc400-unane,
wa_sbc400-uzeit,
wa_sbc400-dat um
ENDI F.

Screen 100:
New Fi el ds on screen 100: SBCA00_CARRI ER- UNAVE
SBC400_CARRI ER- UZEI T
SBC400_CARRI ER- DATUM

ABAP Statements and Data Declarations

Contents:

® Types

® Data Objects
m Elementary Data Objects
m Structures
m Internal Tables

® ABAP Statement Attributes

8 SAP AG 1999

m The contents of this unit concentrate on the definition of data objects and selected ABAP statements.

m Types describe the attributes of
* Input and output fields on screens,
 Data objects and

* Interface parameters. Type checks are performed each time a function or subroutineis called
according to how the interface parameter is typed. Type conflicts are dready identified during the
editing process and appropriate syntax errors displayed.

m Local types are used in programs
* If only technical attributes are needed and no semantic attributes are required, and
* If thetypes are only used localy within a program.

m Global types (= ABAP Dictionary types) are used

* If you intend to use the types externdly
(for example, for typing the interface parameters of global functions or with those data objectsin
the program that serve as the interface to the database or the presentation server),

* If you need semantic information as well (for example, on screens with input and output fields).

m More information on storing semantic information centrally can be found in this unit.

m Elementary Dictionary types are called Data Elements. They contain semantic as well astechnical
information (technica type, length, number of decima places).

m A dataelement can contain the following semantic information:

* Field Label: Thistext appears on screens and selection screens to the left next to the input or
output fields. A field label can have one of three possible lengths. Y ou must select one of the
different field labels when you create a screen.

* Field Documentation: The field documentation tells the user what information should be entered
in the field. The user gets the field documentation for an input or output field where the cursor is
positioned by pressing function key F1.

* Search Help: A data element can be linked to a search help. This search help defines the value
help provided by function key F4 or the corresponding icon.

m You can find more information on elementary ABAP Dictionary types

* for screen fields: Using F1 -> Technical info. or by double-clicking on the output field next to the
data element label

* for local typesin programs or data objects: By double-clicking on the type

m Technical types and technical domains may be directly assigned to data elements. If you want more
information on other data €l ements referencing the same domain, you can navigate to the domain
from the data element by double-clicking on its name and then executing the function Where-used
list.

m You can search for data elements by using the application hierarchy and the Repository Information
System.

* In the application hierarchy, select the components to be scanned.
* Go to the Information System.
* Choose ABAP Dictionary --> Basic objects -> Data elements and restrict the search.

m |f you go to the Information System from the application hierarchy, the development classes of the
selected application components are automatically entered.

m You can aso go directly to the Information System. If you do not select a development class, the
entire Repository is scanned.

m When defining simple types or variables, you can refer to a pre-defined type. For more information
refer to the keyword documentation on TYPES or DATA.

e C Character
. Numeric Text

Date (YYYYMMDD)
Time (HHMMSS)

Byte (heXadecimal)

X =4 0O Z2

* | Integer

* P Packed Number

* F Foating Point Number

* STRI NG Character String

* XSTRI NG String of Bytes (X String)

m Assign data object types by referring your object to either a built-in ABAP type, a user defined type,
or an ABAP Dictionary object.

m |f avariablev?2 refersto variable v1 using the addition LI KE (DATA v2 LIKE v1.),thenv2
inheritsits type from v1.

m Up to Release 4.0B, you could only refer to Dictionary typesusing LI KE. Only structure fields could
be used as elementary types up to that point. Only flat structures were provided as structure types.

m Elementary data objects appear in the program object list under the 'Fields node.

m From the object list, you can use the right mouse button to navigate to the part of the source code
where the data object is defined.

m You can use the Where-used list function to display al lines of source code where the data object is
used.

m Rulesfor naming data objects:
- A name can consist of 30 characters maximum (letters, numbers, or symbols).
- Thefollowing symbols ARE NOT alowed: () +.,:
- SPACE isapredefined field.

m For compatibility reasons, it is till possible to construct data objects in the DATA statement without
first having to define the type locally in the program with a TYPES statement. Default values are
aso defined in addition to the type information for the following generic types:

* With datatypes P,N,C and X you may enter alength (in bytes) in parentheses after the type name.

If no length is entered, the default length for this data type is used. Y ou can find the standard
lengths in the keyword documentation for TYPES and DATA.

* With data type P you can use the DEClI MAL S addition to determine the number of decimal places
that should be used (up to a maximum of 14). If this addition is missing, the number of decimal
placesis set to zero.

* If notypeis entered, then the field is automatically atype Cfidd.

Y ou define constants using the ABAP keyword CONSTANTS. The VALUE addition is required for
constants. It defines their vaue.

ABAP recognizes two types of literals: number literals and text literals. The latter is aways
enclosed in inverted commeas ().

Whole numbers (with preceding minus sign if they are negative) are stored as number literals with
either type | (up to and including nine digits) or type P (ten or more digits).

All other literals (character, numbers with decimal places, floating point numbers) are stored as text
literals with data type C. If alitera is assigned to a variable that does not have type C, then atype
conversion is carried out. The conversion rules are described in the keyword documentation about
MOVE.

If you want to include an inverted comma (') in atext literal, you must enter it twice.

Y ou can create trandatable text literals, or text symbols, for all ABAP programs. Use the Program
object typesdiaog box to get to the maintenance screen for the text symbols.

When a program is started, the program context is loaded into a storage area of the application server
and made available for al the data objects.

Each dementary field comes as standard with an initial value appropriate to itstype. You can set a
start value for an elementary field yourself using the VALUE addition. After VAL UE you may only
specify afixed data object.

Y ou can copy the field contents of a data object to another data object with the MOVE statement. If
the two data objects have different types, the type is automatically converted if there isa conversion
rule. If you want to copy the field contents of variable var 1 to a second variable var 2, you can

choose one of two syntax variants:
* MOVE varl TO var 2.

e var2 = varl.

Y ou can find detailed information about copying and about the conversion rulesin the keyword
documentation for MOVE or in the BC402 training course.

The CLEAR statement resets the field contents of a variable to the initial value for the particular type.

Y ou can find detailed information about the initial values for a particular type in the keyword
documentation about CLEAR.

m Y ou can precede calculations with the COVPUTE statement. This statement is optional. Y ou can use
either of the following two syntax variants to calculate percentage occupancy using the variable
v_occupancy for ‘current occupancy’, v_maxi mumfor 'maximum occupancy’, and
V_per cent age for ‘percentage occupancy':

* COWUTE v_percentage = v_occupancy * 100 / v_maxi num
* v_percentage = v_occupancy * 100 / v_maxi mum

m You can find detailed information on the operations and functions available in the keyword
documentation on COMPUTE.

m | F and CASE statements allow you to make case distinctions:
m CASE ... ENDCASE:

Only one of the sequences of statements is executed.
The WHEN OTHERS statement is optional.

m|F...END F:

The logical expressions that are supported are described in the keyword documentation about | F.
The ELSE and ELSEI F statements are optional.

If the logical expression is fulfilled, the following sequence of statementsis executed.

If the logical expression is not fulfilled, the ELSE or ELSEI F section is processed. If thereis no
ELSE or no further ELSEI F statement, the program continues after the ENDI F statement.

Y ou can include any number of ELSEI F statements between | F and ENDI F. A maximum of one
of the sequences of statements will be executed.

m You can trace the field contents of up to eight data objects in debugging mode by entering the field
names on the left side or by creating the entry by double-clicking on afield name.

m You can change field values at runtime by overwriting the current value and choosing the ‘Change’
icon.

m From Release 4.6, you are alowed to set up to 10 watchpoints and link them using the logical
operators ANDand OR Watchpoints are breakpoints that are field-dependent. Y ou can create the

following types of watchpoints:

* Variable <operator> value: The system stops processing once the logical condition is fulfilled. The
'‘Comparison field' flag is not selected and the value is inserted at ‘Comp. field/value'.

* Variablel <operator> variable2: The system stops processing once the logical condition is
fulfilled. The 'Comparison field' flag is selected and variable2 is inserted at ‘Comp. field/value.

* Variable: The system stops processing each time the variabl€'s value changes.

m You can define structured data objects (also called structures) in ABAP. This allows you to combine
variables that belong together into one object. Structures can be nested. This means that other
structures or even tables can be sub-objects of your origina structure.

m There are two different kinds of structuresin ABAP programs.

* Structures defined using
DATA <nane> TYPE <structure_type>.
These kinds of structures serve as the target fields for database accesses or for calculations
performed locally within the program. Y ou can declare these types of structures either in the
ABAP Dictionary or locally within your program. For more information on how to declare local
structures, refer to the keyword documentation on TYPES.

* Structures defined using
TABLES <ABAP- Di cti onary- Struct ure>.

These types of structures are technically administered in their own area. From Release 4.0,
TABLES structures only need to be used as interface structures for screens.

m Fields of astructure are always addressed with <St r uct ur e>- <Fi el d_nane>.

m The MOVE- CORRESPONDI NG <recl> TO <r ec2> satements transports valuesfield by field
between structures <rec1> and <rec2>. This only works if the components have identical names.

m The system looks for all fieldsin <r ec 1> whose names also occur in <r ec2> and transports field
<recl>-<field nane> to <rec2>-<field nane> inal caseswhereit finds amatch.
All other fields remain unchanged.

m You can trace the field contents of a structure by entering the name of the structure in the left
column. The field view of the structure is displayed if you double-click on this entry.

m You must define the following information in order to fully specify a table type:

* Line Type: You can store the information about the required columns, their names and types, by
defining a structure type as line type.

* Key: A fully specified key must define: Which columns should be key columns? In what order?
Should the key uniquely specify arecord of the interna table (unique key)? Unique keys cannot be
defined for al the table types.

e TableKind: There are three table kinds; standard tables, sorted tables and hashed tables. The
estimated access type is mainly used to choose the table type.

m Accesstype defines how ABAP accessesindividua table entries. There are two different types of
data access in ABAP, access using the index and access using a key.

m Accessusing theindex involves using the data record index that the system maintains to access
data.

* Example: Read accessto a data record with index 5 delivers the fifth data record of your interna
table (Access quantity: one single data record).

m Accessusing akey involves using a search term, usually either the table key or the generic table
key, to access data.

» Example: Read access using the search term 'UA 0007' to an interna table with the unique key
CARRI D CONNI D and the data pictured above delivers exactly one data record.

m Ancther interna table attribute is the table type. Internal tables can be divided into three table types
according to the way they access data:

- Standard tablesmaintain alinear index internally. This kind of table can be accessed using
dther the table index or keys.

- Sorted tablesare sorted according to key and saved. Here too, alinear index is maintained
internally. This kind of table can also be accessed using either the table index or keys.

- Hashed tables do not maintain alinear index internally. Hashed tables can only be accessed
using keys.

m Which table type you use depends on how that table's entries are normally going to be accessed. Use
standard tables when entries will normally be accessed using the index, use a sorted table when
entries will normally be made using keys, and use hashed tables when entries will exclusively be
made with keys.

m In this course, we will discuss the syntax of standard tables only.

m Tabletypes can be defined locally in a program or centrally in the ABAP Dictionary

m To define atable-type data object or an interna table, specify the type as a global table type or a
local table type.

m You can find detailed inf ormation on declaring table types in the documentation or on Course
BC402.

m You can perform the following operations on single records in interna tables:

* APPEND appends the contents of a structure having the same type as the line to an interna table.
This operation can only be used with standard tables.

* | NSERT inserts the contents of a structure having the same type as the line in an interna table.
This causes a standard table to be appended and a sorted table to be inserted in the right place; a
hashed table is inserted according to the hashing agorithm.

* READ copies the contents of aline of the interna table to a structure having the same type as
theline.

 MODI FY overwritesaline of the interna table with the contents of a structure having the same
type astheline.

e DELETE ddetesalineof theinterna table.

* COLLECT inserts the contents of a structure having the same type as the line in an internal table
into an internal table in compressed form.. This statement may only be used for tables whose non-
key fields are all numeric. The numeric values are added for identical keys.

m You can find detailed information about the ABAP statements described here in the keyword
documentation for the relevant ABAP keywords.

m You can perform the following operations on sets of records in internal tables:

LOOP ... ENDLOOP The LOOP places the lines of the internal table in the structure
specified in the | NTO clause one-by-one. The structure must have the same type as the line of the
interna table. All single-record operations can be executed within the loop. In this case the system
provides the information about the line to be edited in the single-record operation.

* DELETE deletes the lines of the internal table that satisfy the condition <condition>.

* | NSERT copies the contents of severa lines of an internal table to another internal table.

* APPEND appends the contents of several lines of an internal table to another standard
table.

m You can find detailed information about the ABAP statements described here in the keyword
documentation for the relevant ABAP keywords.

m You can perform the following operations on internal tables:

* SORT Y ou can sort tables by any column or columns in ascending or descending order .
Sorted tables cannot be resorted.

CLEAR Setsthe contents of the interna table to the right initial value for the column type.
REFRESHworks like CLEAR.

FREE Deletes the internal table and releases the memory alocated to the table.

m You can add linesto a standard table by firgt filling a structure with the required values and then

appending it to the internal table with the APPEND statement. This statement is only meaningful with
standard tables.

m Usethel NSERT statement to insert lines in sorted and hashed tables.
m | NSERT workslike an APPEND in standard tables.

m You can read and edit the contents of an internal table with a LOOP statement. In this example, one

line is copied each time from internal table it_flightinfo to structure wa_flightinfo. The fields of the
structure can then be edited. A list is built here from the fields with a WRI TE statement.

m If you want to change the contents of the internal table, first change the value of the structure fields
within the loop and then overwrite the line of the interna table with the MODI FY statement.

m With the INDEX addition you can restrict access to certain line numbers. Y ou may only perform
index operations on index tables. Both standard and sorted tables are supported here.

m The above example shows the syntax for loop editing that only scans the first five lines of the
internal table.

m The example below shows the syntax for reading the third line of the internal table.

m With the WHERE addition you can restrict access to lines with certain vauesin key fields. Key

operations are supported for al table types. Key access to sorted or hashed tables is more efficient
than key access to standard tables.

m The above example shows the syntax for loop editing that only scansthe lines of the internal table
whose' carri d' fied hasthevaue' LH . The sorted table is most suitable for this type of
editing. Loop editing with the WHERE addition is supported for sorted and standard tables.

m The example below shows the syntax for reading a line of the interna table with afully specified
key. The return code sy-subrc is set to zero if the interna table contains this line. The hashed tableis
most suitable for single-record access by key. This type of accessis supported for all table types.
Note that all the key fields must be defined in key accesses with the W TH TABLE KEY addition. It
is easy to confuse this addition with the W TH KEY addition, which already permitted key accessto
standard tables prior to Release 4.0, when it was not yet possible to define key columns explicitly.

m Y ou can trace the contents of an internal table in debugging mode by choosing Table' and entering
the name of the interna table.

m |nternal tables can be defined with or without a header line. An internal table with header line
consists of awork area (the header line) and the actual body of table, both of which are addressed
with the same name. How this name is interpreted depends on the context in which it is used. For
example: at MOVE the name is interpreted to mean the header line, while at SORT it isinterpreted as
the table body.

m You can declare an internd table with a header line using the addition W TH HEADER LI NE.

m |n order to avoid confusion, it is recommended that you create internd tables without header lines.
However, in internal tables with header lines you can often use a shortened syntax for certain

operations.

m A number of ABAP statements support areturn code. Various exceptions are detected, depending on
the statement. If such an exception occurs, avaueis stored in field sy- subr ¢ and the function for
the statement is terminated. The keyword documentation for the particular statement describes the
exceptions that are supported and their values. When you start a program, a structurenamed sy is
automatically provided as data object. This structure contains various fields that are filled by the
system.. Y ou can access these fields from the program. One of the fields of this structureisfield
subr c. You therefore do not have to create a data object for the return code.

m In this example aline should be read from internal tablei t ab with key access. Thereisno line with
the required key at runtime. The Basis function for the READ statement is therefore terminated and
thevaue 4 isplaced infield sy- subr c. Fidd sy- subr ¢ isqueried in the program immediately
after the READ statement.

There is a special dialog type called the user message for error situations. Messages are triggered
with the MESSAGE statement.

Messages can be found in table T100. They are organized according to language, atwo-digit ID, and
athree-digit number.

Messages can contain up to 4 variables, identified as &1, &2, &3, and &4. If you want to output the

character & and do not want to use it as a variable, double it, for example: 'Thisis a message with an
&&'.

In message long texts use &v1&, &2&, &v3&, and &v4& for their corresponding variable.

Y ou can create your own messages using 1D numbers that begin with Y (for the head office) or Z
(for branch offices).

Send messages with the MESSAGE statement. The language for messagesin table T100is
automatically set to the user's logon language. Y ou can define the message ID following the
parameter MESSAGE- | D in the REPORT statement. The message ID is now set for the entire report.
Enter the message number at the MESSACE statement.

Enter the message type directly in front of the three-digit message number; this letter determines how
the report user reacts to dialog messages (see next dide).

Set values for variables (up to a maximum of four) following the parameter W TH. Fields and literals
are also adlowed. Thefield at level i thus replaces message variable &i. If the variables in the
message are identified with & or $, these placeholders are supplied with values independent of the
position of the fields of the message statement.

In addition to using message I D with the REPORT statement, you can also add a different message
ID to the command MESSAGE by entering the | D in parenthesis directly after the message number.
This deviant message ID isonly valid for a single message, however. Example: MESSAGE

EO04(UD) .

Use the following syntax, whenever you want to send adynamic messagez. MESSAGE | D
<m d> TYPE <ntype> NUMBER <mmr> WTH <fiel d1> <fiel d2> <fiel d3>
<fiel d4>.

System fields SY- M5SA D, SY- MSGTY and SY- MSGNO are supplied with the message ID, message
type, and message number respectively and system fields SY- MSGV1 to SY- MBGV4 with the fields
for the placeholders.

m Thereare six different types of message: A, X, E, I , S or W The runtime behavior of the messages
depends on the context. The letters have the following meaning:

A Termination Processing is terminated, the user must restart the transaction

X Exit Like atermination message, but with short dump

MESSAGE_TYPE_X

E Error Runtime behavior depends on context

w Warning Runtime behavior depends on context

I Information Processing is interrupted, the message is displayed in adialog

box and the program is continued when the message has been confirmed
with ENTER.
S Set The message appears in the status bar on the next screen.

m You can find a program for testing the runtime behavior in the sample programs of the
documentation. Y ou can find the sample programs with transaction code ABAPDOCU or in the Editor
with the ‘Information’ icon and radio button ABAP Docu and Examples.

Unit: Data Objectsand Statements
Theme: Structures and Assigning Values

*e e

At the conclusion of these exercises, you will be able to:

Use the Debugger to understand how a program works and how datais
transferred between objects in the program

/

Use the MOVE- CORRESPONDI NG statement to assign values between
structures.

Debug the program that you wrote in the exercises to the last unit (or the
corresponding model solution).

)

.. Program: ZBCAOO_##_GETTI NG_STARTED
W) Mode soution: sapecsooves GeTTI NG STARTED

1-2

1-3

1-5

Start the program ZBC400_## GETTI NG_STARTED. On the selection screen,
enter the airline code ‘LH'. In the command field, enter ‘/h’, then choose Execute.
You are now in Debugging mode.

Check that al of the data objects areinitial. Put all of the data objects declared in
the program into the field view. Find out the structure and data types of the
individual data objects (if you double-click a structured data object, the Debugger
displays the components).

Step through the program using the Single step (F5) function. Which components
of the structure WA_SBC400 arefilled in the SELECT statement? What is the value
of system field SY- SUBRC &fter the statement?

Now observe how fields are copied from WA_SBC400 to SBC400_CARRI ER.
Which field values are copied?

The statement CALL SCREEN 100 processes screen 100. On the screen, enter

appropriate values for the user name, date, and time, and continue with the
program. Now observe how fields are copied from SBC400_CARRI ER to

WA_SBC400.

1-7

Finally, observe how the WRI TE statement constructs the list. Note especialy that
an extra button appears in the application toolbar after the first WRI TE statement,
which alows you to display the current contents of the list buffer at any time.

Restart the program in Debugging mode. Set a breakpoint at the MOVE-
CORRESPONDI NG statement. Before the screen is processed, assign a name to the
structure component SBC400_CARRI ER- UNAME from the Debugger. (Next to
the input/output field is an icon that you can use to change a field value at runtime.)

Repeat step 1-1. Now set a breakpoint (Breakpoint ® Breakpoint at...) for the
CALL SCREEN statement, and a watchpoint for whenever the value of a
component of structure WA_SBCA400 changes. Each time the program stops, use
the *Continue’ (F8) function in the Debugger to carry on processing.

Unit: Data Objectsand Statements
Theme: Internal Tables

*ee

At the conclusion of these exercises, you will be able to:

Declare internal tables with reference to a table type defined in the
ABAP Dictionary

Use the LOOP..ENDL OOP statements to process data buffered in an
internal table

Create a program to display all of the flights stored in the system on allist.
To do this, read the contents of database table SPFLI into an internal

/) / table. ThenusealLOOP ... ENDLOORP structure to display the data

recordsin alist.

P - Program: ZBCA00_## | TAB_LOOP
||| m || m || m || M odel solution: SAPBC400TSS | TAB_LOOP
2-1 Create aprogram with the name ZBC400_## | TAB_LOOP and no TOP include.

2-2

2-3

2-4

Assign your program to development class ZBC400_## and the change request
for your project “BC400...” (##isyour group number).

In your program, create an internal table with the line structure of table SPFLI . Do

this by referring to a suitable table type defined in the ABAP Dictionary (use the
where-used list function to display al table types that use the definition of database
table SPFLI1). You aso need to create a structure with reference to the definition

of database table SPFLI .

To read the datafrom the database table SPFLI and place it in the internal table,

use the following ABAP statement in your program:
SELECT * FROM SPFLI | NTO TABLE <i t ab>.

<i t ab> isthe name of the interna table.

Display the data from the internal tablein alist. Usethe LOOP ... ENDLOOP
Statements.

Unit: Data Objects and Statements
/ Theme: Structures and Assigning Values

1-3

Which components of the structure SBC400_CARRI D arefilled in the SELECT
statement?

MANDT, CARRI D, CARRNAME, CURRCCDE

What value does SY- SUBRC have after the SELECT statement?

SY- SUBRC has the value 0, because the airline LH (Lufthansa) is maintained in the
SCARR table.

Which field values are copied?

MANDT, CARRI D, CARRNANME, CURRCCODE

Unit: Data Objectsand Statements
/ Theme: Internal Tables

Model Solution SAPBC400TSS ITAB LOOP

<
*& Report SAPBC400TSS | TAB_LOOP

*&

* & ___

REPORT sapbc400tss_itab_| oop

DATA: it_spfli TYPE sbc400_t _spfli.
DATA: wa_spfli TYPE spfli.

START- CF- SELECTI ON.
* read all fields of all record fromthe database table SPFLI into
* the internal table it_spfli.
SELECT * FROM spfli | NTO TABLE it_spfli.
* at | east one dataset selected
| F sy-subrc = 0.
* nove each single record frominternal table to structure WA SPFLI
* in order to wite data on |ist
LOOP AT it_spfli INTO wa_spfli.
WRITE: / wa_spfli-carrid,
wa_spfli-connid,
wa_spfli-cityfrom
wa_spfli-cityto,
wa_spfli-deptine,
wa_spfli-arrtine.
ENDL OOP.

ENDI F.

Database Dialogs | F’
DA

Contents:

Information about Database Tables
Reading Database Tables

°
®
® Authorization Checks
°®

Reading Multiple Database Tables

8 SAP AG 1999

m Databasetables are administered in the ABAP Dictionary. There you can find current information
about a database table's technical attributes. Database tables that have been created in the database
using the same line type and name are called transparent tablesin the ABAP Dictionary.

m There are a couple of different ways in which you can navigate to transparent tables in the ABAP
Dictionary:
* Choose Tools->ABAP Workbench->Development->Dictionary to call the ABAP Dictionary
directly and insert the name of the transparent table in the appropriate input field, or

* Navigate directly to the ABAP Dictionary from the ABAP Editor while editing the program:
This can be done by double-clicking on the name of the transparent table in the FROMclause of

the SELECT statement.

m You can search for database tables in severa different ways.

* Application hierarchy and the Repository I nformation System: Y ou may choose application
components from the application hierarchy and branch directly to the information system. There
you can search for database tables according to their short texts (among other criteria).

m |f you have the name of a program that accesses the database table:

* Input field on a screen; If you know of a program that contains a screen with input fields
connected to the table you are looking for, choose F1->Technical info. and then navigate to to the
ABAP Dictionary by double-clicking on the technical name of the screen field. Thisisoften a
field in a structure. Double-click on the data element and then use the where-used list function to
search for transparent tables according to the field type.

* Debugger: If you know the name of a program that accesses the database table that you are
looking for, you can start this program in debugging mode and set a breakpoint at the SELECT
Statement.

e Editor: Look for the SELECT statement

* Object List in the Object Navigator: Pick out the subroutines that encapsulate the database
aCCesses.

m If you know of a structure field in the ABAP Dictionary.

¢ Double-click on the data eement and then use the where-used list function to search for
trangparent tables according to the field type.

m ABAP training courses all use the same flight data model. At this time, a smple cross-section of the
flight data model will be presented; you can get more detailed information about it at any time.

m Asatraveler trying to get from one place to another, you expect your travel agency to be ableto
provide you with the following information:

* What connection offers me the best and most direct flight?
» At what times are flights offered on the date that | want to travel?

* How can | optimize the conditions under which | am travelling, that is, what is the least expensive

flight, the fastest connection, the connection that gets me there nearest the time | want to arrive,
22

m A travel agency's point of view isabit different: all necessary technica flight datain a data model
is organized and stored in tables in a central database according to the database's structure. The
amount of data stored is far greater than that which atravel agency wants or needs. They are
primarily interested in which one of their customers has booked which flight, when the booking was
made, how much the customer paid, and so forth. ?These different views and their corresponding
demands on the data model demonstrate the necessity of using programs to organize datain a
manner that fulfills al of the different demands that users make.

m All pieces of information that are logically dependent on each other contain entities. In the ABAP
flight data model there are individual entities for:

e All cities,
* All airports,
e All airline carriers,

All flight routes,
All flights.
m These entities al relate to each other in certain pre-determined ways:

* Flight routes al depart from and arrive a an airport.
* A flight route is characterized by airline, departure airport, destination airport, and departure time.

* Flightsfor a particular flight route can be offered on many different daysin a given year, but the
flight route must exist before aflight can be created.

* Cities mugt have al airportsin their vicinity assigned to them.

m This data model manages al the data you need without unnecessary redundancy and makes it
possible for atravel agency to access data for a customer's point of view.

m ABAP training course examples and exercises, as well as ABAP documentation, all use SAP'sflight

data model. All flight data model Repository objects are located in the development class
BC_DATAMODEL.

m Thefollowing isalist of the flight data model tables most frequently used in ABAP training courses.
* SPFLI : Hight connections table
e SFLI GHT: Hightstable
» SBOCOK: Bookings table

m Assoon as you havigate to the definition of a database table in the ABAP Dictionary, information
about al of the table's technical attributes is available.

m The following information is of interest for enhancing the performance of database accesses:

» Key Fidds: If the lines requested from the database are being retrieved according to key fields,
the Database Optimizer can perform access using a primary index. Checkboxes are on for al key
fields.

* Secondary Indexes: You may aso use secondary indexesto select specific lines. These are
displayed in a dialog box whenever you choose the 'Indexes pushbutton. Y ou can choose an index
from the dialog box by smply double-clicking on it. The system then displays a screen with
additional information about that index.

m You use the Open SQL statement SELECT to read data from the database.

m Underlying the SELECT statement is a complex logic that allows you to access many different types
of database table.

m The statement contains a series of clauses, each of which has a different task:

The SELECT clause specifies

Whether the result of the selection isto be asingle line or severa lines.
The fields that should be included in the result.
Whether the result may contain two or more identical lines.

The | NTOclause specifies the internal data object in the program into which you want to place
the selected data.

The FROMclause specifies the source of the data (database table or view).

The WHERE clause specifies conditions that selection results must fulfill. Thus, it actualy
determines what lines are included in the results table.

For information about other clauses, refer to the keyword documentation in the ABAP Editor
for the SELECT statement.

m Open SQL statements are a subset of Standard SQL that is fully integrated in the ABAP language.
They alow you to access the database in a uniform way from your programs, regardless of the
database system being used. Open SQL statements are converted into database-specific SQL

statements by the database interface.

m The SELECT SI NGLE* statement allows you to read a single line from a database table. To ensure
that you read a unique entry, all of the key fields must be filled by the WHERE clause. The informs
the database interface that al columnsin that line of the database table should be read. If only a
specific cross-section of columns is desired, a structure can be inserted instead.

m The name of a structure to which you want the database interface to copy a data record is inserted
after the | NTO clause. The structure should have a structure identica to the columns of the database
table being read and be | eft-justified.

m If you use the CORRESPONDI NG FI ELDS OF addition in the | NTO clause, you can fill the target
work area component by component. The system only fills those components that have identical

names to columns in the database table. If you do not use this addition, the system fills the work area
from the left-hand end without any regard for its structure.

m |f the system finds a table entry matching your conditions, SY- SUBRC has the value O.

m The S| NGLE addition tells the database that only one line needs to be read. The database can then
terminate the search as soon asit has found that line. Therefore, SELECT SI NGLE produces better
performance for single-record access than a SELECT loop if you supply vaues for al key fields.

If you do not use the addition SI NGLE with the SELECT statement, the system reads multiple
records from the database. The field list determines the columnswhose data is to be read from the
database.

The number of lines to be read can be restricted using the WHERE clause. The restrictions contained
in the WHERE clause should either be made according to the database table's key fields or according
to a secondary index. Further information about key fields and secondary indexes can be found in the
ABAP Dictionary. For example, double-clicking on the database table included in the FROMclause
will take you directly to the Dictionary.

You may only enter the names of the database table fields you want to be read in the WHERE clause.
The name of the database table you want to access is found in the FROMclause. (example of a
correct statement: SELECT ... FROM spfli WHERE carrid = ... ,exampleof an
incorrect statement: SELECT ... FROM spfli WHERE spfli-carrid = ...)

Multiple logical conditions can be added to the WHERE clause using AND or OR

The database delivers data to the database interface in packages. The ABAP runtime system copies
the data records to the target area line by line using aloop. It also provides for the sequential
processing of all of the statements between SELECT and ENDSELECT.

SY- SUBRC = 0 if the system was able to select at least one entry. After the SELECT statement is
executed in each loop pass, the systemfield SY- DBCNT contains the number of lines read. After the
ENDSELECT statement, it contains the total number of lines read.

m Theaddition | NTO TABLE <i t ab> causesthe ABAP runtime system to copy the contents of the
database interface directly to the interna table itab. Thisiscaled an array fetch.

m Since an array fetch isnot logicaly aloop, no ENDSELECT statement is used.
m SY- SUBRC = 0if the system was able to read at least one table entry.

m For further information about array fetch and internal tables, refer to the Internal Tables unit of this
course.

m The program must contain a data object with a suitable type for each column that is required from a
database table. For reasons of program maintenance, you must use the corresponding Dictionary
objects to assign types to the data objects. The | NTOclause specifies the data object into which you
want to place the data from the database table. There are two different waysto do this:

Flat structure: You define a structure in your program that has the fields in the same sequence as
the fidd list in the SELECT clause. Then you enter the structure name in the | NTO clause. The
contents are copied by position. The structure field names are disregarded.

Single data objects: You enter a set of data objectsin the | NTOclause. For example:
DATA: gd_carrid TYPE sflight-carrid,
gd_conni d TYPE sflight-connid,
gd_fldate TYPE sflight-fldate,
gd_seat smax TYPE sflight-seat smax,
gd_seatsocc TYPE sflight-seatsocc.
START- GF- SELECTI ON.
SELECT carrid connid fl date seatsnmax seatsocc
FROM sfl i ght
INTO (gd_carrid, gd _connid, gd fldate, gd seatsmax, gd_seatsocc)
VHERE . . .

m If you usethel NTO CORRESPONDI NG FI ELDS clause, the datais placed in the structure fields
that have the same name.

m Advantages of this construction:
* The structure does not have to be structured in the same way as the field list and does not need to
be |eft-judtified

* This congtruction is easy to maintain, since extending the field list does not require other changes
to be made to the program, as long as there is afield in the structure that has the same name and

type.
m Disadvantages of this construction:

* | NTO CORRESPONDI NG FI ELDS is more runtime-intensive than | NTQO. The runtime may
therefore be longer.

m |f you want to place data into internal table columns of the same name using an array fetch, use
| NTO CORRESPONDI NG FI ELDS OF TABLE <it ab>.

The SAP authorization concept recognizes alarge number of different authorizations. These are all
managed centrally in the user master record for every user.

Authorizations are not directly assigned to users, but stored in work center descriptions (profiles).

These profiles are generated using the Profile Generator, which administers the profiles as activity
groups.

Users can belong to one or more activity groups and are then assigned the authorizations contained
in those activity groups.

Release 4.6 contains a large number of pre-defined activity groups. Y ou can use these asis or copy
and tailor them to your specific needs.

m You should carry out an authorization check before accessing the database. The AUTHORI TY-
CHECK statement first checks whether the user has the authorization containing all the required
values. You then check the code value in the system field SY- SUBRC. If thisvalueis O, the user has
the required authorization and the program can continue. If the value is not 0, the user does not
possess the required authorization and you should display a message and take the appropriate action.

m Later in this course, you will learn how to make fields on the selection screen ready for input again if
you perform the authorization check right after the selection screen, and how to output a message if
the user does not have the required authorization.

m All datain the SAP system must be protected from unauthorized access by users who do not
explicitly have permission to accessiit.

m The system administrator assigns user authorization when maintaining user master data. During this
process, you should determine exactly which data users are allowed to access and what kind of
access should be alowed. For example, you might want to alow usersto display data for dl airline
carriers, but only allow them to change data for certain selected ones. In this case, the system must
look for a combination of the fields 'activity' and ‘airline carrier' each time it performs an
authorization check. Both fields must be filled with values during authorization creation as well (in
this example, activity 'Change’ and airline carrier 'LH' or activity 'Display’ and airline carrier **").
This is carried out by an authorization object composed of the fields 'Activity' and 'Airline carrier’
that has to be addressed both during the authorization assignment process and whenever your
program performs an authorization check.

m Authorization objects smply define the combination of fields that need to be addressed
simultaneously and serve as templates for both authorizations and authorization checks. They are
organized into object classesin order to make it easier to find and administer them; one object class
or several may exist in each application. You call the authorization object maintenance transaction
from the 'Development’ menu in the ABAP Workbench. A complete list of al development objects,
sorted according to class and including their corresponding fields and documentation, is part of this
transaction.

m When making authorization checks in programs, you specify the object and values the user needsin
an authorization to be able to access the object. Y ou do not have to specify the name of the
authorization.

m The above example checks whether the user is authorized for the object S CARRI Dwhich has the
vaue' LH inthefidd CARRI D (Airline carrier) and the value' 02" for 'Change' inthefield
ACTVT (Activity). The abbreviations for the possible activities are documented in the tables TACT
and TACTZ and aso in the appropriate objects.

m [mportant: The Authority-Check statement performs the authority check and returns an appropriate
return code value in SY- SUBRC. When checking this return code, you can specify the consequences
of amissing authorization (for example: terminate the program or display a message and skip some
lines of code).

Y ou must specify all fields of the object in an AUTHORI TY- CHECK, otherwise you receive areturn
code not equal to zero. If you do not want to carry out a check for a particular field, enter DUMWY
after the field name.For example: When calling a transaction to change flight data, it makes sense to
check whether the user is authorized to change the entries for a particular airline carrier:

AUTHORI TY- CHECK OBJECT 'S _CARRI D I D" ACTVT'

FI ELD ' 02 ID'CARRID DUMW.

The most important return codes for AUTHORI TY- CHECK are:
- 0: The user has an authorization containing the required values.
- 4 The user does not have the required authorization.
- 8: The check could not successfully be carried out since not al fields of the object were
Specified.
The keyword documentation for AUTHORI TY- CHECK contains a complete list of return codes.

Y ou can only specify asingle field after the FI ELD addition, not a selection table. There are
function modules which carry out the AUTHORI TY- CHECK for al valuesin the selection table.

m If reusable components that encapsulate complex dataretrieval are available, then you must use
them. There are four techniques available for doing this.

* Methods of global classes
* Methods of business objects
* Function modules

* Logical databases are data retrieval programs delivered by SAP that return datain a hierarchically
logical sequence.

m You can find information on the various techniques in the Reuse Components unit.

Views are application-specific views of different ABAP Dictionary tables. Views can contain a
section of fields from asingle very large table or fields from severa different tables.

Views alow you to gather information from the fields of different tables and present it to usersin the
form they require when working with the R/3 System.

Views are mainly used for programming with ABAP and for F4 online help.

If there are no components available that are suitable for your purposes, you can carry out complex
database access using ABAP-OPEN- SQL statements. To do this you have to compare the merits of
various techniques, as using an unsuitable technique can result in considerable performance
problems. Y ou can find more detailed information on optimum- performance database access in the
documentation or on course BC490 ABAP Performance Tuning.

Unit: Database Dialogs 1
Topic: SELECT L oops

*e e

At the conclusion of these exercises, you will be able to:

Use the ABAP construction SELECT. . . ENDSELECT to read
data from a database table into your program.

/

Create a program that displays al of the flights of a selected airlinein a
list. In the program, you should also calculate the percentage occupancy

) / of each flight and display this as well.

The flight data is contained in the database table SFLI GHT.

.. Program: ZBC400_## SELECT SFLI GHT
NI Mode soution: sapBos00DDS_SELECT_SFLI GHT

1-1

1-2

1-3

1-4

1-5

Create the program ZBC400_##_ SELECT_SFLI GHT without a TOP include.
Assign your program to development class ZBC400_## and the change request
for your project “BC400...” (##isyour group number).

Create a structure with reference to the structure SBC400FOCC, which is defined in

the ABAP Dictionary. To find out the components of the structure, ook at its
definition in the ABAP Dictionary.

Restrict the lines of the database selection according to the primary key. To find
out the key fields, look at the ABAP Dictionary definition of SFL1 GHT. The client
field isfilled automatically by the system. Program a selection screen on which the
user can enter a value for the second key field (CARRI D).

Read al flights from database table SFLI GHT that correspond to the airline entered
on the selection screen by the user. Usea SELECT ... ENDSELECT block. Place
the data line by line into the structure that you created in exercise 1-2. Make sure
that you only read fields from the database table for which there is also atarget field
in the structure. Ensure that you specify the key fields in the selection, so that the
database can use the primary index.

Within the SELECT loop, calculate the percentage occupancy using the
corresponding field of the work area. Assign the result to the PERCENTAGE fidd in

1-6 Create alist displaying the information you read from the database and the
percentage occupancy of each flight.

Unit: Database Dialogs 1
Topic: SELECT Loopsand Filling Internal Tables

*ee

At the conclusion of these exercises, you will be able to:

Use the ABAP construction SELECT ... ENDSELECT to read data
from a database table into your program and fill an interna table.

The task is the same as in exercise 1. Display the data on the list sorted by
the percentage occupancy. To do this, you must fill an internal table with

) / the required data and then sort it by the occupancy field.

.. Program: ZBCA00_## SELECT SFLI GHT | TAB
||| m || m || m || M odd solution: SAPBC400DDS_SELECT SFLI GHT TAB

2-1

2-2

2-3

Copy your program ZBC400_## SELECT_SFLI GHT or the model solution
SAPBC400DDS_SELECT_SFLI GHT to the name

ZBCA00_## SELECT_SFLI GHT | TAB. Assign your program to development
class ZBCA00_## and the change request for your project “BC400...” (##is your
group number).

In addition to your structure that refers to the ABAP Dictionary type
SBCA00FQOCC, create an internal table with the line type SBC400FOCC. Usethe

where-used list for the ABAP Dictionary line type SBC400FOCC to find a suitable
table type in the Dictionary.

Fill the interna table line by line by using an APPEND statement in the SELECT
loop.

Sort the internal table according to occupancy.

Display the sorted contents of the internal tablein alist. UseaLOOP ...
ENDL OOP structure to do this.

OPTIONAL:

Model solution: SAPBC400DDS_SELECT ARRAY FETCH

2-6 Copy the program ZBC400_## SELECT_SFLI GHT | TAB to program
ZBCA00_## _ ARRAY_FETCH_SFLI GHT.

2-7 Replacethe SELECT loop with an array fetch ard fill the internal table with the
relevant data from the database table SFLI GHT. The column for the percentage
occupancy only contains initial values.

2-8 Calculate the percentage occupancy for each line of the internal table using a loop,
and change the line using a MODI FY statement. To find out how to use MODI FY
within aloop, refer to the keyword documentation.

Unit: Database Dialogs |
Topic: Authorization Checks

*ee

At the conclusion of these exercises, you will be able to:
Perform authorization checks

Change your programs ZBC400_## SELECT SFLI GHT and
ZBCAOO_## SELECT_SFLI GHT_I TAB so that the data can only be

), read from the database and displayed in the list if the user has read

authorization for the required airline.

.. Program: ZBCA0O_## AUTHORI TY_CHECK
||| m || \|| || m || Model solutions. ~ SAPBC400DDS AUTHORI TY CHECK,

31

3-3

SAPBC400DDS_AUTHORI TY_CHECK_2 and
SAPBC400DDS_AUTHORI TY_CHECK 3

Change your programs ZBC400_## SELECT SFLI GHT and
ZBC400_## SELECT SFLI GHT_| TAB asfollows:

Add an authorization check that checks against the object S CARRI D. Make sure
that the database is not accessed if the user does not have authorization for the
airline that he or she entered on the selection screen. Instead, ensure that the
program displays an appropriate error message.

Restart your program. On the selection screen, try entering AA for the airline, then
UA.

Unit: Database Dialogs 1
/ Topic: SELECT Loops

Model solution: Program SAPBCA00DDS SELECT SFLI GHT

* & __ *
*& Report SAPBCA00DDS_SELECT_SFLI GHT
*

*& __ *
REPORT sapbc400dds_sel ect _sfli ght

DATA: wa_flight TYPE sbc400f occ.
PARAMETERS: pa_car TYPE s_carr_id.

START- G- SELECTI ON.

* Select al records from database table SFLIGHT corresponding
* to carrier PA_CAR

SELECT carrid connid fl date seatsmax seatsocc FROM sfli ght
| NTO CORRESPONDI NG FI ELDS OF wa_fli ght
WHERE carrid = pa_car.
* Cal cul ate occupation of each flight
we_flight - percentage =
100 * wa_flight-seatsocc / wa_flight-seatsmax.
* Oreate List
WRITE: / wa_flight-carrid COLOR COL_KEY,
wa_flight-connid COLOR COL_KEY,
wa_flight-fldate COLOR COL_KEY,
wa_fli ght-seat socc,
wa_flight-seat smax,
wa_flight-percentage,' %.
ENDSELECT.

Unit: Database Dialogs 1
/ Topic: SELECT Loopsand Filling Internal Tables

Model solution: Program SAPBCA00DDS SELECT SFLI GHT _TAB

L -
*& Report SAPBCA00DDS_SELECT_SFLI GHT_TAB

*&

<

REPORT sapbc400dds_sel ect _sflight _tab

DATA: wa_flight TYPE sbc400f occ,
it flight TYPE sbc400_t sbc400f occ.
PARAMETERS: pa_car TYPE s_carr_id.

START- G- SELECTI ON.

* Select al records from database table SFLIGHT corresponding
* to carrier PA_CAR

SELECT carrid connid fldate seatsmax seatsocc FROM sfli ght
| NTO CORRESPONDI NG FI ELDS OF wa_fli ght
VWHERE carrid = pa_car.
* Cal cul ate occupation of each flight
wa_flight - percentage =
100 * wa _flight-seatsocc / wa_flight-seatsnmax.
* Build up internal table
APPEND wa_flight TO it _flight.
ENDSELECT.
* sort internal table
SORT it_flight by percentage.

* Create List fromsorted internal table

LOOP AT it _flight into wa_flight.

VWRITE: / wa_flight-carrid COLOR COL_KEY,
wa_flight-connid COLOR COL_KEY,
wa_flight-fldate COLOR COL_KEY,
wa_f i ght-seat socc,
wa_f i ght -seat smax,
wa_flight-percentage,' %.

ENDL OOP.

Unit: Database Dialogs 1
/ Topic: Array Fetch (optional)

OPTIONAL:

Model solution: Program SAPBCA00DDS_SELECT ARRAY_FETCH

* & __ *
*& Report SAPBC400DDS_SELECT ARRAY FETCH *
* & *
* & __ *

REPORT sapbc400dds_sel ect _array_fetch

DATA: wa_flight TYPE sbc400f occ,
it_flight TYPE sbc400_t_sbc400f occ.
PARAMVETERS: pa_car TYPE sflight-carrid.

* Optional:
* Array Fetch to fill the first 5 colums of internal table,

SELECT carrid connid fldate seatsmax seatsocc FROM sfli ght
| NTO CORRESPONDI NG FI ELDS OF TABLE it_flight

WHERE carrid = pa_car.

* At |least one record is sel ected
| F sy-subrc = 0.
*Cal cul ate percentage in a loop and nodify internal table to fill
* 6'" colum of internal table
LOOP AT it _flight INTO wa_flight.
wa_flight-percentage =

MODIFY it _flight fromwa_flight.
ENDL CCP.

SORT it _flight by percentage.

* Loop over internal table to wite content of records on |ist
LOOP AT it_flight I NTO wa_flight.

WRITE: / wa_flight-carrid GOLOR COL_KEY,
wa_flight-connid COLOR COL_KEY,
wa_flight-fldate COLOR COL_KEY,
wa_flight - seat socc,
wa_flight - seat smax,
wa_flight-percentage,' % .

ENDL OCP.

ENDI F.

Unit: Database Dialogs 1
/ Topic: Authorization Check

M odd solution:

Programs SAPBC400DDS_AUTHORI TY_CHECK,
SAPBC400DDS_AUTHORI TY_CHECK 2 and
SAPBC400DDS_AUTHORI TY CHECK_3

* & __
*& Report SAPBC400DDS_AUTHOR TY CHECK

*&

K o emeeeeea o

REPORT sapbc400dds_aut hority_check_ #.
CONSTANTS actvt _display TYPE activ_auth value '03'.
DATA: wa_flight TYPE sbc400f occ,

PARAVETERS: pa_car TYPE sflight-carrid.

START- G- SELECTI ON.
* Authority-Check: Is user authorized to read data for carrier
* PA_CAR?
AUTHORI TY- CHECK OBJECT 'S CARRI D
ID'CARRID FIELD pa_car
ID " ACTVT" FI ELD actvt _displ ay.

CASE sy-subrc.

* User is authorized
WHEN 0.

* SELECT loop or Array Fetch ...

* llkear ic nnt anthanri 2ad Aar nt har arrnr Af ant hari tv_ rhaorl

VHEN OTHERS.
WRITE: / '"Authority-Check Error' (001).
ENDCASE.

Internal Program Modularization

Contents:

® ABAP event blocks

® Subroutines

8 SAP AG 1999

m An ABAP program is a collection of processing blocks. A processing block is a passive section of
program code that is processed sequentially when called.

m Processing blocks are the smalest unitsin ABAP. They cannot be split, which aso means that they
cannot be nested.

m There are various kinds of ABAP processing blocks:

» Event blocks are ABAP processing blocks that are called by the runtime system. Event blocks can
logically belong to the executable program, to the selection screen, to the list or to the screen. This
unit deals with event blocks that belong to the executable program. Y ou can find information on
event blocks that belong to the selection screen, the list or the screen in the units on user dialogs.

* Subroutine processing is triggered by an ABAP statement. Parameters can be passed to
subroutines using an interface and subroutines can contain local variables.

* Modules are speciad ABAP processing blocks for processing screens. Therefore modules are dedlt
with in the User Dialogs: Screens unit.

m Memory areas are made available for al a program's globa data objects when that program is
started. Declarative ABAP statements are therefore not components of ABAP processing blocks but
are collected from the overall source code using a search when the program is generated. The
exceptions to this are loca data objects in subroutines.

m Inal of the programs that we have seen so far in this course, there has only been one processing
block in addition to the data declaration. In this case, there is no need to declare the processing block
explicitly. However, in more complex programs, we will require several different processing blocks
and will need to specify the type and name.

m The program shown above is an example of event blocks. It contains an input value for adate on a
selection screen. The default value is the date from the week before. This cannot be realized by a
default value from the PARAMETERS statement, since a calculation is required. The DEFAULT
addition to the PARAMVETERS statement ensures that the data object is filled with the default value at
the start of the program. Default values can be literals or fields from the sy structure. The runtime
system fillsthe sy - dat umfield with the current date at the start of the program. Y ou can use the
I NI TI ALl ZATI ON event block to change variables at runtime but before the standard selection
screen is sent. START- OF- SELECTI ONis an event block for creating lists.

m All global declarations are recognized as such by the system by the declarative ABAP key words that
they use, and these form alogical processing block (regardless of where they are placed in the
program code). When you generate the program, the system searches the entire program code for
declarative statements. However, for the sake of clarity, you should place al declarative statements
together at the beginning of your programs. The PARAMETERS statement is one of the declarative
language elements. When the program is generated, a selection screen is also generated aong with
the information on the elementary data object of the type specified.

m The easiest events to understand are those for an executable program (type 1).

m The ABAP runtime system calls event blocks in a sequence designed for generating and processing
lists:

m First, thel NI TI ALI ZATI ON event block is called
m Then a selection screen is sent to the presentation server
m After the user leaves the selection screen, START- G- SELECTI ONiscaled

m |f the START- OF- SELECTI ONevent block contains the ABAP statements\WWRI TE, SKI P or
ULI NE, alist buffer isfilled.

m Thelist buffer is subsequently sent to the presentation server asalist.

m Event blocks are processing blocks that are called by the ABAP runtime system. The sequencein
which they are processed is determined by the runtime system.

m |n executable programs, there are different event blocks for the various tasks involved in creating
lists.

m Inan ABAP program, an event block isintroduced with an event key word. It ends when the next
processing block starts. There is no ABAP statement that explicitly concludes an event block.

m Event blocks are called by the ABAP runtime system. The order in which you arrange the event
blocks in your program is irrelevant - the system always calls them in a particular order.

m START- GF- SELECTI ONisthefirst event for generating alist. It is called by the ABAP runtime
system as soon as you have pressed the execute button.

m | NI TI ALl ZATI ONisan event that you can use if you need to set alarge number of default values.
This event block alows you to set default values that can only be determined at runtime. In the
above example, the date 'A week ago' is calculated and placed in data object pa_date. The ABAP
runtime system then sends a sel ection screen to the presentation server containing the calculated
value as adefault. The value can, of course, still be changed by the user.

m Subroutines are processing blocks with a defined interface that can be called from any processing
block using the ABAP statement. Subroutines provide internal program encapsul ation.

m Y ou can navigate from the program object list to the subroutines.
m The where-used list for a subroutine displays al the program lines that call the subroutine.

m |dedly, al you need to do to determine the functional scope of the subroutine is to examine the
subroutine name, the interface and the comments. If the subroutine contains the functionality you
require, then you need the following information to be able to call the subroutine:

e Subroutine name

* Interface parametersit accesses (read-only): the parameters are listed after the USI NG addition.
The type and sequence of the interface parameters is important.

* Interface parametersit changes: the parameters are listed after the CHANG NG addition. The
type and sequence of the interface parameters is important.

m When asubroutine is called, al the interface parameters have to be filled with values. A digtinction
is made between the following parameters:

» After USI NG, the parameters that the subroutine only needs to read are listed.
» After CHANG NG, the parameters that are changed in the subroutine are listed.

m |f the subroutine is called from the ABAP processing block by a PERFORMstatement, the system
interrupts the processing block to process the subroutine sequentially. When the last line of the
subroutine (ENDFORM) is reached, the system carries processing after the PERFORMstatement.

m You can track runtime behavior in the debugging mode. This gives you various options:
* You can go through the entire program, including the subroutine, line by line, using Single Step

* You can go through a processing block line by line using Execute. Subroutines are then executed
asawhole

* You can leave single-step processing of a subroutine and return to the calling program using
Return

m The method used for calling the interface parameters is set in the subroutine interface. The
parameters can be called either by reference or by value.

m Calling by reference: The address of the actual parameter is called. Within the subroutine, the
variable is addressed using the formal parameter name. Changes have an immediate effect on the
global variable. If only the forma parameter name is specified in the subroutine interface, then the
parameter is called by reference.

m Calling by value: When the subroutine is called, aloca variant is created with the formal parameter
name and the actua parameter valueis copied to the formal parameter. There are two types of call by
value:

 Calling by value: the formal parameter islisted in the interface after the USI NGclause with the
addition VALUE(<par anet er nane>). When the subroutine is called, the actual parameter
is copied to the formal parameter. Changes made to the formal parameter only affect the local
copy, not the actual parameter.

 Calling by value and result: the formal parameter is listed in the interface after the CHANG NG
clause with the addition VALUE(<par anet er nane>). When the subroutine is caled, the
actual parameter is copied to the formal parameter. Changes made to the formal parameter initially
only affect the local copy. When the ENDFORM statement is reached, the formal parameter valueis
copied back to the actual parameter.

The parametersin the interface are called formal parameters, and the parameters that you pass to
the subroutine are called actual parameters.

Y ou must have the same number of actual parameters as forma parameters. Y ou cannot have
optiona parameters. Parameters are assigned in the sequence in which they are listed.

When you call asubroutine using PERFORM the system checks whether the types of the actua
parameters in the PERFORM statement are compatible with the formal parameters. Different kinds
of checks are performed for different types:

Completetype checks:

mTYPE D, F, I, Tor<dictionary type>. Thesetypesarefully specified. The system
checksto seeif the data type of the actual parameter isidentica to the type of the formal
parameter in its entirety.

Partial type checks of generic types

m TYPE C, N, Por X Thesystem checks whether the actua parameter hasthetypeC, N, P
or X. The length of the parameter and the number of decimal placesin the DECI MALS addition
(type P) are passed from the actual parameter to the formal parameter.

m TYPE <generic dictionary type> al unspecified information from generic
Dictionary typesis inherited by the formal parameter from an actua parameter.

The interface is defined in the FORM routine. USI NG and CHANG NG in the PERFORM statement
are purely documentary.

Unit: Internal Program Modularization
Topic: Subroutines

*e e

At the conclusion of these exercises, you will be able to:
Create subroutines

Use the subroutine interface to pass data

Change your program ZBC400_##_ SELECT _SFLI GHT_I TAB (or the
corresponding model solution) so that both the authorization check and

> / the data output are encapsulated in subroutines.

.. Program: ZBC400_##_FORMB
I modeslution: sapeosoopes. Forvs

1-1

1-2

Copy your program ZBC400_##_SELECT_SFLI GHT_I TAB or the
corresponding model solution SAPBC400DDS _AUTHORI TY_CHECK 2 tothe
new program ZBCA00_## FORMS. Assign your program to development class
ZBCA4A00_## and the change request for your project “BC400...”. (##isyour
group number.)

Encapsulate the authorization check in a subroutine. Pass the airline code and the
value required for the authorization field ACTVT in the interface. Pass SY- SUBRC,
which is set by the authorization check, back to the main program via the interface.
Specify types for the interface parameters of the subroutine. Possible ABAP
Dictionary types are:

1 Airline code: Dataelement S CARR | D

2 Return code;
System field SY- SUBRC

3 Vaue of the authorization field ACTVT: Dataedement ACTI V_AUTH

Change the parts of the program that depend on the result of the authorization
check: You can no longer query the value of SY- SUBRC. Instead, find out the
value of the corresponding interface parameter from the subroutine.

1-4

Optional:

Encapsulate the data output in a subroutine. Call the subroutine after the SELECT
loop. Passthe interna table containing the read data using the interface. Specify
the types of the interface parameters. Display the data from the subroutine using a
LOOP... ENDLOCR structure. To do this, create the required table work areaas a
local data object in the subroutine. To specify the type of the local structure, use
the ABAP statement DATA: <WA > LI KE LI NE OF <I TAB>.

Unit: Internal Program Modularization
/ Topic: Subroutines

Model solution SAPBC400PBS FORMS

-
*& Report SAPBCAOOPBS_FCRVB

&
-

REPORT sapbc400pbs_f orms.
CONSTANTS act vt _di splay TYPE activ_auth VALUE ' 03'.
DATA: wa_flight TYPE sbc400f occ,

it flight TYPE sbc400_t sbc400f occ.

PARAVETERS: pa_car TYPE sflight-carrid.
DATA: returncode LIKE sy-subrc.

START- G~ SELECTI ON.
* Aut hority-Check:

PERFORM aut hority_scarrid USING pa_car actvt_displ ay
CHANG NG r et ur ncode.
CASE r et ur ncode.
* User is authorized
VWHEN O.
SELECT carrid connid fldate seatsmax seatsocc FROM sfli ght
I NTO CORRESPONDI NG FI ELDS OF wa_fli ght
WHERE carrid = pa_car.
wa_flight-percentage =
100 * wa_flight-seatsocc / wa flight-seatsnax.
APPEND wa_flight TO it _flight.

ENDSELECT.
PERFORM write_list USING it_flight.
* User is not authorized or other error of authority-check

VHEN OTHERS.
WRITE: / '"Authority-Check Error' (001).

ENDCASE.

*& __ *

* & Form AUTHORI TY _SCARRI D

*& __ *
* t ext

K o o o o o o o o o e *
* -->P_PA CARRID text

* -->P_LD ACTVT text

* <--P_RETURN text

* *

FORM aut hority _scarrid USI NG val ue(p_carrid) TYPE s _carr _id
val ue(p_ld _actvt) TYPE activ_auth
CHANG NG p_return LI KE sy-subrc.
AUTHORI TY- CHECK OBJECT 'S CARRI D
ID"'CARRID FIELD p_carrid
ID'ACTVT" FIELD p_Ild_actvt.

p_return = sy-subrc.

ENDFCRM " AUTHORI TY_SCARRI D

* & __ *
* & Form WRI TE LI ST

* & __ *
* t ext

K o o o e *
* -->P I T FLIGHT text

* *

FORMwite list USING p_it_flight TYPE sbc400_t _sbc400f occ.
DATA: wa LIKE LINE OF p_it_flight.
LOOP AT p_it_flight INTO wa.
VWRITE: / wa-carrid COLOR COL_KEY,
wa- conni d COLOR COL_KEY,
wa- f | dat e COLOR COL_KEY,
wa- seat socc,
wa- seat snax,
wa- percent age, ' %.
ENDL OOP.
ENDFORM " WRI TE_LI ST

User Dialogs: Lists

Contents:

List attributes and strengths
Basic lists
List events

Interactive lists

Example with syntax: Detail lists

8 SAP AG 1999

m The main purpose of alist isto output datain a manner that can be easily understood by the user; this
output often takes on the form of atable. Listsin R/3 take into account special business data
reguirements:

m They are language-independent. Texts and headers appear in the logon language whenever the
appropriate trandation is available.

m They can output monetary values in numerous currencies.
m You can output list data in the following ways:

m to the screen; here you can add colors and icons

m to the printer

m to the Internet/intranet: Automatic conversion to HTML

m you can aso save listsin the R/3 System or output them for processing by externa commercial
software applications like spreadsheet programs

m The standard list interface offers the user several navigation features:
* Back
* Exit
* Cancel
e Print
* Find (in List)
* Save: savesthelist either as afile on the desktop, in areport tree, or to the Office
e Send: sends thelist in email form

m For further information on how you can adjust the standard list interface to fit your individua needs
see Dialogs: Interfaces.

m Each list can have alist header and up to four lines of column headers. There are two different
ways to go about using these tools:

m from within the Editor using the text e ement maintenance functions

m from within the list itself. If you save your program, activate it and then run it to create the list, you
can enter both list and column headers by choosing the menu path System -> List -> List headers.
The main advantage of using this method is that the list is still displayed on the screen. This makes it
easier to position column headers.

m The next time you start the program, the new headers will appear in the list automatically.
m When no header text is entered, the program title isinserted in the header.

m Titlesand headers are part of aprogram's text elements. Y ou can trandate al text eements into
other languages. The logon language setting on the logon screen detemines in which language text
elements will be displayed.

m Text symbols are another kind of text element. These are special text litera data objects. Compared
to normal text literas, text symbols have the advantage that they can be trandated into different
languages without having to change a program's source code. Text symbols allow you to create lists
independent of language.

m You can write text symbolsinto your program in either of the following ways:
* TEXT- <xxx> (where xxx isacharacter string three characters long)

o ' <text>' (<xxx>) (wherexxx isacharacter string three characters long)

m In executable programs (type 1), lists are automatically displayed after their corresponding event
blocks have been processed. These processing blocks must, however, contain alist creation
statement. TheseareWRI TE, SKI P, and ULI NE.

m Event blocks are called in a sequence designed for list processing:
m Prior to sending the selection screen: | NI TI ALI ZATI ON
m After leaving the selection screen: START- OF- SELECTI ON

m All output from START- OF- SELECTI ON event blocks, subroutines, and function modules that is
processed before alist is displayed is temporarily stored in the list buffer.

m Onceadl list creation processing blocks (for example START- G- SELECTI ON) have been
processed, al data from the list buffer is output in the form of alist.

m In executable programs, you can use the event block AT LI NE- SELECTI ONto create detail lists.
m The ABAP runtime system:

* Displaysthe basic list after the appropriate event blocks have been processed (for example, after
START- CF- SELECTI ON). Inthis case, sysem field sy- | si nd contains the value 0.

* Processes the event block AT LI NE- SELECTI ONeach time you double-click on an entry. If you

are using a standard status, this happens automatically every time you choose the Choose icon, the
Choose menu item in the Edit menu, or the function key F2.

* Displays detail lists after the AT LI NE- SELECTI ON event block has been processed and
increases the value contained in sy- | si nd by one.

* Digplays the detail list from the previous level in the list hierarchy (n-1) every time you choose the
green arrow icon from the current detail list (n).

m Thelistsin the example program should function as follows:

The basic list should display the text 'Basic List' and system field sy- 1 si nd.

The user should be able to call theinitia detail list using a double-click or by choosing its
corresponding icon from the application toolbar or its menu entry or by using the function key
F2. Then the 'Detail list' appears and the system field sy- | si nd hasthe vaue 1.

Repeating this action should call the second detail list, where system field sy- | si nd contains
the value 2 (representing the current detail list level).

Repeating this action increases thesy- | si nd value by one every time up to a value of twenty
(the total number of detail lists supported).

Choosing the green arrow takes the user back a single detail list level at atime until the basic
list is reached.

m A detail list can be programmed as follows:

m You cregte abasic list by filling the basic list buffer at an appropriate event block (here
START- GF- SELECTI ON) using either WRI TE, SKI P, or ULI NE.

m Use the event block AT LI NE- SELECTI ON when programming detail lists. Whenever you
use WRI TE, SKI P, or ULI NE with this event block, you fill the detail list buffer for the next

level (the detail list buffer with alevel value one greater than the level on which the user
performed his or her action).

m Y ou can pre-determine navigation between detail lists by querying system field sy- | si nd at
the event block AT LI NE- SELECTI ON.

We will now write a program using both basic lists and detall lists:

The basic list in your program should contain flight data such as carrier ID flight number, departure
city and airport, as well as departure and arrival times. This data can be found in the database table
SPFLI .

The user should be able to access information about any particular flight by double-clicking on aline
with a carrier ID and flight number. Flight date and occupancy should be displayed. This data can be
found in the database table SFLI GHT. You must use the SPFLI key fidds in this detail list in order
to read the appropriate datain SFLI GHT. The following dides demonstrate how this is done.

The sample program is named SAPBC400UDD_EXAMPLE 2 and is part of development class
BC400.

m When the event AT LI NE- SELECTI ON is processed, a program's data objects contain the same
values as they did before the basic list display. A detail list, however, often needs data selected
within the basic list itself. Y ou can use the HI DE area to store certain data from the line that you
have selected and then automatically insert where you need it in the corresponding data object for a
detail list. Y ou can predetermine which information should be classified by its line position when
you are creating abasic list.

m Todo this, you use the ABAP keyword H DE followed by alist of the data objects that you need.
The runtime system automatically records the name and contents of the data object in relation to its
line position in the list currently being created.

m Assoon asthe interactive event (AT LI NE- SELECTI ON in this example) is caled by placing the
cursor on a specific line and then either double-clicking or choosing the Choose icon, the values for
thisline stored in the HI DE area are inserted into their corresponding data objects.

m You create adetail list by filling the detail list buffer at the AT LI NE- SELECTI ON event block
using either WRI TE, SKI P, or ULI NE. In this sample program, the key fields for the airline are
displayed and the flights available for this airline in the database table SFL1 GHT are read using a
SELECT loop. Note that the line-specific information on the airline is only available by double-
clicking in the data objects if the relevant data objects have been placed in the HI DE area when the
basic list was created.

Unit: User Dialogs: Lists
Topic: Detail lists

*e e

At the conclusion of these exercises, you will be able to:

Create a detail list in a program

Extend your program ZBC400_##_ SELECT_SFLI GHT or the
~ corresponding model solution as follows:
>) Once the user has selected a flight on the basic list (double-click or F2 on

the relevant list line), display a detail list containing all of the bookings
for the selected flight.

.. Program: ZBCA00_## DETAIL_LI ST
||| m || m || m || Model solution: SAPBC400UDS_DETAI L_LI ST

1-1

1-2

1-3

1-4

Copy your program ZBC400_##_ SELECT_SFLI GHT or the corresponding
model solution SAPBC400DDS _AUTHCORI TY_CHECK to the new program
ZBCAO00_## DETAI L_LI ST. Assign your program to development class
ZBCA00_## and the change request for your project “BC400...” (## is your group
number).

Make sure that the key fields of the database table SFLI GHT are available to you
for building up the detail list when the user selects a flight from the basic list
(double-click or F2 on the corresponding list line). (HI DE)

Addthe AT LI NE- SELECTI ON event to your program to allow you to construct a
detail list.

In the first line of the detail list, display key information from the selected line of
the basic list. Under this line, display a horizontal line and a blank line.

Read all of the bookings from database table SBOCK for the selected flight. Usea
structure to display the following fields of the database table SBOOK on the detall
list:

BOOKI D,
CUSTOM D,

1 tm—— ——

1-6

1-7

CLASS,
ORDER_DATE,
SMOKER,
CANCELLED,

L OCCURAM
LOCCURKEY .

Display the fields BOOKI D and CUSTOM D inthe color COL_KEY.

Ensure that the currency amount L OCCURAMi s displayed with the appropriate
formatting for the currency LOCCURKEY . Use the addition CURRENCY
<currency_key> inthe\WRI TE statement.

Example:
VWRI TE: wa_sflight-price CURRENCY wa_sflight-currency,
wa_sflight-currency.

Unit: User Dialogs. Lists
/ Topic: Detail lists

Sample solution SAPBC400UDS _DETAI L_LI ST

L3 -
*& Report SAPBCA400UDS _DETAIL_LI ST

*&

L3 2
REPORT sapbc400uds_detail _|ist.

CONSTANTS actvt _display TYPE activ_auth VALUE ' 03'.

DATA: wa_flight TYPE sbc400focc,
wa_sbook TYPE sbook.

PARAMETERS: pa_car TYPE sflight-carrid.

START- CF- SELECTI ON.
AUTHORI TY- CHECK OBJECT 'S CARRI D
ID "' CARRID FIELD pa_car
| D" ACTVT" FIELD actvt_di spl ay.
CASE sy-subrc.
VWHEN O.
SELECT carrid connid fldate seatsmax seatsocc FROM sflight
| NTO CORRESPONDI NG FI ELDS OF wa_f i ght
WHERE carrid = pa_car.
wa_flight-percentage =
100 * wa_flight-seatsocc / wa_flight-seat snmax.
WRITE: / wa_flight-carrid COLOR COL_KEY,
wa_flight-connid COLOR COL_KEY,
wa_flight-fldate COLOR COL_KEY,
wa_flight-seatsocc,
wa_fli ght - seat snax,

wa_flight-percentage,' %.
* Hi de key field values corresponding to the actual |ine
HDE wa flight-carrid, wa flight-connid,
wa_flight-fldate.

ENDSELECT.

VWHEN OTHERS.
WRITE: / '"Authority-Check Error' (001).

ENDCASE.

* Programcontinues here, if aline is selected on basic |ist

AT LI NE- SELECTI ON
| F sy-Isind = 1.

* Key fields transported back fromhide area to ABAP data objects
WRITE: / wa_flight-carrid,
wa_f i ght -connid,
wa_flight-fldate.
ULI NE.
SKI P.
* Sel ection of bookings, which depend on selected flight
SELECT booki d custom d custtype class order_date
snoker cancel l ed | occuram | occur key
FROM sbook | NTO CORRESPONDI NG FlI ELDS OF wa_sbook
WHERE carrid = wa_flight-carrid
AND connid = wa_flight-connid
AND fldate = wa_flight-fldate
* Creation of detail |ist
WRI TE: / wa_sbook- booki d,
wa_sbook- cust om d,
wa_shook- cust type,
wa_shook- cl ass,
wa_sbook- or der dat e,
wa_sbook- snoker
wa_sbook- cancel | ed,
wa_sbook- | occuram CURRENCY wa_sbook- | occur key,
wa_shbook- | occur key.
ENDSELECT
END F.

User Dialogs: Selection Screens

Contents:

Selection screen attributes and strengths
Defining selection screens
Evaluating user input to restrict database selection

Selection screen events

Example with syntax: Additional input checks with error
dialog

8 SAP AG 1999

m Seclection screens alow users to enter selection criteria required by the program.

m For example, if you create alist containing data from a very large database table, you can use a
sel ection screen to restrict the amount of data that is selected. At runtime, the user can enter intervals
for one of the key fields, and only datain thisinterva is read from the database and
displayed in the list. This considerably reduces the load on the network.

m Selection screens are designed to present users with an input template allowing them to enter
selections, which reduce the amount of data that has to be read from the database. The fdlowing
possihilities are available to the user:

* Entriesto singlefields
* Complex entries. Intervals, operations, patterns
» Saving selections fields filled with values asvariants

* Input help and search helps are available by choosing the F4 function key or the possible entries
pushbutton

m You can trandate selection texts into other languages so that they are then displayed in the language
in which the user is logged on.

m The system checks types automaticaly. If you enter a value with an incorrect type, the system
displays an error message and makes the field ready to accept your corrected entry.

m Sdlection screens allow you to enter complex selections as well as single-vaue selections. Functions
of selection options programming include:

m Setting selection options
m Entering multiple values or intervals
m Defining aset of exclusionary criteriafor data selection

m Every sdection screen contains an information icon. Choose thisicon to display additional
information.

m If you refer an input field to an ABAP Dictionary object to which a search help is assigned, the
system automatically provides the corresponding possible values help.

m Y ou can adapt the possible values help to meet your own requirements by defining a search help in
the ABAP Dictionary.

m On the sdlection screen, the names of the variables appear next to the input fields. However, you can
replace these with selection texts, which you can then trandate into any further languages you
require. Selection texts are displayed in the user's logon language.

Y ou can define and store variants for any selection screen. Y ou do this by starting the program and
choosing Variants -> Save as variant.

Variants alow you to make selection screens easier to use by end users by:
m Pre-assigning values to input fields
m Hiding input fields
m Saving these settings for reuse

A single variant can refer to more than one selection screen.

Variants are client specific.

If you choose the information icon (on any selection screen), the system will display more

information about variants. Y ou can aso find out more in course BC405 Techniques of List
Processing.

m In an executable program, asingle PARANETERS statement is sufficient to generate a standard
selection screen.

m The PARAMETERS <nane> TYPE <t ype> daement and the PARAMETERS <nane> LI KE

<dat a obj ect > statement both generate a smple input field on the selection screen, and a data
object <nane> with the type you have specified.

m |f the user enters avaue and chooses 'Execute, that value is placed in the internal data object
<name> in the program. The system will only permit entries with the appropriate type.

m Oncethe | NI TI ALl ZATI ONevent block has been processed, the selection screen is sent to the
presentation server. The runtime system transports the data object values that are defined using
PARAMETERS to the selection screen input fields of the same name.

m The user can then change the values in the input fields. If the user then clicks on the 'Execute’
function, the input field values are transported to the program data objects with the same name and
can be evaluated in the ABAP processing blocks.

m If you have used the PARANMETERS statement to program an input field as a key field for a database
table, you can use a WHERE clause at the SELECT statement to limit data selection to this value.

m |n the example above only those data records are read from database table SPFLI whose key field
CARRI D have the same value asis contained in data object pa_car at runtime.

m The statement SELECT- OPTI ONS <name> FOR <dat a obj ect > defines a selection option:
This places two input fields on the selection screen, with the same type that you have defined in the
reference. This enables users to enter a value range or complex selections. The statement also
declares an internal table <name> within the program, with the following four columns:

m si gn: Thisfield designates whether the value or interva should be included in or excluded
from the selection.

m opt i on: This contains the operator: For alist of possible operators, see the keyword
documentation for the SELECT- OPTI ONS statement.

m | ow: Thisfield contains the lower limit of arange, or asingle value.
m hi gh: Thisfield contains the upper limit of arange.

m Selection table <nane> aways refers to a data object that has already been declared. This data
object serves as atarget field during database selection, the selection table as a pool of possible
values. A specid version of the WHERE clause exists for database selection. It determines whether or
not the database contains the corresponding field within its pool of possible values.

m If the user enters severd values or intervals for a selection option and chooses 'Execute, the system
places them in the internal table.

m The above example shows how you can restrict database selection to a certain range using a selection
table.

m Conditionsin an internal table declared using SELECT- OPTI ONS are interpreted asfollows:

m |f the internd table is empty, the condition <f i el d> | N <sel nanme> isawaystrue.

m |f the internal table only contains simple inclusive conditionsi 1, ..., i n,theresultisthe
compositecondition (i1 OR ... ORin).

m |f the internal table only contains simple exclusive conditions €1, ..., em, the result is the
compositecondition (NOT el) AND ... AND (NOT em).

m |f the internd table contains both the smple inclusive conditionsi 1, . .., in andthesmple
exclusive conditionsel, . .., em theresult isthe composite condition (i1 OR ... OR

in) AND (NOT el) AND ... AND (NOT em).

m In an executable program, the ABAP runtime system generates a standard selection screen aslong as
you have written at least one PARAMETERS or SELECT- OPTI ONS statement. The selection screen
belongs to the event block AT SELECTI ON- SCREEN.

m The selection screen is displayed after the event block | NI TI ALI ZATI ON.

m Each time the user presses Enter, a pushbutton, a function key, or chooses a menu function, the
system carries out atype check. If the entries do not have the correct type, the system displays an
error message, and makes the fields ready for input again. When the data types have been corrected,
the system triggersthe AT SELECTI ON- SCREEN event.

m Subsequent program flow depends on the user action:

¢ |f the user chose F8 or 'Execute, the next event block is called: In this case, START- CF-
SELECTI O\.

* |f the user chose any other function, the selection screen is redisplayed.

Use the event block AT SELECTI ON- SCREEN whenever you want to program additional input
checksfor a standard selection screen.

Theevent block AT SELECTI ON- SCREEN s triggered by each user action. If an error dialog is
triggered, the system jumps back to the selection screen and automatically resets al input fields to
ready for input and displays a message in the status line.

For more detailed information on the MESSACE statement, refer to the keyword documentation as
wall.

Additiona information can be found in the keyword documentation for AT SELECTI ON- SCREEN.

m Asan example of an additional input check with error dialog, aninput field for the airline ID needs
to be added to the program:

m An authorization check is carried out on the selection screen.
* |f the user has display authorization for the airline entered, the program continues.

* |If the user does not have display author ization, then the selection screen is displayed again and an
error message appears in the status bar.

Unit: Selection Screen

*e e

At the conclusion of these exercises, you will be able to:

Use the ABAP statement SELECT - OPTI ONS to enter complex values
on a standard selection screen.

Take account of complex values in a database selection.

Program an error message for a standard selection screen

Extend your program ZBCA00_##_DETAI L_LI ST or the
corresponding model solution as follows:

> / Provide the user with a means of entering a complex value set for the

flight number. Take the values into account in your database selection.
Additionally, change your program so that the user can only progress
from the selection screen if the authorization check for the desired airline
Is successful.

P - Program: ZBC400_##_SEL_SCREEN
||| m || m || m || Model solution: SAPBC400UDS_SEL_SCREEN

1-1

1-2

1-3

Copy your program ZBC400_## DETAI L_LI ST or the corresponding model
solution SAPBC400_UDS _DETAI L_ LI ST to the program

ZBCA00_##_ SEL_SCREEN. Assign your program to development class
ZBCA00_## and the change request for your project “BC400...” (## is your group
number).

Extend your selection screen to alow the user to enter a complex value range for
the flight number CONNI D.

Use the complex value selection to restrict the amount of data selected from the
database table SFLI GHT.

Change your program so that the user cannot progress from the selection screen if
the authorization check against the authorization object S CARRI Dfails. If the
authorization check fails, display a suitable error message from message class
BC400, and allow the user to enter a different value on the selection screen.

/ Unit: Selection Screen

Model solution: Program SAPBCA00UDS SEL SCREEN

* & __ *
*& Report SAPBC400UDS SEL_SCREEN *
* & *
* & __ *

REPORT sapbc400uds_sel _screen.

CONSTANTS actvt _display TYPE activ_auth VALUE ' 03'.

DATA: wa_flight TYPE sbc400f occ,
wa_sbook TYPE shbook.

PARAMETERS: pa_car TYPE sflight-carrid.
* Data field for conplex restrictions applied to connection id

SELECT-OPTI ONS: so_con FOR wa_fli ght - conni d.

* First event processed after |eaving the selection screen
AT SELECTI ON SCREEN.
AUTHORI TY- CHECK OBJECT 'S _CARRI D
ID "' CARRID FIELD pa_car
| D" ACTVT" FIELD actvt_di spl ay.
| F sy-subrc <> 0.

* Return to selection screen again and display nmessage in status *
bar

MESSACGE e045(bc400) WTH pa_car.
ENDI F.

START- CF- SELECTI ON.
SELECT carrid connid fldate seatsmax seatsocc FROM sfli ght

| NTO CORRESPONDI NG FI ELDS OF wa_fli ght
WHERE carrid = pa_car
AND connid IN so_con.
wa_flight-percentage =
100 * wa_flight-seatsocc / wa_flight-seatsnmax.
WRITE: / wa_flight-carrid COLOR COL_KEY,
wa_flight-connid COLOR COL_KEY,
wa_flight-fldate COLOR COL_KEY,
wa_f i ght-seat socc,
wa_f i ght -seat snax,
wa_flight-percentage,' %.
HDE wa flight-carrid, wa_flight-connid, wa flight-fldate.
ENDSELECT.

AT LI NE- SELECTI ON
IF sy-lsind = 1.
WRITE: / wa flight-carrid, wa flight-connid, wa flight-fldate.
ULl NE.
SKI P.
SELECT bookid custom d custtype class order_date
snmoker cancel |l ed | occuram | occur key
FROM sbook | NTO CORRESPONDI NG FlI ELDS OF wa_sbook
WHERE carrid
AND connid
AND fldate
VWRI TE: / wa_sbook-booki d,
wa_shbook-cust om d,

wa_flight-carrid

wa_flight - connid

wa_flight-fldate.

wa_shbook-cust type,
wa_sbook-cl ass,
wa_sbook-order_date
wa_sbook- snoker,
wa_sbook-cancel | ed,
wa_sbook-1 occuram CURRENCY wa_sbook- | occur key,
wa_sbook-1 occur key.
ENDSELECT.
ENDI F.

User Dialogs: Screens F'
DA

Contents:

® Screen attributes and strengths
® C(Creating screens

® Layout

® Field attributes

® Flow Logic

® Data transport

® Using pushbuttons and evaluating user actions

8 SAP AG 1999

Screens are made up of more than just a monitor display with input and output fields.

Screens' integration with the ABAP-Dictionary alows the system to perform consistency checks for
their input fields automatically. These checks include required input check, type checks, foreign key
checks, and fixed value checks. All of these checks rely upon ABAP Dictionary information.

Checks like the ones above can be complemented by other program specific checks. There are
techniques available for screens that allow you to control in what order checks are then performed.

When an error is detected, the corresponding field is called and displayed ready for input. Screen
layout is also very flexible. Input fields, output fields, radio buttons, check boxes, and even
pushbuttons can be placed on screens. They alow users to determine in which direction the program
will proceed.

On the whole, such user influence on program progression allows for more program flexibility in
those programs that do contain screens.

m You can cal screens from any ABAP processing block that you want.

m You can link severa screensto one another and then call them from within a program by smply
caling the first screen.

- Some ABAP programs are made up exclusively of screens and their correponding ABAP
processing blocks. In this case the first screen is called directly using a transaction code.

m In the following units you will develop a program that changes standard flight data.

m Double-click on an entry in the basic list ‘timetabl€' to reach a screen. This screen displays data
from the line you selected, as well as additional information about the airline carrier. Y ou can
change flight and departure times.

m Choosing 'Back’ takes the user back to the basic list without changing any data
m Choosing 'Save' changes the data in the database.

m Changes to the database can be made using function modules. See the unit on the Database Dialogs
[l for more about this process.

m The mgjor stepsin creating a screen:
m specifying its properties (Screen Attributes)
m specifying its layout (in Fullscreen Editor)
m defining attributes for the elements on the screen (Field List)
m programming its flow logic

m Your first step isto create a screen, specify its layout, and define its field attributes. The fields:
Airline, Flight Number, Departure Airport, and Arrival Airport should appear as output fields, Flight
Time and Departure Timeas input fields.

m You should be able to call your screen by double-clicking aline within the basic list and you should
be able to return to the basic list by choosing the appropriate function key on the screen.

There are several waysto create screens.

m Forward Navigation: Y ou can create screens from within the ABAP Editor by double-clicking
on the screen number. This transfers you into Screen Painter automatically

m Object Navigator: You can aso create a screen from the object list in the Object Navigator

When creating a screen for the first time the system will ask you to enter screen attributes. Enter a
short description of the screen, select screen type Normal and enter the number of the subsequent
screen in the Next Screen input field.

If you enter O or leave the Next Screen field blank, the system first processes your screen completely
and then returns to processing the program at the point immediately following the screen call. Be
aware that in the Next screen input field, the O is suppressed, since it is the same as the initid value
of thefield.

In this example the screen you create is supposed to be called from within abasic list. Therefore
CALL SCREEN 100 must belong to the event block AT LI NE- SELECTI ON.

m There are two ways of assigning field attributes to screen fields:

m Adopt them from the Dictionary: Y ou can adopt types and field attributes from existing
ABAP Dictionary structures. This makes al information about the object available to you,
including semantic information about its data elements and foreign key dependencies. The name
of the Dictionary field is automatically adopted as afield name.

m Adopt them from a program: Y ou can adopt field attributes from data objects aready defined
within a program. In order to do this, however, an activated copy of the program must aready
exist. The name of the data object is automatically adopted as a field name.

m The Graphica Screen Painter's interface allows you to define screen e ements (for example, input
and output fields, keyword texts, borders, and so on) with relative ease. Choose the desired screen
element from the column on the left and then place it on the screen using your mouse.

m You can delete screen elements simply by selecting them with your mouse and then choosing delete.

m Y ou can move screen e ements by holding down your left mouse button and dragging them to a new
position.

m You can maintain screen field attributes by selecting afield and choosing Attributes.

m You can classify certain fields as ‘mandatory'.(. "Required field"). A question mark is displayed at
runtime if the field isinitid.

m |f not al required fields have been filled at runtime and a user action is performed, an error didog is
triggered and al input fields are once again displayed ready for input.

m You can aso edit screen field attributes by choosing Field list.
m Thefied list is then displayed as a tab.

m This same function can aso be accessed in a different format from within the Graphical Screen
Painter.

m In step two you will learn how to program data transport from a basic list onto your screen.
m For the user, the program works in the following manner:

m By double-clicking on alinein the basic list the user branches to a screen. On this screen the
most important bits of information for the connection he or she has chosen are displayed. The
flight time and departure time are displayed in afield that is ready for input and hence can be
changed.

m The user can return to the basic list in one of several ways.
m With thisin mind, this part of the unit will deal with:
m Prerequisites for automatic data transport between programs and screen fields

m Defining the screen interface and programming data transport to the interface's data objects

m The statement TABLES declares an internal data object that serves as an interface for the screen.
TABLES aways refers to a structure that is defined in the ABAP Dictionary.

m |f aTABLES statement and a screen field both refer to the same Dictionary structure, this data
object's data is transported to the screen fields every time the screen is caled. Any new entries or
changes that the user makes on the screen are then transferred back into this data object.

m Normally the ABAP Dictionary contains structures with fields that correspond to several different
tables. These tablesin turn correspond to the business view of particular applications. The flight data
programs being created in this course use one structure for master data maintenance (sdyn_conn)
and another for bookings data (sdyn_book). Using your own structures as interfaces usualy helps
make a program easier to understand and helps to avoid errors as well.

m Datatransport takes place automatically between screens and program data objects of the same
name:

m Immediately before a screen is sent to the presentation server (after dl PBO event modules
have been processed) the system copies field contents out of the ABAP work areainto their
corresponding fields in the screen work area.

m ABAP statements facilitate data transport between program data objects and the work area
designated as the screen interface.

m Data transport takes place automatically between screens and program data objects of the same
name:
m Immediately after auser action (befor e the first PAl module has been processed) the system
copies field contents out of the screen work area and into their corresponding fields in the
ABAP work area.
m ABAP gstatements facilitate data transport between the work area designated as the screen interface
and program data objects.

m On the last development level, the program should alow the user to change datain the database. The
user should be able to change the fields FLTI ME and DEPTI ME. To enable the user to change data
for severa airlines, abasic list of the airlines for which the user is alowed to change data should be
displayed. The user reaches the change screen by double-clicking. Once the changes have been made
successfully, the user returns to the basic list. However, anew basic list is not created. Therefore the
data that can be changed should not appear on the basic list.

m In order to ensure that the database data that is displayed on the screen is up-to-date, the record is
read again from the database at the beginning of AT LI NE- SELECTI ON.

m Advantages of this method:

* For the basic list, only those columns of the database table that are displayed on the list need to be
read. This can improve performance with large lists.

* The datathat is displayed on the screen is aways up-to-date, even if the data record selected has
only just been changed using this program. This would not happen if al screen data was placed in
the HI DE areawhen the basic list is created.

* Changes made to the database using the screen do not lead to incorrect valuesin the basic ligt, as
the modifiable fields are not contained in the list.

* Looking ahead to the lock concept: The lock times can be shortened. Y ou find more detailed
information on this topic in the Database Dialogs | unit.

* The program can be extended: Additional information from the data record can be displayed on
the screen without having to make many changes.

To display data on the screen, the TABLES structure must be filled with current data before the
screen is sent to the presentation server. The example above shows one way of doing this.

The HI DE statement is used to place key fields of database tables with reference to the list line in the
HI DE area. Then the current data for the line selected isavailable in fieldswa_spfli-carri d
andwa_spfli-connidatevent AT LI NE- SELECTI ON.

The datarecord is read from the database usng SELECT S| NGLE. This ensures that the structure
contains current data, even if the user has just changed the data. The structure is assigned the same
type as the database table line type, so that suitable fields are available for al datain the data record.

The corresponding fields are copied to the TABLES structure sdyn_conn usng MOVE-
CORRESPONDI NG. The system transports the structure data to the screen fields automatically.

m In step three you will learn how to designate pushbutton functions. These functions allow different
kinds of program logic to be processed according to user choice.

m For the user, the program works in the following manner:

m By double-clicking on alinein the basic list the user branches to a screen. On this screen the
most important bits of information for the connection he or she has chosen are displayed. The
flight time and departure time can be changed.

m By choosing the 'Back' pushbutton, the user returns to the basic list without writing any changes
to the database. The message 'Screen was left without any changes being made' is displayed in
the status bar of the basic list.

m Choose 'Save' to write dl of your changes to the database. We will take a closer ook at this step
in the unit Database Dialogs I1. The pushbutton is aready prepared in the following section.
The user should return to the basic list after the pushbutton is chosen and a message should be
displayed in the status bar.

m After pressing Enter, the screen is redisplayed.
m Changes to the database are discussed in the unit Database Dialogs 1.
m With thisin mind, this part of the unit deals with:
* How logic in PBO and PAI event blocks
» Using PBO and PAI modules as ABAP processing blocks for screen programming

* How to control how the program continues according to the pushbutton chosen by the user.

m In order to define functions for specific pushbuttons, these pushbuttons must be assigned function
codes. You can do this either on the attributes screen or in the field list in the graphical Layout
Editor.

m The OK_CODE field is a data object into which corresponding function codes are fed after every user
action.

m The name OK_CCODE must be inserted as the last line in each screen's field lit.

m |f you define a corresponding data object of the same name in a program's declaration area, the
system places the function code of the pushbutton chosen by the user in the data object at runtime.
You can usefied sy- ucommas areference field.

The ABAP statement CALL SCREEN <nnnn> interrupts processing block processing and cals a
screen.

Each screen has two corresponding event blocks:

m PROCESS BEFORE QOUTPUT (PBO) isprocessed immediately before a screenis displayed.
At thistime modulesare caled that take care of tasks such as inserting recommended values
into input fields.

m PROCESS AFTER | NPUT (PAI) is processed immediately after a user action. All program
logic that isinfluenced by user action must be processed at PAI. Y ou will learn more about this
in step three.

Note: The code for the events PBO and PAI iswritten using the Screen Painter and not the ABAP
Editor. These two event blocks make up a screen's flow logic.

When programming flow logic, use the set of commands called Screen ABAP. MODULE <ABAP
nodul e name> isthe most important Screen ABAP command. It calls a special ABAP processing
block called amodule.

M odules are ABAP processing blocks with no interface that can only be caled from within a
program'’s flow logic. Modules begin with the ABAP statement MODULE and end at ENDMODULE.

Program logic that logically belongs to a specific screen should normally be processed at the screen's
PBO and PAI events.

m If you enter O or leave the Next Screen field blank, the system first processes your screen completely
and then carries on processing the program from where the screen was called.

m If you set the Next screen of screen 100 to 100, the system processes the screen again, after it has
finished processing the PAl module.

m You can usethe ABAP statement SET SCREEN <nnnn> within a PAl module to override
dynamically the value set in the Next screen attribute.

m Often the same screen number is entered in both the Screen number and Next screen fields. In this
case, when you choose Enter, afield check is performed and the system returns you to the same

screen. In order to leave the screen, an appropriate pushbutton must be defined that then triggers a
Next screen change within the PAl module.

m With the help of the OK_CODE field, different program logic can now be processed by the PAI
modules depending on what the user inputs.

m |[f an OK_CODEfield is not initialized, errors can occur since not every pushbutton is required to
have afunction code. There are two ways of doing this:

* Initialize the OK_CODE field in a PBO module. Then it is set to the initial value a PAI, unlessthe

user has carried out a user action to which afunction code is assigned. In this case, the OK_CODE
field contains the function code.

* Usean auxiliary field and copy the contents of the OK_CODE field to the auxiliary field in a PAI
module, and then initialize the OK_CCODE field. In this case, the auxiliary field must be queried in
the PAI module for the function code evauation.

m You can implement calls such as MODULE within a screen's flow controls (PBO and PAI events).
The modules themselves are, however, created using ABAP.

m There are two ways to create a module:

m using forward navigation: Double-click on the module name from within the Screen Painter
Editor to create the module.

m Using the Object Navigator: If you want to create a module using the object list in the Object
Navigator, first display your program, then choose 'PBO modul€' or 'PAl modul€ in the
ProgramObjects display and create a new development object by selecting the create icon.

m A module can be called from more than one screen. (Reusability)

m Be aware that modules called at PBO events must be defined using the statement MODULE . . .
OUTPUT, whereas modules defined with MODULE . . . | NPUT, can only be called at PAI events.

m In this example program two pushbuttons should trigger changes in the Next screen value:

m Choosing' BACK' should automatically set this value to 0. This sends the user back to the last
screen called before the present one. In your sample program, you return to abasic list if the
detail list buffer has not been filled and message 047 is issued, or, if it has been filled, a detall
list is displayed. Message 047 appears in the status bar of the screen subsequently displayed.

m Choosing' SAVE' causesan S message to be displayed and the user then branches to abasic
list or adetall list, the same aswhen ' BACK' is chosen.

Unit: Screen
Topic: Creating Screens

*e e

At the conclusion of these exercises, you will be able to:
Create screens

Call existing from the program

Program SAPBC400UDT_DYNPRO 1 displays all bookings made by
one agency asalist.

/ > Y. Extend the program as follows:

Double-clicking on aline in the basic list should call a screen. Thisscreen
should contain input fields for specific booking data that is not displayed
on the list. This screen should aso contain output fields for booking
information that is already displayed on the list. Any user action should
result in the basic list being displayed again

.. Program: ZBCA00_## DYNPRO
IIIIJJ| Mode soution: saPeC#00UDS_ DYIPRO1

1-1

1-2

1-3

1-5

Template. SAPBC400UDT _DYNPRO 1

Copy the template SAPBC400UDT_DYNPRO 1 to your program
ZBC400_##_ DYNPRO. Assign the program to development classZBCA00_##

and the change request for the project “BC400...” (replacing ## with your group
number).

Become familiar with the program. Test the program using the agency number 1##
(## is your group number).

Selecting aline on the basic list (by double-clicking or using F2) should call a
screen. Create this screen (screen number 100) using forward navigation.

For the attributes, assign screen number 0 as the number of the next screen, so that
after any user action on screen 100, the user returns to the basic list.

Create input/output fields on the screen. When you are assigning field types, refer
to ABAP Dictionary structure SDYN _BOCK.

The booking table key fields CARRI D, CONNI D, FLDATE, and BOOKI D should be copied
with their field labels.

The customer name NAME should be copied without afield label and be displayed next to
the customer number.

The fields CUSTOM D CUSTTYPE, SMOKER, CLASS, L OCCURAMand LOCCURKEY
should be copied with field labels.

1-6 Maintain the screen field attributes:

Fields CARRI D, CONNI D, FLDATE, BOOKI D and CUSTOM D should be displayed as
output fields (Output field attribute).

The customer name NAME should be displayed next to the customer number without text
(Output only attribute).

The fields CUSTOM D CUSTTYPE, SMOKER, CLASS, L OCCURAMand LOCCURKEY are
input/output fields (Input field/Output field attribute).

Unit: Screen
Topic: Data transport

*ee

At the conclusion of these exercises, you will be able to:

Fill the screen fields with data from the program

Extend your program, ZBC400_##_ DYNPRO:
Double-clicking on aline of the basic list displays details of the selected

> / booking on the screen. If the user changes data on the screen, then these

changes should be available in the program once the user has |eft the
screen.

.. Program: ZBCA00_##_ DYNPRO
WIIL| Modst soution: sapBoso0UDS_oViPRO 2

2-1

2-2

2-3

2-4

Extend your program, ZBC400_## DYNPROQ, or copy the relevant model solution
SAPBC400UDS_DYNPRO _1 and giveit the name ZBC400_## DYNPRO 2.
Assign your program to the development class ZBC400_## and to the transport
request for this project, BC400... (replacing ## with your group number).

Use awork area as an interface between the program and the screen. Since you used
areference to a Dictionary structure type when assigning screen field types, you
must use the TABLES declarative statement.

Ensure that the SBOOK database table key fields and the customer name are still
available (HI DE: ...) inthe AT LI NE- SELECTI ON event block after aline has
been selected on the basic list (double click or F2).

The Program should later be extended so that data can be changed on the database.
Ensure that the screen can only be processed if the user has change authorization for
the airline selected.

In order to ensure that double-clicking on aline in the basic list displays up-to-date
data, the data record must be read from the database table SBOOK before the screen

IS processed.

2-5

sdected from the database table SBOCK to a structure that has the same line

structure as the database table. If the data record cannot be read, the system must
display information message 176 from message class BC400. If therecord is
successfully read, call the screen.

Immediately before calling the screen, copy the relevant data to the TABLES work
areathat serves as an interface to the screen.

Unit: Screen
Topic: Field Transportsand Next Screen Processing

At the conclusion of these exercises, you will be able to:

Create pushbuttons on screens

*«e e

Process the system code triggered when the user clicks on a
pushbutton and control the program flow

Set the rext screen dynamically

Extend your program, ZBC400_##_ DYNPRO:
: ~ The user should be given a choice of two pushbuttons on the screen that
p.) / control the program flow.

P N Program: ZBCA00_## DYNPRO
IIJJI| Mode soution: saPECs00LDS_DYIPRO 3

3-1 Extend your program, ZBC400_## DYNPRO, or copy the relevant model solution
SAPBC400UDS_DYNPRO 2 and giveit the name ZBC400_## DYNPRO 3.
Assign your program to the development class ZBC400_## and the task that has
already been created for you (replacing ## with your group number).

3-2 Define two pushbuttons on the screen that allow the user to either return to the basic
list (PUSH_BACK) or to save changes to data (PUSH_SAVE):.

Name of pushbuttcn

PUSH BACK Back BACK
PUSH SAVE Save SAVE
oder icon

ICON_SYSTEM_SAVE

3-3 Name the OK_CODE field on the screen and declare a data object of the same name
(and corresponding type) in the program.

3-4 Navigate in the flow logic. Create a module for function code processing (using
forward navigation) at PROCESS AFTER | NPUT:

BACK None List
SAVE First: List

Action

Information message No.
060(BC400)
Other None Screen 100

3-5 Ensurethat pressing 'Enter' always displays screen 100, regardless of the navigation
history. Do this using either of the two methods for initializing the OK_CCDE.

Unit: Screen
/ Topic: Creating Screens

Model solution: Program SAPBC400UDS _DYNPRO 1

<
*& Report SAPBC400UDS_DYNPRO 1

REPORT sapbc400uds_dynpro_1.
CONSTANTS: actvt _display TYPE activ_auth VALUE ' 03',
actvt _change TYPE activ_auth VALUE ' 02'.

PARAMETERS: pa_agnum TYPE s_agncynum
DATA: wa_cust TYPE sbc400cust,

it _cust TYPE sbc400 t shc400cust.
DATA: wa_sbook TYPE sbook.

START- CF- SELECTI ON.
SELECT id name FROM scustom | NTO TABLE it _cust.
SELECT carrid connid fldate bookid customd
FROM sbook | NTO CORRESPONDI NG FI ELDS OF wa_sbook
VWHERE agencynum = pa_agnum
AlITHMNR TV-CHFCK (R1FCT ' Q CARRI IY

ID'CARRID FIELD wa_shook-carrid
ID " ACTVT" FIELD actvt _displ ay.
I F sy-subrc = 0.
READ TABLE it_cust | NTO wa_cust
W TH TABLE KEY id = wa_sbook-cust oni d.
WRI TE: / wa_sbook-carrid COLOR COL_KEY,
wa_sbook-conni d COLOR CCOL_KEY,
wa_sbook-fl date COLOR COL_KEY,
wa_sbook- booki d COLOR CCOL_KEY,
wa_cust - name COLOR COL_KEY
ENDI F.
ENDSELECT.

* Program continues here after having sel ected a booking on the *
basic list.

AT LI NE- SELECTI ON
| F sy-Isind = 1.
AUTHORI TY- CHECK OBJECT 'S CARRI D
ID'CARRID FIELD wa_shook-carrid
ID " ACTVT" FIELD actvt_change.
| F sy-subrc = 0.
CALL SCREEN 100.
ELSE.
MVESSACGE s047(bc400) W TH wa_sbook- carri d.
ENDI F.
ENDI F.

Unit: Screen
/ Topic: Datatransport

Model solution: Program SAPBC400UDS DYNPRO 2

<
*& Report SAPBC400UDS_DYNPRO 2

REPORT sapbc400uds_dynpro_2.
CONSTANTS: actvt _display TYPE activ_auth VALUE ' 03",
actvt _change TYPE activ_auth VALUE ' 02'.

TABLES: sdyn_book.
PARAMETERS: pa_agnum TYPE s_agncynum
DATA: wa_cust TYPE sbc400cust,

it _cust TYPE sbc400 t shc400cust.
DATA: wa_sbook TYPE sbook.

START- GF- SELECTI ON.
SELECT id nane FROM scustom | NTO TABLE it _cust.

SELECT carrid connid fldate bookid customd
FROM sbook | NTO CORRESPONDI NG FI ELDS OF wa_sbook
WHERE agencynum = pa_agnum
AUTHORI TY- CHECK OBJECT 'S _CARRI D
ID'CARRID FIELD wa_shook-carrid
ID "' ACTVT" FIELD actvt_di spl ay.
I F sy-subrc = 0.
READ TABLE it_cust | NTO wa_cust
W TH TABLE KEY id = wa_sbook-cust om d.
VWRI TE: / wa_sbook-carrid COLOR COL_KEY,
wa_sbook-conni d COLOR COL_KEY,
wa_sbook-fl date COLOR COL_KEY,
wa_sbook-booki d COLOR COL_KEY,
wa_cust - name COLOR COL_KEY.
* H de key fields of database table SBOOK and custoner nane
H DE: wa_sbook-carrid, wa_sbook-connid, wa_sbook-fl date,
wa_sbhook- booki d, wa_cust - nane.
ENDI F.
ENDSELECT.
CLEAR wa_shook.

AT LI NE- SELECTI ON.
IF sy-lsind = 1.
AUTHORI TY- CHECK OBJECT 'S CARRI D
ID'CARRID FIELD wa_shook-carrid

I D" ACTVT" FIELD actvt_change.
| F sy-subrc = 0.
SELECT SINGLE * FROM sbook | NTO wa_sbook

WHERE carri d = wa_sbook-carrid
AND connid = wa_sbook-conni d
AND fldate = wa_sbook-fl date
AND booki d = wa_sbook- booki d.

| F sy-subrc <> 0.
MESSAGE i 176(bc400) .
ELSE.
MOVE- CORRESPONDI NG wa_sbook TO sdyn_book.
MOVE wa_scust-name TO sdyn_book- nane.
CALL SCREEN 100.
ENDI F.
ELSE.
MESSAGE s047(bc400) W TH wa_sbook- carri d.
ENDI F.
ENDI F.
CLEAR wa_shook.

Unit: Screen
/ Topic: Field Transportsand Next Screen Processing

Model solution: Program SAPBC400UDS DYNPRO 3

L -
*& Report SAPBC400UDS_DYNPRO 3

*&

<

REPORT sapbc400uds_dynpro_3.
CONSTANTS: actvt _display TYPE activ_auth VALUE ' 03",
actvt _change TYPE activ_auth VALUE ' 02'.

TABLES: sdyn_book.
PARAMETERS: pa_agnum TYPE s_agncynum
DATA: wa_cust TYPE sbc400cust,

it _cust TYPE sbc400 t shc400cust.

DATA: wa_sbook TYPE sbook.
DATA: ok_code LIKE sy-ucomm, save ok LIKE ok_code.

START- CF- SELECTI ON
SELECT id name FROM scustom | NTO TABLE it cust.
SELECT carrid connid fldate bookid customd

VWHERE agencynum = pa_agnum
AUTHORI TY- CHECK OBJECT 'S CARRI D
ID'CARRID FIELD wa_shbook-carrid
ID"ACTVT" FIELD actvt_di spl ay.
IF sy-subrc = 0.
READ TABLE it _cust | NTO wa_cust
W TH TABLE KEY id = wa_sbook-cust oni d.
VWRI TE: / wa_sbook-carrid COLOR COL_KEY,
wa_sbook-conni d COLOR COL_KEY,
wa_sbook-fl date COLOR COL_KEY,
wa_sbook- booki d COLOR COL_KEY,
wa_cust - name COLCOR COL_KEY.
* H de key fields of database table SBOOK and custoner nane
H DE: wa_sbook-carrid, wa_sbook-connid, wa_sbook-fl date,
wa_sbhook- booki d, wa_cust - nane.
ENDI F.
ENDSELECT.
CLEAR wa_sbhook.

AT LI NE- SELECTI ON
IF sy-Isind = 1.
AUTHORI TY- CHECK OBJECT 'S CARRI D
ID'CARRID FIELD wa_shook-carrid
ID " ACTVT" FIELD actvt_change.
| F sy-subrc = 0.
SELECT SI NGLE * FROM sbook | NTO wa_sbook
WHERE carrid = wa_sbook-carrid

AND connid = wa_sbook- conni d
AND fldate = wa_sbook-fldate
AND booki d = wa_sbook- booki d.

| F sy-subrc <> 0.
MESSAGE i 176(bc400) .
ELSE.
MOVE- CORRESPONDI NG wa_sbook TO sdyn_book.
MOVE wa_scust- name TO sdyn_book- nane.
CALL SCREEN 100.
ENDI F.
ELSE.
MESSAGE s047(bc400) W TH wa_sbook- carri d.
ENDI F.
ENDI F.
CLEAR wa_sbook.

*& __ *
*& Mbdul e USER_COMVAND 0100 | NPUT

*& __ *
* dynam cal screen flow dependi ng on user action

* *

MODULE user_command_0100 INPUT.
save_ok = ok_code .

* Clear OK-Code Field in order to have it initialized on next
Screen

CLEAR ok_code .
CASE save_ok.
WHEN ' BACK' .
SET SCREEN O.

VWHEN ' SAVE' .
MOVE- CORRESPONDI NG sdyn_book TO wa_sbook.
* Saving the changed dataset will be inplenented |ater
nmessage i 060(bc400).
SET SCREEN O.
WHEN OTHERS.
SET SCREEN 100.

ENDCASE.
ENDMODULE. " USER_COMVAND_0100 | NPUT

Reuse Components F’
DA

Contents:

Function groups and function modules
Objects and methods

)
°
® Business objects and BAPIs
[

Logical databases

8 SAP AG 1999

The R/3 System offers severad techniques that you can use to make business logic available for reuse.

Function modules: can be called from any ABAP Program. Parameters are also passed to the
interface. Function modules that belong together are combined to form function groups. Program
logic and user dialogs can be encapsulated in function modules.

Objects: You can use the compatible extension "ABAP objects’ to create objects at runtime, with
reference to central classes.

BAPI s are methods of business objects, which are made available using the Business Object
Repository (BOR).

L ogical databasesare data collection programs that can be coupled with executable programs. In a
logical database, the data are transferred using logical hierarchy structures. Logica databases also
make selection screens available and contain authorization checks.

m A function group isan ABAP program with type F, which is a program created exclusively for
containing function modules. Function modules are modular units with interfaces that can be called
from any ABAP Program. Function modules that operate on the same objects are combined to form
function groups.

m Each function group can contain:

 Data objects, which can be seen and changed by al the function modules in the group. These data
objects remain active as long as the function group remains active.

 Subroutines, which can be caled by any of the function modules in the group.
» Screens, which can be called by any of the function modules in the group.

m Function modules are modular units with interfaces. The interface can contain the following
elements:

Import parameters are parameters passed to the function module. In general, these are assigned
standard ABAP Dictionary types. Import parameters can aso be optional.

Export parameters are passed from the function module to the calling program. Export
parameters are always optional and for that reason do not need to be accepted by the calling
program.

Changing Parameters are passed to the function module and can be changed by it. The result is
returned to the calling program after the function module has executed. Changing parameters can
be optional.

Exceptions are used to intercept errors. If an error triggers an exception in a function module, the
function module stops. Y ou can assign exceptions to numbers in the calling program, which sets
the system field SY -SUBRC to that value. This return code can then be handled by the program.

m Each function module can contain local data objects and access globa data objects belonging to its
function group. All the subroutines and screens in the function group can be called by the function

module.

m Theglobal datain the function group remain after the function module has been called. The function
group remains active for as long as the calling program is active. Thus, if afunction module is called
that writes values to the global data, other function modules in the same function group can access

this data when they are called by the program.

m In many programs a standard dialog box appears after the user has chosen Cancel. This dialog box
always contains the sentence: "Data will be lost." The two lines following it are context-specific, as
isthetitle. The user can choose from one of two options- "Yes' or "No."

m Thisdidog box is encapsulated in a function module.

m You could avoid programming this dialog box, if you could find an existing function module with
the following properties:

* Import parameters for the title and the two variable text lines
* An export parameter to record whether the user has chosen "Yes' or "No"

» The ability to call a screen in the function group that displays the two variable text lines and the
title, and contains the "Yes' and "No" buttons.

Scenario: You are creating a program in the Object Navigator and leave the Attributes screen. You
want to know if it is encapsulated in reusable form.

1. First method: In the Debugger, set abreakpoint at CALL SCREEN. If successful, the actua
processing block (subroutine, function module or event block) will be listed under * CALLS' inthe
Debugging mode. Y ou can then examine the call and the parameters passed to the interface.

2. Second method: In the Debugger, set a breakpoint at CALL FUNCTI ON. If successful, the actual
processing block (subroutine, function module or event block) will be listed under ' CALLS' inthe
Debugging mode. Y ou can then examine the call and the parameters passed to the interface.

3. Third method: Click atext field in the standatrd dialog box, then press F1 and choose Technical

info. Navigate to the screen and display awhere-used list for programs, then look at the function
modules that use it.

4. Fourth method: In the Save dialog box, display the F1 help and then Technical info. Navigate to
the screen, examine the flow logic and its modules.

5. Fifth method: In the component hierarchy, mark the component that you are interested in (in this
case, Basis Services), select it, navigate to the Repository Information System, look under
Programming -> Function Builder -> Function modulesand select Only released.

m Once you have found afunction module, you must find out more about its interface.

m Non-optiona parameters in the function module must be passed in the CALL FUNCTI ON

st at ement . To find out how to handle the other parameters, refer to the function module
documentation and the documentation on interface parameters.

m |f the documentation is not specific enough; or is not available in your logon language, you can
analyze the source code for the function module by choosing the Source code tab.

Y ou can test function modules using the test environment. An input template allows you to specify
the | MPORT parameters. The result is transferred to the EXPORT parameters and displayed.

If an error occurs, the system notes which exception was triggered.

The runtime for the function module is displayed in microseconds. These values are subject to the
same conditions as the runtime analysis transaction. Y ou should therefore repeat the test several
times using the same data.

You can store test data in atest data directory.
Y ou can use the Function Builder test function to test function modules with table parameters.

Y ou can create test sequences.

m You cal function modules from ABAP programs using the CALL FUNCTI ON statement. The name
of the function module is displayed in single quotation marks. After EXPORTI NG the system
assigns the parameters that are passed to the function module. After | MPORTI NG, the system
assigns the parameters that are passed from the function module to the program. Most function
modules support additional exceptions. If so, after EXCEPTI ONS, the exceptions are assigned to
valuesthat will be set in the system field sy- subr c, if asystem error occurs. On the left side, the
system displays the names of the interface parameters, while on the right, it displays the program'’s
data objects.

To do this, use a statement pattern in the ABAP Editor (the Pattern button), and enter the name of
the function module.

The system then generates an ABAP statement CALL FUNCTI ON ' <f uncti on nodul e
nane>', including the interface of the function module, and inserts it in the program at the current
cursor position.

Fill in the actual parameters, and write the statements that will handle any exceptions that occur.
Interface parameter values are assigned explicitly by the name of the actual parameter. From the
point of view of the calling program the parameters that are to be passed to the function module are
exported; those passed from the function module to the program are imported. Y ou do not have to
assign an actua parameter to an optional parameter. In this case, you can delete the line containing
the optional parameter.

Note that - during parameter assignment - the function module parameter is aways on the left and
the actual parameter on the right.

I ntegrated softwar e development process

Each phase in the devel opment process (Anaysis, specification, design, and implementation) is
described in the same "language.” Idedlly, this means that changes you make to the design during
implementation can be applied retrospectively to the data model.

Encapsulation (information hiding)
The ability to hide the implementation of an object from other system components. The components

cannot make assumptions about the internal status of the object, and do not depend on using a
particular implementation to communicate with the object.

Polymor phism
In object technology, the fact that objects of different classes react differently to the same message.

Inheritance
Defines the implementation relationship between classes, such that one class (the subclass) shares

the structure and behaviour that have already been defined in one or more superclasses.

m Objects are central to the object-oriented approach and represent concrete or abstract entities in the
real world. They are defined according to their properties, which are depicted using their internal
structure and attributes (data). Object behavior is described using methods and events (functions).

m Each object forms a capsule, which encompasses both its character and behavior. Objects should
enable the modd of a problem areato be reflected as closdly as possible in the design modd for its
solution.

m Asan example, consider the "flight" object.
m The object contains private attributes that pertain to flights:

» Key attributes. The airline, the flight, and the departure date combined provide a unique identifier
for each flight. Each flight number also contains: the airport from which the flight departs; the
time of departure; and the destination airport.

* Booking list: the list of people who have booked seats the flight with their booking numbers.
* Hight information, such as the airplane type and maximum number of seats.

m L oca methods: The object can calculate the number of free seats from the "booking list" and
"maximum number of free seats' private attributes.

m The object contains an interface with two methods:

» "Book" method: If this method is called from outside the object, and provided the necessary data
has been passed to the interface, the method uses the private attributes to determine whether or not
thereis afree seat on the flight. If there is, the new customer is added to the booking list and a
success message is passed to the calling program. Otherwise, the system returns the information
that the booking could not be made because the flight is aready fully booked.

» "Cancel" method: Again, if this method is called from outside the object, and provided the
necessary data has been passed to the interface, the method uses the private attributes to determine
whether or not the customer isincluded in the booking list. If so, his or her booking is cancelled
and a success message returned to the calling program. If the customer is not in the booking list,
the system displays an error message to this effect.

m Generaly, when customers change a booking in a travel agency, they want to be sure that they have
a seat on their new flight before they cancel the first.

m Technicaly, this means that there are two objects of the same type, but with different key attributes.

m In Object-oriented programming, thisisimplemented such that each classis defined as an object
type. Instances of this class are created at runtime - that is, the system creates objects of an object
type (and thus, of the class).

m An ABAP program that changes bookings using objects has the following program flow:

m The program starts and the program context is loaded. Memory areas are made available for al the
program's global data objects. Reference variables are also made available for each object. You can
view asummary of the data objects that are made available when you run the program by expanding
the Fields and Dictionary structures subtrees in the program object list. Y ou can also navigate to the
source text in which the data objects have been defined - for example, using a DATA or TABLES
statement. The reference variables are defined using aDATA: <ref > TYPE REF TO
<cl ass>. statement.

m The objects are generated at runtime, as soon as the CREATE OBJECT statement is processed. In
this statement, a special method called CONSTRUCTOR is called implicitly. Any parameters required
by the constructor must be specified in the CREATE OBJECT statement. In this example, only the
key attributes need to be passed to the statement.

m Assoon asthe CALL METHOD statement is processed, the method is called. Unlike calling a
function, when amethod is called, the object in which the method is to be processed must be stated
explicitly. The system specifies a reference variable pointing to the object. The reference variable
name is followed by a-> and the method name.

In Release 4.6, the most important aspects of the system for object-oriented enhancements of the
ABAP language are:

Office Integration:
The system offers a new object-oriented interface, which will help you to make use of R/3 office
product functions.

BusinessAddIns:

An abject-oriented enhancements technology, which combines the advantages of existing
technologies. If Business Addins are included in standard programs, you can enhance the program
using specia methods, without having to carry out a modification.

Controls:
The R/3 System alows you to create custom controls using ABAP objects. The application server is
the Automation Client, which drives the custom controls (automation server) at the frontend. This

task is performed by the Central Control Framework.
Pilot projects are dready object-oriented.

m Thistask is performed by the Central Control Framework.

m The R/3 System alows you to create Custom Controls using ABAP objects. The application server is
the Automation Client, which drives the custom controls (automation server) at the frontend.

m |f Custom Controls are to be included on the frontend, then the SAPGUI acts as a container for them.
Custom controls can be ActiveX Controls and JavaBeans.

m The system has to use a Remote Function Call (RFC) to transfer methods for creating and using a
control (ABAP OO) to the front end.

In the controal, you can adjust the column width by dragging, or use the 'Optimum width' function to
adjust the column width to the data currently displayed. Y ou can also change the column sequence
by selecting a column and dragging it to a new position.

Standard functions are available in the control toolbar. The details display displays the fields in the
line on which the cursor is positioned in amoda dialog box.

The sort function in the ALV Control is available for as many columns as required. Y ou can set
complex sort criteria and sort columns in either ascending or descending order.

Y ou can use the 'Search’ function to search for a string (generic search without *) within a selected
area by line or column.

Y ou can use the 'Sum' function to request totals for one or more numeric columns. Y ou can use the
‘Subtotal’ function to structure control level lists: select the Y ou can use the 'Subtotal’ function to
structure control level lists: select the columns (non-numeric columns only) that you want to use and
the corresponding control [For 'Print’ and 'Download' the whole list is aways processed, not just the
sections displayed on the screen.

Y ou aso have the option of setting display variants. Saving variants: see 'Advanced Techniques.

m An SAP Container can contain other controls (for example, SAP ALV Grid Control, Tree Control,

SAP Picture Control, SAP Splitter Control, and so on). It administers these controls logically in one
collection and provides a physical areafor the display.

m Every control existsin a container. Since containers are themselves controls, they can be nested
within one another. A container isits control's parent.

m There are object types available in the Class Builder for administering Custom Controls and the ALV
Grid Control. At runtime, the system creates two objects - one of type
CL_GUJ _CUSTOVER _CONTAI NER and one of type CL_GUI _ALV_GRI D. These objects contain
the methods needed to administer the controls. Y ou can find more information on object types
(classes) and their associated methods in the Class Builder.

m You can navigate to the Class Builder by entering the name of a classin the Class input field on the
Object Navigator initial screen and choosing Display. The system displays a tree structure for the
class you have chosen. Double-click the root node to display the Class Builder work area. Choose
the Methods tab and select the method for which you want more information. Choose the Parameters
button, to display more information on the interface parameters.

m The CL_GUI _QUSTOM CONTAI NER contains only the CONSTRUCTOR method. When you
create an object in aprogram using CREATE OBJECT you must pass the non-optional parameter
CONTAI NER_NANME. The name of the container area on the screen must be passed to this parameter.

m CL_GU _ALV_GRI Dcontains many methods. To display an internal table of the ABAP Dictionary
Structure row type, using an ALV Grid Control, you only need to know the details of three methods:

m CONSTRUCTOR: The reference variable pointing to the object (with which the container control
communicates) must be passed to the constructor.

m Thefirst time atable's contents are displayed using an ALV Grid Control, display isimplemented
usingthe SET_TABLE FOR _FI RST_DI SPLAY method. The internal table is passed to the
parameter i t _out t ab. Inthis case, it is not enough smply to pass the non-optional parameter
i t _outtab. Information about the row structure must also be passed to the object. In the case of
numeric fields containing a unit, the relationships between fields must be passed - either explicitly
using afidd ligt, or implicitly, provided the interna table is of the ABAP Dictionary Structure type.
In the latter case, the name of the Dictionary Structure is passed to the | _ STRUCTURE_NANVE
parameter.

m REFRESH TABLE DI SPLAY can be caled if theinterna table has aready been displayed using
the Grid Control, and if the content of the interna table differs from that shown on the screen. Inthis
case, the frontend control aready knows the row type of the internal table and reference fields.

To reserve an area of the screen for an EnjoySAP control, open the Screen Painter and choose the
Layout button.

In the toolbar to the |eft of the editing area, choose the Custom control button. (This works similarly
to the Subscreen button).

* On the editing area of the screen, specify the size and position of the screen area as follows:. Click
the editing area where you want to place the top left corner of the custom control and hold down
the mouse key. Drag the cursor down and right to where you want the bottom right corner. Once
you release the mouse key, the bottom right corner is fixed in position.

* You can change the size and position of the area at any time by dragging and dropping the
handles. Again, this area behaves similarly to a subscreen area.

Enter a new name for the screen element (CONTAI NER _1 in the example above).

Use the Resizing vertical and Resizing horizontal to specify whether or not the area of the custom
control should be resized when the main screen is resized. Y ou can aso set minimum values for
these attrbutes using Min. row and Min. column. Y ou determine the maxium size of the areawhen
you cregte it.

m The program requires two reference variables.

m Thefirst reference variable, cont ai ner _r points to the object that communi cates with the
container control. It is typed with the global classcl _gui _cust om cont ai ner.

m Thesecond, gri d_r pointsto the object that communicates with the ALV Grid control. It is typed
with the globd classcl _gui _al v_gri d.

m The CREATE OBJECT creates an object at runtime. Y ou only need to enter the reference variable,
since it dready has the same object type as the class.

m To generate the object that communicates with the container control, you only need to include the
name of the container area on the screen, provided this occurs in a PBO module of the screen on
which the container area has been defined. If the CREATE OBJECT statement has been
implemented in another ABAP processing block, you must include the number of the container
screen and the program name.

m To generate the object that communicates with the ALV grid control, you must pass the reference
variable that points to the custom container object. This "tells’ the object the container in which it is
to be included.

m Todisplay datain an ALV grid control, you must make them available in an internal table. The
system then calls the method that receives the content and structure of the internd table. The method
iscaledset _table for_first_display. Provided the internal table has the type ABAP
Dictionary Structure, the name of the structureis passed to the i _st r uct ur e_narmne parameter.
The method then gets the information it needs - column names, column types, and column links for
currency fields - directly from the ABAP Dictionary.

m |f only the content of the internal table changes while the program is running, the program must call
ther ef resh_t abl e_di spl ay method before sending the screen with the container area again.

m A BAPI isapoint of entry to the R/3 System - that is, a point at which the R/3 System provides
access to business data and processes.

m Each object in the BOR can have many methods, one or more of which can be implemented as
BAPIs.

m BAPIs can have various functions:
- Creating an object
- Retrieving the attributes of an object
- Changing the attributes of an object

m A BAPI isan interface that can be used for various applications. For example:

- Internet Application Components, which make individual R/3 functions available on the
Internet or an intranet for users with no R/3 experience.

- R/3 component composition, which allows communication between the business objects of
different R/3 components (applications).

- VisuaBasic/JAVA/C++ - externd clients (for example, aternative GUIs) that can access
business data and processes directly.

m An example business object from the training course data model is called FlightBooking. It contains
a booking. Each booking is uniquely identifiable from its key information: Ai rli neCarri er
Connect i onNurrber (flight number), Dat eOf FI i ght, Booki ngNunber . Thefollowing
methods are available for this object:

* Fl i ght Booki ng. Get Det ai | returns detailed information on a booking
* Fl i ght Booki ng. Cr eat eFr onDat a createsabooking
* Fl i ght Booki ng. Cancel

* FlI i ght Booki ng. Get Li st returnsalist containing details of al the bookings for that flight.
Generadly displays fewer details for each booking than Get Det ai | .

m You can display more information on business objects and the BAPIs that belong to them using
BAPI Explorer Information. The screenisin two parts: a hierarchy area and a details window. The
hierarchy area displays the component hierarchy. Y ou can expand an application component to find
out which business objects belong to it. If you expand a single business object, the system displays a
sub-tree, showing you which key attributes and APl methods belong to it. (APl stands for
Application Programming Interface).

m Symbols are used to indicate business objects, key attributes, and BAPIs. Y ou can display the key to
these symbols using the Display Legend button.

m If you expand a sub-tree for a business object in the BAPI Explorer, the system displays the
following:

» Key attributes, which provide a unique identifier for each business object

* |ngtance-specific methods, which are methods that are bound to the instance identified by the key
attributes. The business object type FlightBooking has one instance-specific method, Get Det ai |
(which returns a structure with booking details). Key attribute values must be passed to this
method.

* Non-instance specific methods, which can be called by all instances of an object type.
FlightBooking has one such method, Get Li st (which returnsalist of al bookings, for which a
business object aready exists at runtime).

m If you expand a substructure for a method, the system returns the names of its import and export
parameters. Y ou can obtain more detailed information on the typing of interface parameters by
choosing the Tools tab, then choosing the ABAP Dictionary. BAPI interface parameters are always
typed using ABAP Dictionary types.

m BAPIsusualy have an export parameter called RETURN. This can be a structure or internal table.
The Return Parameter contains information on errors that occurred while the BAPI was being
processed. There are no exceptions for BAPIs.

m To display complete information on a business object type, use the Business Object Builder tool. The
system displays a tree structure for the business object type, including non-API methods.

m To search for abusiness object, use the Business Object Repository (BOR) tool. This tool displays
the component hierarchy with al the business objects that belong to it. Y ou can navigate from this
tree structure to the Business Object Builder. The system displays the relevant business object
automatically.

m BAPIswith standardized names contain standard methods. Three of the most important are listed
here.

m In Release 4.6 BAPIs have been implemented using function modules. Y ou can display the function
module for the BAPI you have chosen using the BAPI Explorer.

» Sdlect the BAPI in the hierarchy area.

* In the detailed information display window, choose the Tools tab.

* Choose Function Builder: The system displays the name of the function module.
* Choose Display

m If you would liketo use aBAPI in an R/3 System, you can directly cal the function module
containing it. Note that information about any errors that occur are passed to the program using the
interface parameter RETURN. BAPI function modules do not contain either exceptions or user

dialogs. They exist only to encapsulate business logic .

m Every BAPI contains an interface parameter, RETURN, which contains information about errors that
occur. This parameter is aways of an ABAP Dictionary type. This means that you must include a
structure of an identical type in your program.

m Uselogica databasesto read logically consistent data from databases. Each logical database has a
structure containing a hierarchy of those tables and views that are to be read.

m Y ou can attach exactly one logical database to each type 1 program. The logical database then
supplies your program with entries from tables and views. This means that you only need to program
the data processing statements.

m Every logica database is an encapsulated data collection program for frequent database access.
m The database access has been optimized using Open SQL.

m |f you are working with alogical database, you do not need to program a selection screen for user
entry, since thisis created automatically.

m The system performs authorization checks according to the SAP authorization concept.

m The NOCDES <node> statement performs two functions:

m |t defines a data object (a structure) as atable work areathat has the same structure as the
ABAP Dictionary Structure <node>, that is a node of the hierarchical structure of the logical
database. This structure is then filled at runtime with data records that the logical database has
read from the database and made available to the program.

m |t determines how detailed the selection screen is: The selection screen that has been defined
in the logical database should contain only those key information input fields that the program
needs. The NCDES statement allows you to ensure only information from relevant tablesis
available to the selection screen.

m Logica databases read according to their structure from top to bottom. The depth of data read
depends on a program’'s GET statements. The level is determined by the deepest GET statement (from
the logical database's structural view).

m You caninclude alogicd database in every type 1 program using the program attributes.

m Each nodein the logical database's hierarchy also provides you with a GET event block (in addition
to the other event blocks). (GET SPFLI , GET SFLI GHT, GET SBOXX in the example above).

m You can program individual record processing within these GET event blocks.
m At runtime the event blocks that create lists are processed, in the following order:
m START- OF SELECTI ON

m CET SPFLI and GET SFLI GHT are caled several timesin nested SELECT logic according
to the structure of the logical database.

m END- OF- SELECTI ONiscaled after dl GET events, and immediately before the list is sent to
the presentation server.

m At runtime the event blocks that create lists are processed in the following order:

START- CGF- SELECTI ON

GET spfl i : thefirst datarecord from database table SPFLI that corresponds to the selection
criteriais placed in work areaspf | i and the event block is processed.

GET sf | i ght : thefirst datarecord from SFLI GHT that corresponds to the selection criteriaas
well asto the key of the current SPFLI record is placed in work area sf | i ght and the event
block is processed.

GET sfl i ght : the next data record from database table SFLI GHT is placed in work area
sfli ght and the event block is processed again.

GET sfl ight: iscalled again until no further corresponding data records are found.

GET spfl i LATE iscalled before the next data record from SPFLI isplaced in work area
spfli.

GET spfli: Thelogicd database places the next corresponding data record from SPFLI in
work areaspfli .

END-OF-SELECTI ON: is cdled immediately before the list is sent.

m Logical databases are included in type 1 programs as program attributes. Only one logical database
can be attached per program.

m You cantell alogica database exactly which fields you need from the database using the GET
addition FI ELDS. If the logical database supports this action, then it will read only those fields
specified from the database.

m If you need database table data for alist that is not supplied by your logical database, you can
program any additional database access needed using SELECT.

Unit: Reuse Components
Topic: Function Modules

*e e

At the conclusion of these exercises, you will be able to:
Search for a function module

Insert a function module call in a program

Extend your program ZBC400_## SELECT_SFLI GHT or the
corresponding model solution as follows:
If the Cancel function is chosen on the screen, the system should process

V) / a standard dialog box that is encapsulated in a function module.

P - Program: ZBCA00_## DYNPRO
|I| m || m Il m || M odel solution: SAPBC400UDS_DYNPRO_5
1-1 your program, ZBC400_## DYNPRO, or copy the relevant model solution

1-2

1-3

1-4
1-5

SAPBC400UDS_DYNPRO 4 and give it the name ZBC400_## DYNPRO 5.

Assign your program to the development class ZBC400_## and to the transport
request for this project, BC400... (replacing ## with your group number).

Using the method outlined during the course, search for the function module that

encapsulates the standard dialog, which is usually triggered when the user chooses
Cancel.

Find out about the function module interfaces, read the documentation, and test the
function module using the test environment.

In the GUI status of the screen, activate the ‘Canced’ function.

Extend the USER_COVIVAND 0100 module to evaluate the function code for the
Cancel function. Then insert the function module call using the “pattern” function
of the ABAP Editor. Make the system react as follows to the user’s inpuit:

If the user would like to cancel, set the next screen dynamically to O.

If the user does not want to cancel, set the next screen dynamically to 100.

\ Unit: Reuse Components

Topic: ABAP Objectsand the ALV Grid Control

At the conclusion of these exercises, you will be able to:

: Output asimple list using an ALV grid control
@
Write a programthat outputs the contents of the database table SPFLI
using an ALV grid control.
/ > /
P - Program: ZBCAOO_## ALV _CGRID
|I| m || m Il m || Model solution: SAPBC400RUS_ALV_GRID

2-1 Copy the program, SAPBCA00RUT_ALV_GRI D giving it the name
ZBCA00_##_ ALV_GRI D. Assign your program to development class
ZBCA00_## and the change request for your project “BC400...” (replacing ##
with your group number). The template program contains the definition of an
internal table with the same line type as the database table SPFLI and a user
dialog (screen 100).

2-2 Become familiar with the program.

2-3 Fill theinterna table with data records from the data table SPFLI using the Array-
Fetch

2-4 Navigate to the Class Builder and find out the following:
2-4-1 For theclass. CL_GUI _ CUSTOM_CONTAI NER, which parameters of
the method CONSTRUCTOR are mandatory?
2-4-2 For theclass. CL_GUI _ALV_GRI D, which parameters of the method
CONSTRUCTOR are mandatory?

2-5 Create a container control area on the screen. Make sure you give the area a name.

2-7 Definetwo reference variables, one for the CL_GUI _ CUSTOM_CONTAI NER class

and onefor the CL_GUI _ALV_GRI Dclass.

2-9

2-10

Pass the reference variable for the custom container to the mandatory parameter.
Use aquery to ensure that the object is only generated when PROCESS BEFORE
OUTPUT runs for the first time.

When PROCESS BEFORE OUTPUT runs for the first time, call the method
SET_TABLE_FOR _FI RST_DI SPLAY; pass the name of the line type of the
internal table to the parameter | _ STRUCTURE_NAME; pass the internal table to the
parameter | T_OUTTAB

If PBO runs more than once, the method REFRESH TABLE_DI SPLAY should be
caled. Pass ‘X’ to the parameter | _ SOFT_REFRESH

Unit: Reuse Components
/ Topic: Function Modules

1-2 The function module is caled ‘POPUP_TO CONFI RM LOSS OF DATA'.

1-3 Thefollowing interface parameters exist:
Mandatory import parameters:
TEXTLI NE1 (max 70 char.) : first line of the dialog window
TI TEL (max 35 char.): title of the dialog window
Optional import parameters:
TEXTLI NE2 (max 70 char.): first line of the dialog window
START_COLUWN (Typ SY- CUCOL) :First column of the dialog window

START _ROW (Typ SY- CUCQL): First line of the dialog box
Export parameters:
ANSVEER (Type C) :user’s input

“Y” = user has confirmed the processing step
“N” = user has canceled the processing step

1-4 The function code for the Cancel function is RW

1-5
*& __ *
*& Modul e USER_COMVAND_0100 | NPUT
7\'& __ *

MODULE user _command_0100 | NPUT.
save_ok = ok_code.
CLEAR ok_code.
CASE save_ok.
WHEN ' BACK' .
SET SCREEN 0.
WHEN ' RW .

CALL FUNCTI ON ' POPUP_TO_CONFI RM_LOSS_OF_DATA

EXPORTI NG
textlinel = text-001
title = text-002
I MPORTI NG
answer = answer.

case answer.
when 'N .

when ' J'.
| eave to screen O.
endcase.
WHEN ' SAVE' .
MESSAGE i 060(bc400) .
SET SCREEN 0.
WHEN OTHERS.
SET SCREEN 100.
ENDCASE.
ENDMODULE. " USER_COVMAND_0100 | NPUT

Unit: Reuse Components
Topic: ABAP Objectsand the ALV Grid Control

. Program: 7BCA00_## ALV _GRI D
TTTTTT
2.3 START- OF- SELECTI ON.

2-5

2-6

* fill internal table
SELECT * FROM spfl i
| NTO TABLE gdt _spfli.
* VHERE . ..
CALL SCREEN 100.

2-4-1 The following parameter of the method CONSTRUCTOR (for the class:
CL_GUI _CUSTOM_CONTAI NER) is mandatory.

CONTAI NER_NAME: the name of the control container on the screen

2-4-2 The following parameter of the CONSTRUCT OR method (for the
CL_GUI _CUSTOM _CONTAI NER class) is mandatory:

| _PARENT: parent-container: The name of the reference
variable that points to the object for the CL_GUI _ CUSTOM_CONTAI NER
class must be passed to this parameter.

Create a container control area on the screen. Call the container area
CONTAI NER 1

Enter thefollowing in the data declar ations section:

DATA:
container_r TYPE REF TO CL_GUI _CUSTOM CONTAI NER,

grid_r TYPE REF TO CL_GU _ALV_GRID.

2-710 2-9:

Flow logic:
PROCESS BEFORE OUTPUT.
MODULE STATUS_0100.

nmodul e create_control .

*

PROCESS AFTER | NPUT.
modul e copy_ok_code.
MODULE USER_COMVAND 0100.

PBO modulein the program:

*& Modul e CREATE_CONTROL OUTPUT

MODULE create_control OUTPUT.
I'F container_r IS INTIAL.
CREATE OBJECT cont ai ner _r
EXPORTI NG cont ai ner _nanme = ' CONTAI NER 1'.

CREATE OBJECT grid_r
EXPORTING i _parent = container_r.

CALL METHOD grid r->set _table for_first_display
EXPORTI NG i _structure_nane " SPFLI"
CHANGI NG it_outtab gdt _spfli.

ELSE.
CALL METHOD grid_r->refresh_tabl e_display
EXPORTING i _soft_refresh = ' X .
ENDI F.
ENDMODULE. " CREATE_CONTROL OUTPUT

