

 TABC41 ABAP Development Workbench
Basics 2/2
 TABC41 2/2

R/3 System

Release 46B

17.06.2000

TABC41 ABAP Development Workbench Basics 2/2..0-1

Copyright...0-2

Section Overview..0-4

Section: Managing ABAP Development Projects..1-1

Content: Managing ABAP Development Projects ..1-2

ABAP DevelopmentProjects and ASAP..2-1

ABAP Development Projects and ..2-2

as a Component of...2-3

Includes.... ...2-4

ABAP Development Projects in ASAP...2-5

Tools and ASAP..2-6

Summary ...2-7

Project Team...3-1

Project Team...3-2

Position on the ASAP Roadmap ...3-3

Roles in Customer Development Projects (1) ..3-4

Roles in Customer Development Projects (2) ..3-5

Roles in Customer Development Projects (3) ..3-6

Roles in Customer Development Projects (4) ..3-7

Roles in Customer Development Projects (5) ..3-8

Software Logistics..4-1

Software Logistics...4-2

Position on the ASAP Roadmap ...4-3

Planning the System Landscape for Development ..4-4

Setting up the System Landscape...4-5

Maintaining the System Landscape..4-6

Change & Transport Organizer...4-7

Differences between WBO and CO ...4-8

Central and National Development ..4-9

Workbench Organizer and the Transport System..4-10

Change Levels ..5-1

Change Levels ..5-2

Change Levels ..5-3

Business Engineer ...5-4

Personalization...5-5

ABAP Workbench...5-6

-...5-8

ABAP Workbench Change Levels ...5-9

Classifying and Implementing Development Projects ..5-10

Modifying vs. Copying...5-11

The Amount of Work at Upgrade Increases... ..5-13

Modification: Critical Repository Object Types..5-14

Summary ...5-15

Standardization ...6-1

Standardization ..6-2

Position on the ASAP Roadmap ...6-3

Standardization Areas ...6-4

Naming Conventions for Repository Objects...6-5

Application Hierarchy and Development Classes ...6-6

Interface Style Guide ..6-7

Documentation...6-8

Inline Documentation ...6-9

Critical Factors for Successful Modification (1)..6-10

Critical Factors for Successful Modification (2)..6-11

Inline Modification Documentation...6-12

Modification Logbook..6-13

Summary ...6-14

Section: ABAP Dictionary ...7-1

Content: ABAP Dictionary ..7-2

Introduction...8-1

Function of the ABAP Dictionary ..8-2

Database Objects in the ABAP Dictionary ...8-3

Type Definitions in the ABAP Dictionary ..8-4

Services of the ABAP Dictionary ...8-5

Linking to the Development and Runtime Environment..8-6

Unit Summary ..8-7

Tables in the ABAP Dictionary ...9-1

Tables and Fields...9-2

Basic Objects of the ABAP Dictionary ...9-3

Two-Level Domain Concept: Example ...9-4

Transparent Tables and Structures ...9-5

Include Structures..9-6

Technical Settings ...9-7

Data Class...9-8

Size Category ...9-9

Logging ...9-10

Unit Summary ..9-11

Exercise Data..9-12

Exercises: Tables in the ABAP Dictionary ...9-13

Solutions: Tables in the ABAP Dictionary ...9-16

Performance during Table Access...10-1

Structure of an Index...10-2

Access with Indexes..10-3

Data Access using the Buffer ..10-4

Table Buffering..10-5

Full Buffering...10-6

Generic Buffering..10-7

Single -Record Buffering ..10-8

Buffer Synchronization 1...10-9

Buffer Synchronization 2...10-10

Buffer Synchronization 3...10-11

Buffer Synchronization 4...10-12

Buffer Synchronization 5...10-13

Buffer Synchronization 6...10-14

Unit Summary ..10-15

Exercises: Performance during Table Access...10-16

Solutions: Performance during Table Access...10-18

Consistency through Input Checks..11-1

Fixed Values...11-2

Value Table ..11-3

Inserting a Data Record ..11-4

Violation of the Foreign Key Check ..11-5

Foreign Key Fields / Check Fields...11-6

Data Consistency through Foreign Keys...11-7

Foreign Key Definitions in the Check Field ...11-8

Check Table not Equal to Value Table ..11-9

Semantic Attributes...11-10

Text Table ...11-11

Summary ...11-12

Exercises: Consistency through Input Checks..11-13

Solutions: Consistency through Input Checks..11-15

Dependencies of ABAP Dictionary Objects ...12-1

Active and Inactive Versions ...12-2

Runtime Objects ..12-3

Handling of Dependent Objects..12-4

Where-Used Lists ..12-5

The Repository Information System ABAP Dictionary ...12-6

Unit Summary ..12-7

Exercises: Dependencies of ABAP Dictionary Objects ...12-8

Solutions: Dependencies of ABAP Dictionary Objects..12-10

Changes to Database Tables...13-1

Changes to Tables ...13-2

How is the Structure Adjusted?...13-3

Conversion Process 1..13-4

Conversion Process 2..13-5

Conversion Process 3..13-6

Conversion Process 4..13-7

Conversion Process 5..13-8

Possible Problems during Conversions..13-9

Resuming Terminated Conversions...13-10

Append Structures 1..13-11

Append Structures 2..13-12

Append Structures 3..13-13

Summary ...13-14

Exercises: Changes to Databas e Tables...13-15

Solutions: Changes to Database Tables...13-17

Views..14-1

Why do you Need Views?...14-2

Structure of a View - Starting Situation ..14-3

Structure of a View - Join Condition ...14-4

Structure of a View - Field Selection (Projection)...14-5

Structure of a View - Selection Condition ..14-6

How are Tables Linked to Views?...14-7

Structure of the View..14-8

Data Selection with Views ...14-9

Database Views..14-10

Includes in Database Views ...14-11

Maintenance Views ...14-12

Inner and Outer Joins..14-13

Unit Summary ..14-14

Exercises: Views..14-15

Solutions: Views ..14-18

Search Helps ...15-1

R/3 Standard Function: Input Help...15-2

Requirements of the Input Help ..15-3

ABAP Dictionary Object Search Help ..15-4

Selection Method of a Search Help ..15-5

Description of the Dialog Behavior..15-6

Interface of a Search Help ..15-7

How do you Use Search Helps?..15-8

Search Help Attachment in the ABAP Dictionary ..15-9

Overview: Mechanisms for the Input Help ...15-10

Performance of the Input Help ..15-11

Alternative Search Paths ..15-12

Collective Search Helps and Elementary Search Helps..15-13

Append Search Helps..15-14

Unit Summary ..15-15

Exercises: Search Helps ...15-16

Solutions: Search Helps..15-20

Section: ABAP Programming Techniques ..16-1

Content: ABAP Programming Techniques...16-2

The ABAP Runtime Environment ..17-1

Components of an ABAP Program..17-2

Structure of a Program..17-3

Program Organization...17-4

The Three-Tier Client/Server Architecture of the R/3 System..17-5

Structure of a Work Process ..17-6

General ABAP Program Execution..17-7

Dialog Transaction Execution...17-8

Report Transaction Execution...17-9

List Processing Events..17-10

Non-Executable Programs ...17-11

The ABAP Runtime EnvironmentUnit Summary ...17-12

ABAP Runtime Environment: Exercises ..17-13

ABAP Runtime Environment: Solutions...17-15

Data Types and Data Objects...18-1

Data Types and Data Objects ..18-2

ABAP Data Types: Overview...18-3

Constructing Data Types ..18-4

Predefined ABAP Dictionary Types..18-5

Data Elements and Structures in the ABAP Dictionary ...18-6

Attributes of Internal Table (Types)...18-7

Access Types: Overview..18-8

Table Types in the ABAP Dictionary ..18-9

Predefined ABAP Types ..18-10

Defining Elementary Types in a Program...18-11

Defining Structured Types in a Program...18-12

Defining Table Types in a Program...18-13

Declaring Fields and Structures..18-14

Declaring Internal Tables ...18-15

Input Fields on Selection Screens and Selection Tables...18-16

Constants and Literals ...18-17

Text Symbols ..18-18

Passing Data To and From Screens..18-19

Passing Data To and From Logical Database Programs ...18-20

Predefined Data Objects...18-21

Field Symbols ...18-22

References and Field Symbols ..18-23

Example of Dynamic Type Casting ...18-24

Declaring Data Objects Dynamically: Example ..18-25

Attributes of Data Objects..18-26

Data Types and Data Objects:Unit Summary ...18-27

Data Types and Data Objects: Exercises...18-28

Data Types and Data Objects: Solutions...18-32

Statements ...19-1

Initializing Data Objects...19-2

Assigning Values...19-3

Compatibility and Conversion ..19-4

Conversion Rules for Elementary Types...19-5

Conversion Rules for Structured Types...19-6

Overview: String Processing...19-7

Searching in a String...19-8

Changing Strings ...19-9

Splitting and Joining Strings..19-10

Accessing Parts of Fields ...19-11

Calculations: Syntax..19-12

Calculations: Integers and Packed Numbers ...19-13

Calculations: Floating Point Numbers and Runtime Errors..19-14

Calculations: Date Fields ...19-15

Logical Expressions..19-16

Comparing Strings...19-17

Conditional Branching..19-18

Loops...19-19

Overview: Leaving Processing Blocks ..19-20

Catching Runtime Errors..19-21

Example: Catching Runtime Errors ...19-22

Example: Solution - Part 1 ...19-23

Examp le: Solution - Part 2 ...19-24

Example: Solution - Part 3 ...19-25

Example: Solution - Part 4 ...19-26

Statements: Unit Summary ..19-27

Internal Table Operations...20-1

Accessing Data Records...20-2

Appending, Inserting, and Reading With Index Tables..20-3

Changing, Deleting and Looping in Index Tables ...20-4

Hashed Tables..20-5

Inserting and Reading Using Key Access...20-6

Changing, Deleting, and Loop Processing With Key Access..20-7

Example: Declaring Standard Tables...20-8

Example: Standard Table Operations...20-9

Example: Sorted Table ...20-10

Example: Declaring Hashed Tables ...20-11

Example: Hashed Table Operations...20-12

Internal Table With Header Line ..20-13

Internal Table with Cumulative Values ...20-14

Access Using Field Symbols ...20-15

Example I - Declaring Nested Tables ..20-16

Example II - Loop Access Using Field Symbols ...20-17

Example III - Loop Access Using Field Symbols ..20-18

Internal Table Operations: Summary ...20-19

Internal Tables: Unit Summary ...20-20

Internal Table Operations: Exercises ...20-21

Internal Table Operations: Solutions..20-24

Subroutines..21-1

Structure of a Subroutine..21-2

Ways of Passing Data...21-3

Typing Interface Parameters..21-4

Calling a Subroutine..21-5

Visibility of Global and Local Data Objects...21-6

Runtime Behavior I ...21-7

Runtime Behavior II..21-8

Runtime Behavior III ..21-9

Runtime Behavior IV..21-10

Runtime Behavior V...21-11

Runtime Behavior VI..21-12

Runtime Behavior VII ..21-13

Example: Local Modularization in Programs ...21-14

Example: Recursive Call I ...21-15

Example: Recursive Calls II ...21-16

Example: Recursive Calls III...21-17

Subroutines: Unit Summary ..21-18

Subroutines: Exercises..21-19

Subroutines: Solutions..21-21

Function Groups and Function Modules ..22-1

Function Modules vs Subroutines ..22-2

Attributes...22-3

Interface...22-4

Processing Logic..22-5

Exceptions...22-6

Documenting, Activating, and Testing..22-7

Calling a Function Module ..22-8

Function Groups..22-9

Applied Example ...22-10

Applied Example: Implementing the Functions I ..22-11

Applied Example: Implementing the Functions II...22-12

Applied Example: Implementing the Functions III ..22-13

Organization of a Function Group..22-14

Function Groups and Function Modules: Unit Summary...22-15

Function Groups and Function Modules: Exercises..22-16

Function Groups and Function Modules: Solutions..22-20

Calling Programs and Passing Data..23-1

Synchronous Program Calls ..23-2

Logical Memory Model..23-3

Inserting a Program I ...23-4

Inserting a Program II ...23-5

Terminating the Inserted Program..23-6

Starting a New Executable (Type 1) Program I ...23-7

Starting a New Executable (Type 1) Program II..23-8

Starting A Transaction I ...23-9

Starting A Transaction II ..23-10

Calling Function Modules I ...23-11

Calling Function Modules II..23-12

Starting an Executable (Type 1) Program...23-13

Calling a Transaction..23-14

Passing Data Between Programs: Overview...23-15

Passing Data Using the Program Interface..23-16

Passing Values for Input Fields...23-17

ABAP Memory and SAP Memory ...23-18

Passing Data Using the ABAP Memory..23-19

Passing Parameters using SAP Memory ...23-20

Preview: Passing Data Using an Internal Table ...23-21

Fields in the Global Type BDCDATA ..23-22

Example: Passing Data Using an Internal Table ..23-23

Calling Programs and Passing Data: Unit Summary ...23-24

Calling Programs and Passing Data: Exercises..23-25

Calling Programs and Passing Data: Solutions..23-26

 SAP AG 1999

TABC41 ABAP Development Workbench Basics 2/2

TABC41 2/2TABC41 2/2
ABAP Development
Workbench Basics

Part 2 of 2

ABAP Development
Workbench Basics

Part 2 of 2
 SAP AG

n R/3 System

n Release 4.6B

n May 2000

n Material number 50039583

 SAP AG 1999

Copyright 2000 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may
be copied or reproduced in any form or by any means,
or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

Copyright

n Trademarks:

n Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®,
Multimedia Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ®
are registered trademarks of Microsoft Corporation.

n Lotus ScreenCam ® is a registered trademark of Lotus Development Corporation.

n Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.

n ARIS Toolset ® is a registered Trademark of IDS Prof. Scheer GmbH, Saarbrücken

n Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.

n TouchSend Index ® is a registered trademark of TouchSend Corporation.

n Visio ® is a registered trademark of Visio Corporation.

n IBM ®, OS/2 ®, DB2/6000 ® and AIX ® are a registered trademark of IBM Corporation.

n Indeo ® is a registered trademark of Intel Corporation.

n Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.

n OSF/Motif ® is a registered trademark of Open Software Foundation.

n ORACLE ® is a registered trademark of ORACLE Corporation, California, USA.

n INFORMIX ®-OnLine for SAP is a registered trademark of Informix Software Incorporated.

n UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.

n ADABAS ® is a registered trademark of Software AG

n The following are trademarks or registered trademarks of SAP AG; ABAP/4, InterSAP, RIVA, R/2,

R/3, R/3 Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript,
SAPtime, SAPtronic, SAP-EDI, SAP EarlyWatch, SAP ArchiveLink, SAP Business Workflow, and
ALE/WEB. The SAP logo and all other SAP products, services, logos, or brand names included
herein are also trademarks or registered trademarks of SAP AG.

n Other products, services, logos, or brand names included herein are trademarks or registered
trademarks of their respective owners.

 SAP AG 1999

Section Overview

Section Basis Technology Overview

Section ABAP Workbench Concepts and Tools

Section Managing ABAP Development Projects
Section ABAP Dictionary

Section ABAP Programming Techniques

Section Techniques for List Creation and SAP Query

Section Transaction Programming
Section Programming Database Updates

Section Enhancements and Modifications

Section Data Transfer

 SAP AG 1999

Section: Managing ABAP Development Projects

 SAP AG 1999

Unit ABAP Development Projects with ASAP

Unit Project Team

Unit Software Logistics

Unit Change Levels

Unit Project Standards

Content: Managing ABAP Development Projects

 SAP AG

R

ABAP Development
Projects and ASAP

R/3 Basis
Implementation

4.0

R/3 Basis
Implementation

4.0

 SAP AG

R

ABAP Development Projects and

Contents:

l ASAP

l Planning the Various Tasks in ABAP Development Projects

Objectives:

At the conclusion of this unit, you will be able to:

l Describe which individual tasks the ASAP Roadmap provides
for ABAP development projects

 SAP AG

R

Products:
Business Framework

! The R/3 Product Family
! Complementary Software Products (CSP)
! Technology Partner Products
! Industry Solutions

People:
Competent Solutions
!SAP
!Consulting Partners
!Complementary

 Software Partners
!Technology and

 Hardware Partners

 as a Component of

Pe
op

le
Processes

Products

Processes:
AcceleratedSAP

!ASAP Roadmap
!Quality Assurance
!R/3 Business Engineer
!Support, Consulting &

 Education Services

TeamSAP is the coordinated network of people, processes & products from SAP & partners that
delivers fast, integrated and assured solutions over time.

There are three key components: People, Processes, and Products.

The people component represents SAP and its partners. Any R/3 implementation team is usually
composed of multiple organizations which bring different skills to the table. Our objective with
TeamSAP is to ensure that the right vendor skills are coordinated, at the right time, with appropriate
quantities and management.

The product, SAP’s Business Framework, is a vital piece of TeamSAP because it’s the platform on
which SAP and non-SAP applications work together. It also provides the flexibility to change over
time and includes R/3 business components, integration technologies, and open interfaces that allow
R/3 and complementary partner software to operate together. Third party software and hardware
products are certified by SAP within this infrastructure. Certification programs for TeamSAP
partners that are part of the Business Framework include Joint Development Partners, Certified
Interface Partners, and Technology Partners.

The processes represent SAP an its partners working together to synthesize the knowledge gained in
over 11,000 completed R/3 installations. Three key areas that reflect this experience: the ASAP
Roadmap and accelerators, Business Engineer, and Services, Support and Training.

 SAP AG

R

 Includes....

l The ASAP Roadmap

n a step-by-step Implementation Guide complete with
recommendations

l Tools

n the ASAP Implementation Assistant as a navigation
tool for the Roadmap, questionnaires, project forms,
check lists

n R/3 Business Engineer tools for creating a business
blueprint and for use in configuration

l Service & Support

n all services including consulting, training, hotline,
EarlyWatch, Going Live Check, OSS

l Training

n information database, training strategies for project
teams and users

AcceleratedSAP (ASAP) is SAP’s total process-oriented solution for accelerated implementation and
continuous optimization of R/3. ASAP was developed and enhanced with the knowledge of a team
of international consultants. It consists of the ASAP Roadmap, tools, service & support and training.

The ASAP Roadmap is an implementation plan that includes detailed descriptions of why, when, how,
and by whom certain jobs should be completed. The ASAP Implementation Assistant is the ASAP
Roadmap browser. The ASAP Roadmap contains technical information and numerous accelerators
(questionnaires, project forms, and check lists), with which you can start your implementation
project.

The Business Engineer makes up the backbone of ASAP within the R/3 system.

Additional ASAP tools include the Project Estimator, with which project costs and time can be
analyzed in cooperation with your consultant, and the Q&A database for creating a business
blueprint.

 SAP AG

R

ABAP Development Projects in ASAP

• Project team

•System landscape

•Standards

•Process de
sign

•Technical de
sign

•Development
•Testing
•Documentation

•Training

•Integration
 testing
•Mass testing

•Data transfer

• Monitoring

•Tuning
•Change
 management

•Upgrade

 management

ASAP Phase General Concerns ABAP Development Project

Project project organization and standards ABAP development project team
Preparation level 1 training of the project team standardization of program
 system landscape planning documentation, naming conventions

Business compilation of desired business processes interface topology
Blueprint level 2 training process and technical design
 development system installation
 management review of the business blueprint

Realization baseline customizing (100% of the substructure, programming, developer testing,
 80% of the daily business processes) transports, functional testing,
 final configuration documentation, training

Final Go Live planning, stress testing, integration testing, stress testing,
Preparation documentation, training, customer help desk, data transfer
 data transfer, cutover

Go Live & measurement of product’s business fit monitoring, tuning, re-engineering,
Support with customer requirements and business goals change management

 SAP AG

R

Tools and ASAP

5
3

4

• Process design
• Technical design
• Data model
• Screens,
 Interfaces

•• Templates
• Data Modeler
• Screen Painter
• Menu Painter

2

• ABAP Dict.
• ABAP Editor
• Function
 Builder
• ...

• Test Work-
 bench/CATT
• Tuning Tools
• LSM
 Workbench

 Business Blueprint Realization Business Blueprint Realization Final Final PreparationPreparation Go Go Live Live

• Repository
 objects
• Workbench
 requests
• Manual
• User
 Documentation
• Training
 material

• Workload

• Test docu.
• Live dates

• Production
 system

ABAP Workbench Tools are implemented in the following project phases:

Phase 1: Project Preparation
no ABAP Workbench tools

Phase 2: Business Blueprint
process design template, technical design template, Data Modeler, Screen Painter (Early Prototype
Screens), Menu Painter

Phase 3: Realization
all ABAP Workbench tools

Phase 4: Final Preparation
Test Workbench, tuning tools, LSM Workbench (Legacy System Migration)

Phase 5: Go Live and Support
 tuning tools (in particular workload analysis)

Large reengineering projects are initiated at either phase 1 or phase 2.

 SAP AG

R

Summary

l ASAP supplies an integrated foundation for
planning and realization of Customizing and ABAP
development projects.

l The five phases on the ASAP Roadmap are:

n Project preparation

n Business blueprint

n Realization

n Final preparation

n Go live and support

 SAP AG

R

Project Team

R/3 Basis
Implementation

4.0

R/3 Basis
Implementation

4.0

 SAP AG 1999

Project Team

Contents:

l Roles in customer development projects

Objectives:

At the conclusion of this unit, you will be able to,

l list the roles in customer development projects

 SAP AG

R

Position on the ASAP Roadmap

• Project team

•System landscape

•Standards

•Process de
sign

•Technical de
sign

•Development

•Testing
•Documentation

•Training

•Integrati
on

 testing
•Mass testin

g

•Data trensf
er

•Monitoring

•Tuning
•Change
 management

•Upgrade

 management

 SAP AG

R

Roles in Customer Development Projects (1)

TechnicalTechnical Support Support
Quality AssuranceQuality Assurance

DevelopmentDevelopment
Project CoordinationProject Coordination

ProjectProject Management Management

Steering CommitteeSteering Committee

Depending on the scope and complexity of your project the roles described below could fall to one and
the same person.

The steering committee consists of those people from the board of directors initiating and sponsoring
the project and the committee has ultimate authority over which direction the project takes.

Project management is responsible for the R/3 implementation project as a whole. Project
management plans the project (budgets, deadlines, personnel, functions), resolves conflicts and
delivers status reports to the steering committee.

Project coordination is responsible for standardization and marketing the project within the company.
In addition, the responsibility for project logistics belongs to the project coordinators.

Development creates process and technical designs for the project in cooperation with the other areas
and is responsible for actual implementation.

Planning, carrying out and reviewing testing all falls into the area of quality assurance.

Technical support is responsible for clearing away all technical obstacles to implementation (server
downtime, transport problems, database problems, etc.).

 SAP AG

R

Roles in Customer Development Projects (2)

l Process manager

l Marketing representative

l Standards coordinator

Project CoordinationProject Coordination

Process managers come from the department affected and are responsible for logistics within a
subproject. They support development by creating process designs, drawing up integration plans
together with quality assurance, and are responsible for CATT (Computer Aided Test Tool) test case
input.

Marketing representatives coordinate all internal (company) activities in the areas of project
marketing, training, and consulting. They are responsible for rollout of the subproject and report to
project management (status reports).

Standards coordinators deal with more than one subproject and are responsible for establishing
standards for project documentation and communication company wide. They are also responsible
for customizing and development activities documentation (templates for process and technical
design, naming conventions, programming guides, graphical user interface style guides).

 SAP AG

R

DevelopmentDevelopment

Roles in Customer Development Projects (3)

l Development manager

l Concept developer

l Data modeler and Dictionary developer

l ABAP developer

l Interface developer

l SAPscript developer

l Information developer

l ABAP Workbench consultant

Development managers coordinate development activities within a subproject. His or her
responsibilities include creating development standards for the subproject as a whole, determining
the feasibility of process and technical designs, and writing status reports.

Concept developers analyze both process designs and technical designs using the templates created by
standards coordinators.

Data modelers support the creation of data models within the project’s technical design using SERM
(Structured Entity Relationship Method) and the Data Modeler. Dictionary developers reproduce
these data models in the ABAP Dictionary (tables, data elements, domains, foreign key
dependencies, search help, etc.).

ABAP developers implement the process model described in the technical design using the tools
provided by the ABAP Workbench. They also create the user interfaces and print lists foreseen in
both the process and technical designs.

Interface developers implement necessary online and offline interfaces (outside of ABAP if
necessary).

SAPscript developers use SAPscript to create the forms foreseen in both the process and technical
designs.

Information developers write the documentation for what the other developers have created.

 SAP AG

R

Roles in Customer Development Projects (4)

Quality AssuranceQuality Assurance

l Quality coordinator

l Test coordinator

l Tester

l Quality Assurance consultant

Quality coordinators coordinate all quality assurance activities. This includes writing reviews of
quality assurance activities and generating status reports for project management.

Test coordinators create test catalogs for subprojects documenting the individual test case. They
coordinate test case input and work together with process managers during test case creation and
user test organization.

The actual testers come from the user departments where these new functions are going to be used.
They complete function tests by manually going through test cases and CATT procedures.

Quality assurance consultants deliver technical support for all of these quality assurance activities.
Their responsibilities include writ ing reviews and measuring performance using Workload Analysis,
SQL Trace, ABAP Trace and other tools.

 SAP AG

R

Roles in Customer Development Projects (5)

Technical SupportTechnical Support

l Transport coordinator

l System administrator

l Authorization administrator

l Technical consultant

Transport coordinators are responsible for setting up and maintaining correction and transport
mechanisms. They determine in conjunction with the subproject management when and how
transports should take place and are responsible for conducting them. Transport coordinators solve
transport problems using CTS (Change and Transport System).

System administrators guarantee the availability of the system landscape for development and quality
assurance. This includes administering operating systems, database systems, networks and R/3
systems. In addition, system administrators are responsible for regularly backing up data and for
creating a recovery strategy.

Authorization administrators provide individual employees with authorizations for various R/3
systems depending on the roll they play (for database management systems and operating systems
too, if necessary).

 SAP AG

R

Software Logistics

R/3 Basis
Implementation

4.0

R/3 Basis
Implementation

4.0

 SAP AG 1999

Software Logistics

Contents:

l Planning the system landscape

Objectives:

At the conclusion of this unit, you will be able to,

l Describe what you should take into account when planning a system
landscape for ABAP development objects.

 SAP AG

R

Position on the ASAP Roadmap

•Project team

•System landscape

•Standards

•Process de
sign

•Technical de
sign

•Development

•Testing
•Documentation

•Training

•Monitoring

•Tuning
•Change
 management

•Upgrade

 management
•Integratio

n

 testing
•Mass testing

•Data transfe
r

 SAP AG

R

Planning the System Landscape for Development

l Define the R/3 system landscape
How many R/3 systems?
Which client roles?
How are the client roles to be distributed throughout the R/3 systems?
 Caution: Repository objects are client independent.

l Define a construction strategy for the R/3 system landscape
When can the R/3 systems be set up?
Which tools do I need to create and distribute to clients?

l Define a maintenance strategy for the R/3 system landscape

DEVDEV QTSTQTST PRODPROD

Development
(central maintenance)

Quality Assurance Production

An R/3 system landscape is made up of all of a customer‘s R/3 systems taken as a whole. Each
individual role (development, testing, test systems, quality assurance, training, production) must be
mapped onto a client within the R/3 system.

Repository objects are client independent. Thus all changes to Repository objects are immediately
visible in all clients. For example: if M1 and M2 are clients in an R/3 system and a program is saved
in M1, any changes made to the program will immediately influence M2’s runtime environment.

SAP recommends defining Customizing and application table structures as client specific (see
Realization unit).

SAP recommends conducting development, quality assurance, and production in three different
clients in three different R/3 systems . For greater needs (for example, system landscapes where
central development is conducted in one country and additional development in other countries)
complex system landscapes with more than three systems can be planned. Many customers with
fewer needs work with a two system landscape with one central maintenance site for development
and Customizing. Other clients for sand-box, training or master data may be deployed over the
systems.

System landscapes can be constructed using the tools client copy, transport client and copy database.

After landscape construction, the maintenance phase begins. From here on out changes to Customizing
settings and Repository objects can only be copied or transported using requests .

 SAP AG

R

Setting up the System Landscape
QA system Productive systemDevelopment system

DEV

 MAST

QTST

 MAST

PROD

Client
Transport

Workbench
Request

Client
Copy

Client
Copy Client

Transport

Workbench
RequestRepository

objects

 SBOX TRAI

Client-indep.
Customizjng

Repository
objects

Client-indep.
Customizing

Repository
objects

Client-indep.
Customizing

Client
Copy

Client
Copy

For the setup of the system landscape, Customizing is copied and transported using client copy (within
R/3) and client transport (cross-system).

Repository Objects are not transported by client copy or client transport but instead are transported by
releasing and importing Workbench requests .

 SAP AG

R

Maintaining the System Landscape

DEV

 MAST

QTST

 MAST

PROD

Workbench
request

Copy
request

Workbench
requestRepository

Objects

 SBOX TRAI

Client-indep..
Customizing

Repository
Objects

Client-indep.
Customizing

Repository
Objects

Client-indep.
Customizing

Copy
request

Customizing
request

Customizing
request

Copy
request

Copy
request

QA system Productive systemDevelopment system

Once in production, the system landscape is in the state of maintenance

All changes to Customizing or Repository Objects are recorded in change requests and are transported
using the transport system and the function copy request

 SAP AG

R

Change & Transport Organizer

Workbench OrganizerWorkbench Organizer

Customizing OrganizerCustomizing Organizer

Customizing
Requests

Workbench
Requests

The Change & Transport Organizer consists of the tools Workbench Organizer and Customizing
Organizer.

In the Workbench Organizer you can only see Workbench requests. In the Customizing Organizer,
Customizing and Workbench requests are visible.

 SAP AG

R

Workbench
Organizer

Customizing
Organizer

l Coordinates Customizing
 Efforts

n Complete recording and
documentation of changes

n Teamwork

l Connected to the Client
 Copy and Transport System

l Coordinates Development Efforts

n Complete recording and
documentation of changes

n Teamwork

n Development Classes

n Version management

n Object locking

l Connected to the Transport
System

Differences between WBO and CO

Changes to customizing and Repository objects are recorded in change requests. There are two types of
change requests :

Client dependent customizing is recorded in Customizing requests.

Client independent customizing and Repository Objects are recorded in Workbench requests.

Repository objects are:

Assigned to development classes.

Have versions

Locked for access of non-team members as long as the Workbench request is not released.

 SAP AG

R

Central and National Development

Integration
Global

Consolidation
Asia

Consolidation
USA

Consolidation
Europe

Integration
Europe

Integration
USA

Integration
Asia

Delivery
USA

Europe

Asia

Delivery

Delivery

Consolidation
Global

DEV QAS PD2

PD3

PD1

QA2

QA3

QA1

IN2

IN3

IN1

This system landscape combines central international development with national development in
subsidiaries.

The Workbench Organizer allows the user to develop software in an organized manner.

The transport system provides for transport execution and registration.

Repository objects are connected to the transport system by their development class and change request
assignments. After a request has been released in a development system, it is then transported along
pre-determined routes into a quality assurance system or a production system.

 SAP AG

R

Change Levels

R/3 Basis
Implementation

4.0

R/3 Basis
Implementation

4.0

 SAP AG

R

Change Levels

Contents:

l Change Levels

l Development Project Evaluation

Objectives:

At the conclusion of this unit, you will be able to:

l Explain which levels you can change the SAP standard

l Evaluate change levels

 SAP AG

R

Change Levels

R/3 BusinessR/3 Business
ApplicationsApplications

(SAP standard)(SAP standard)
CustomerCustomer
ProgramsPrograms

CustomerCustomer
DevelopmentDevelopment

EnhancementEnhancementModificationModificationCustomizingCustomizing

Business
Engineer

ABAP
Workbench

PersonalizationPersonalization

MBC
40

MBC
40

n You can tailor the R/3 system to your needs in the following ways:

� Customizing: Setting business processes and functions according to an implementation guide.
Possible changes are anticipated and thus organized in advance.

� Personalization: Changes to the global display characteristics of fields (pre-determing some
input values, removing other input fields from certain screens), user specific menu sequences.

� Modification: Customer changes to SAP Repository objects. When such changes are made by
SAP, customer versions must be adjusted to conform to the new SAP version. Up to Release 4.0B
these technical adjustments are made manually using upgrade utilities. From Release 4.5A the
Modification Assistant will greatly automate this process.

� Enhancement: Creation of customer-defined Repository objects that are referentially included in
SAP Repository objects.

� Customer Development: Creation of customer-defined Repository objects using customer name
spaces.

n Customer development, enhancement, and modification are undertaken using ABAP Workbench
tools, Customizing and most Personalization are done with Business Engineer tools. Thus the
course MBC40 deals mainly with managing projects that are, from a technical standpoint, based on
the ABAP Workbench (development projects).

 SAP AG

R

Business Engineer
Implementation Guide

Business Objects

Purchase
order

Purchase
order item

Schedule
lines

Purchase order
consignment

Purchase order
returnable packaging

Purchase order
third party delivery

Time

Object-oriented
Data Model

Purchase
requisition

Vendor
inquiry

Vendor
quotation

Purchase
information

Shipping
notification

Vendor
scheduling
agreement

Purchase
order

Process Model

Material-
business

Bestands-
führung Einkauf

Informations-
system

Lager-
verwaltung

Lieferanten-
anfrage

/-angebot

Bestell-
anforde-

rung
Bestellung

Application Components

Enterprise Organization

Session Manager

Workflow and Organization

Procedure Model

R/3 ReferenceModel

 Business Process Scen.

n The Business Engineer contains all of SAP’s implementation tools, specifically:

� Reference Models
All Remodels that describe R/3 (process models, data models, organization models)

� Implementation Guide
A list of all Customizing activities

 SAP AG

R

Personalization

l Global Field Display Characteristics

n SET/GET Parameters

n Global Values

n Variant Transactions

n Parameter Transactions

n Systemwide Table Control Settings

l Enterprise Specific Menus

n Area Menus

n Session Manager

n Shortcuts on the Desktop

n Report Trees

Simplifying and Personalizing an application
is often possible outside of the ABAP
Workbench.

The goal of Personalization is to speed up and simplify the business transactions that are going to be
processed within the R/3 System. Each individual application’s transactions are adjusted to the
business needs of the company as a whole or of various user groups. All unnecessary information
and functions are disabled.

The input values of fields on certain screens can be pre-determined using global display
characteristics. Within transactions, individual fields and individual columns of table controls or
even complete screens can be hidden.

Using area menus, the Session Manager (installed on a front end or transaction SESS) enables
customized shortcuts, reporting trees and menu sequences to meet specific needs of different user
groups within the company.

 SAP AG

R

ABAP Workbench

®

R/3
Repository

R/3
Repository

®

ABAP Workbench includes all tools necessary for developing client/server applications. Using highly
developed tools, ABAP Workbench supports productive program development on the basis of early
prototyping. All development objects created using the ABAP Workbench are called Repository
objects and are stored in a special part of the SAP system’s central database called the R/3
Repository.

The ABAP Workbench tools listed below allow you to edit the following Repository objects:

Data Modeler enterprise data models according to SAP-SERM

ABAP Dictionary data descriptions and their relationships to one another

ABAP Editor ABAP source code

ABAP Query Reports (no knowledge of the ABAP language necessary)

Function Builder Function modules (centrally stored program modules)

Class Builder Centrally stored OO objects (classes, methods)

Menu Painter Title settings, menu bar settings, standard toolbar and application
 toolbar settings

Screen Painter Screens

Workbench Organizer Change requests (ensure organized object development
 and transport in conjunction with the transport system)

 SAP AG

R

ABAP Programming is Designed for:

ABAPABAP ABAPABAP

RDBMSRDBMS

Repository

l Business Tasks

l Client/Server Architecture

l Platform Independence

l Developing User Dialogs

l Database Access

l Openness

l International Use

l Team Development

ABAP stands for Advanced Business Application Programming and is the programming language
developed by SAP for use in application development.

ABAP is designed to support the application development of business tasks (mass data processing,
currency specific display, multilingual capability, etc.).

ABAP is also designed for developing user dialogs in a distributed R/3 system. Developers need not
concern themselves with communication and distribution aspects of the system.

ABAP programs in conjunction with the SAP Basis are platform independent.

ABAP contains a special set of commands for database access called ABAP Open SQL.

ABAP application development can be done in project teams which is organized by using the
Workbench Organizer.

 SAP AG

R

ABAP Workbench Change Levels
R/3 BusinessR/3 Business
ApplicationsApplications

(SAP standard)(SAP standard)

CustomerCustomer
ProgramsPrograms

CustomerCustomer
DevelopmentDevelopmentEnhancementEnhancementModificationModification

l Assisted
Modification

l Unassisted
Modification

l Customer
Enhancement
n Program Exit
n Menu Exit
n Screen Exit

l Universal
n Field Exit
n Table Append
n Text Enhancement

n With SAP
objects

n Without SAP
objects

l User Exit

SAP Repository objects can be called from within a customer’s own program. For example, a customer
can develop his or her own program that calls an SAP function module.

With enhancements this works the other way around: here SAP programs call Repository objects that
the customer has either created or alter himself. For example, a customer can create a program exit
that an SAP program calls. Enhancements can take place in the following places:

in an ABAP program (program exits)

in the graphical user interface (menu exits)

on screens

by inserting a subscreen in an area pre-determined by SAP (screen exits)

by executing code written by a customer related to a particular screen field (field exits)

in ABAP Dictionary tables or Dictionary structures (table appends)

as text enhancements (replacing SAP field or keyword documentation).

Modifications are changes to SAP objects made within the customer system. They are:

driven by user exits (subroutines reserved for customers in objects in the SAP namespace)

assisted or hard at any point desired in SAP Repository objects.

 SAP AG

R

 Classifying and Implementing Development Projects

No

No

Yes

Modification

Can a similar function be found in
SAP standard?

No

Does the SAP
application allow you to add the function

desired by using enhancement?

Yes

Enhancement / User Exit

Is there a standard function that can
be tailored to meet the customer’s needs using

Customizing/Personalization?

Yes

Customizing
Personalization

Cust. Development with
SAP Prog. as Model

No

Cust. Development
CSP Solution

C
u

st
o

m
iz

in
g

C
us

to
m

iz
in

g
D

ev
el

o
p

m
en

t/
P

u
rc

h
as

e
D

ev
el

o
p

m
en

t/
P

u
rc

h
as

e

n If your requirements cannot be met using Customizing or Personalization either start a development
project or use a CSP solution (Complementary Software Product).

n A development project allows for customer development if no similar function is available within
the SAP standard. Otherwise, you can try to meet the customer’s needs by adding enhancements,
user exits, modifications, or copies of SAP programs to SAP standard objects.

n Modifications can be problematic because all new SAP versions must be adjusted and reconciled
with the customer’s modified version after each upgrade. Up to Release 4.0B these technical
adjustments are made manually using upgrade utilities. From Release 4.5A the Modification
Assistant will largely automate this process.

n You should only make modifications if

� Customizing and Personalization cannot fulf ill your requirements

� enhancements and user exits are not foreseen

� copying an SAP object into the customer namespace is not useful (see following slide).

Modifying has the advantage that your active Repository objects do not lose their connection to the
SAP standard. Copying, on the other hand, has the advantage that no modification adjustments must
be made to active Repository objects after an upgrade.

Choose copying instead of modifying if

you have to change numerous parts of the SAP program

your requirements are not going to be met by future R/3 release standards.

Pay attention to the dependent objects when copying. For example, the choice between modifying and
copying must also be made for all of the includes attached to your base program. The same applies
within function groups respectively function modules.

ABAP development projects can be evaluated according to the following criteria:

How costly is implementation, measured in man hours (creating, implementing, and testing the
concept)?

How does the ABAP development project affect

performance

the amount of work at upgrade?

By calling SAP objects in your Repository object, you can greatly reduce the amount of work required
to implement it. Repository object changes made by SAP can also make for additional work during
an upgrade. For example, SAP might change the interface of a screen for which you have written a
batch input program.

n The following Repository objects are normally only changed by SAP in an upwardly compatible
manner and therefore, can be regarded safe for use in customer programs:

� function modules that have been released

� objects that are public in the ABAP Class Builder

� BAPIs (Business Application Programming Interface)

� user exit includes

� customer exits

n SAP guarantees BAPI stability for two functional releases.

n Customer developed programs that call SAP objects, as well as all objects displayed in the upgrade
utility SPAU, must be tested for functionality and performance after an upgrade. The same holds
true for those Repository objects automatically upgraded by the Modification Assistant (from
Release 4.5A).

n For the adjustment of programs you need knowledge of the process logic of your individual
application.

Modifications are especially critical when

they influence numerous other Repository objects (Dictionary objects, function modules)

adjustments are difficult (menu, pushbuttons, graphical user interfaces (GUIs) before 4.5A) or not
supported by tools (transaction codes, messages, logical databases).

Without the help of the Modification Assistant (before 4.5A) modifying GUI statuses and GUI titles
and assigning customer function modules to SAP function groups are considered critical.

 SAP AG

R

Standardization

R/3 Basis
Implementation

4.0

R/3 Basis
Implementation

4.0

 SAP AG

R

Standardization

Contents:

l Naming conventions

l Repository object documentation

l Incorporating modifications

Objectives:

At the conclusion of this unit, you will be able to:

l Create naming conventions for your project

l Document Repository objects

l List which standards SAP recommends for incorporating
modifications

 SAP AG

R

Position on the ASAP Roadmap

•Project team

•System landscape

•Standards

•Process de
sign

•Technical de
sign

•Development

•Testing
•Documentation

•Training

•Monitoring

•Tuning
•Change
 management

•Upgrade

 management
•Integration

 testing
•Mass testing

•Data transfer

 SAP AG

R

Standardization Areas
General Standardization

l Project planning

l Project implementation

l Project communication

l Notification management

l Project documentation

n Shared folders

n Contents

l Quality Assurance

l Teamwork building

l ...

ABAP-specific Standards

l Development project
evaluation

l Process design

l Technical design

l Naming conventions for
Repository objects

l Interface Style Guide

l Program documentation

l Modification handling

l System landscape,
Original language

In the general project environment, project planning, implementation, communication, notification
management, project documentation, quality assurance procedures, teamwork building, and other
areas are standardized.

The following areas are standardized specifically in ABAP development projects :

Evaluation of development projects (see Change Levels)

Process design (see Process Design and Technical Design)

Technical design (see Process Design and Technical Design)

Naming conventions for Repository objects
Naming conflicts between customer Repository objects and Repository objects from SAP and SAP
partners can be avoided by using standard naming conventions.

Interface Style Guide
SAP delivers a Style Guide that standardizes your interface according to ergonomic principles.

Program documentation
Repository objects can be documented in various different ways.

Modification Handling
Installation rules and logbook of all modifications made to a customer’s system

 SAP AG

RComplementaryComplementary
SoftwareSoftware

SAP Partners

Naming Conventions for Repository Objects

DevelopmentDevelopment

SAP StandardSAP Standard
SoftwareSoftware

SAP

Namespace Reservation
by SAP OSS

ce
nt

ra
l

ce
n

tr
al

Namespace Reservation
by the Workbench Organizerde

ce
nt

ra
liz

ed
d

ec
en

tr
al

iz
ed

Head Office

Branch Office

Application
Area

Customer Namespace
(according to OSS note 16466)

By instituting naming conventions, you avoid naming conflicts and give your Repository objects
meaningful names.

The following naming conflicts can occur:

The names of an SAP Repository object and a customer Repository object conflict
 Naming conventions delineate between SAP Repository objects and customer Repository objects.
Tip 16466 delivers an overview of all of the current naming convention for Repository objects
(normally a Y or Z at the beginning of the name).

The names of two or more customer Repository objects conflict
In decentralized development scenarios with more than one development system, naming conflicts
between customer Repository objects can occur. Customers can prevent this situation from occurring
by reserving namespaces for development areas within the customer namespace. The Workbench
Organizer uses the entries in view V_TRESN to ensure that namespaces remain intact.

The names of Complementary Software and a customer Repository object conflict
Naming conflicts that occur when loading Complementary Software from SAP partners can only be
solved by reserving namespaces in SAP OSS. To do this, the SAP partner can from Release 4.0
apply for a name prefix in SAP OSS that is then added to all of that partner’s Repository objects
(OSS notes 84282 and 91032, White Paper Development Namespaces in R/3, purchase order
number E:50021723 or D:50021751).

 SAP AG

R

SAP Application Hierarchy
- Accounting U100

– G/L Accounting U101
– Basic Functions

0
0

0
Financial Accounting FBAS
External Interfaces FYTA
Banking Institutions FBI
Bank Customizing FBIC

+0 ...

Application Hierarchy and Development Classes

MM HR

FI

WM

MM

Development Class

M M

Repository Objects Function Modules

 Programs

Tables

Application Hierarchy

SD

The application hierarchy and development classes serve to group Repository objects in a logical
manner. The SAP application hierarchy subdivides the Repository according to applications and
their functional parts. Each node in the SAP application hierarchy can be assigned to a development
class.

Each Repository object must be assigned to a development class, which in turn must be assigned to an
application hierarchy node.

Often Repository objects are made up of subobjects that are also Repository objects.

The Repos itory Information System allows you to search for Repository objects according to various
criteria.

 SAP AG

R

Interface Style Guide

l SAP Style Guide

l Ergonomics Examples

SAP delivers a Style Guide that standardizes
your interface according to ergonomic principles.

SAP delivers a Style Guide that standardizes your interface according to ergonomic princ iples (in the
online documentation see: BC-Basis à BC ABAP Workbench à BC SAP Style Guide).

Ergonomics examples can be found in the Repository Browser under Environment à Ergonomics
examples.

 SAP AG

R

Documentation

Project documentation

Technical documentation of a single repository object

End user documentation

Business
Blueprint

Technical
design

Process
design

l Internally

n SAPOffice folder structure

l Externally

lInternally

nRepository object (function module, ...)

nInline documentation

lInternally

nData element
documentation

nProgram documentation

nIndependent SAPscript text

lExternally

SAP recommends to store documentation as follows:

Project documentation

internally in a SAPoffice folder structure

externally (e.g. on a document server).

End user documentation

Documentation at the repository object

data element (appears when you hit F1 on a screen field)

program (appears when you select Help à Extended help on a selection screen)

Independent SAPScript text called by an application

Technical documentation of a single repository object

documentation at a repository object (e.g. function modules, ...)

Inline documentation (comments in source code)

Select a central storage for your project documentation that is available and known to all project
members.

 SAP AG

R

Inline Documentation
PROGRAM ykdemo.
* Link to external documentation
* Program task
* Program input and output
* Basic program flow
* Description of LUWs and locks
* Version history: type, author, date, request

FORM subroutine USING sum.
* Modularization unit tasks
* Modularization unit input and output

* Func. method for the following stretch of code
 CLEAR sum.
 LOOP AT itab.
 sum = sum + itab-sales.
 ENDLOOP.
ENDFORM.

O
b

je
ct

 H
ea

d
O

b
je

ct
 H

ea
d

M
od

M
o

d
.. U

ni
t

 U
n

it
H

ea
d

H
ea

d
In

d
iv

id
u

al
In

d
iv

id
u

al
S

tr
et

ch
es

 o
f

S
tr

et
ch

es
 o

f C
od

e
 C

od
e

ABAP source code (in programs, screen flow logic, function modules, methods) can be documented at
the following levels:

object heads

modularization unit heads

functional methods for stretches of code

Customer generated source code should be encapsulated in modularization units instead of distributed
throughout SAP source code (for example when calling customer function modules in program
source code or calling customer subscreens for additional screen fields).

n Keep the interfaces with those parts of the program written by the customer (encapsules) compact.

n Define a company-wide standard for online documentation (see the following slides).

n Keep a list of all modifications (a modification logbook, see the following slides).

n All repairs and all requests that contain repairs must be confirmed and released before an upgrade is
run.

SAP recommends labeling hard modifications to source code as described above:

Preliminary Correction
OSS notes, repair numbers, changed by, change date, note valid until

Customer Functionality Insertions
areas, repair numbers, changed by, change date, INSERTION

Customer Functionality Replacements
areas, repair numbers, changed by, change date, REPLACEMENT
Unnecessary SAP functionality is not deleted, but excluded using asterisks.

Areas are specified within the process design (for example area SD_001 = pricing).

SAP recommends keeping a list of all modifications (of all changes made to Repository objects in the
SAP namespace).

Such a list normally contains the following columns :

object type (programs, screens, GUI status, ...)

object name

routine (if necessary)

area according to process design or technical design

repair number

change date

changed by

preliminary correction (yes/no)

OSS note number, valid until Release x.y

estimated expense to reinstall the modification during adjustment (measured in hours).

 SAP AG 1999

Section: ABAP Dictionary

 SAP AG 1999

Unit Dependencies of ABAP
Dictionary Objects

Unit Changes to Tables

Unit Views

Unit Search Helps

Unit Introduction

Unit Tables in the ABAP
Dictionary

Unit Performance in Table
Access

Unit Consistency through
Input Check

Content: ABAP Dictionary

 SAP AG 1999

l Function of the ABAP Dictionary in the R/3 System

l Definition of database objects

l User-defined types

l Services in the ABAP Dictionary

l Linking to the development and runtime
environments

Introduction

 SAP AG 1999

Function of the ABAP Dictionary

DB table

Services

Screen
Poss. values

Type definitions

Structure

Table typeData elements

F4

DB objects

Table

n The ABAP Dictionary permits a central management of all the data definitions used in the R/3
System.

n In the ABAP Dictionary you can create user-defined types (data elements, structures and table types)
for use in ABAP programs or in interfaces of function modules. Database objects such as tables and
database views can also be defined in the ABAP Dictionary and created with this definition in the
database.

n The ABAP Dictionary also provides a number of services that support program development. For
example, setting and releasing locks, defining an input help (F4 help) and attaching a field help (F1
help) to a screen field are supported.

 SAP AG 1999

Database

Database Objects in the ABAP Dictionary

Table 1

ABAP Dictionary

Table 2

View

Objects are automatically
created in the DB and
adjusted to changes

n Tables and database views can be defined in the ABAP Dictionary.

n These objects are created in the underlying database with this definition. Changes in the definition of
a table or database view are also automatically made in the database.

n Indexes can be defined in the ABAP Dictionary to speed up access to data in a table. These indexes
are also created in the database.

 SAP AG 1999

Type Definitions in the ABAP Dictionary

ZIP Town name Street House no.

Numbers

Employee

Name Address Telephone

First name Last name Town Address

n There are three different type categories in the ABAP Dictionary:

� Data elements: Describe an elementary type by defining the data type, length and possibly
decimal places.

� Structures: Consist of components that can have any type.

� Table types: Describe the structure of an internal table.

n Any complex user-defined type can be built from these basic types.

n Example: The data of an employee is stored in a structure EMPLOYEE with the components
NAME, ADDRESS and TELEPHONE. Component NAME is also a structure with components
FIRST NAME and LAST NAME. Both of these components are elementary, i.e. their type is defined
by a data element. The type of component ADDRESS is also defined by a structure whose
components are also structures. Component TELEPHONE is defined by a table type (since an
employee can have more than one telephone number).

n Types are used for example in ABAP programs or to define the types of interface parameters of
function modules.

 SAP AG 1999

Services of the ABAP Dictionary

Carrier

Flight number

. . .

Maintenance of flights

LH

No
.

Depart. city Arrival city

Carrier

0400 Frankfurt New York

0402 Frankfurt New York

LH

2402 Frankfurt Berlin

...

Code of the flight connection
Code defining a flight connection
between two cities, e.g. 0400
Frankfurt - New York.

F1

F4

n The ABAP Dictionary supports program development with a number of services:

� Input helps (F4 helps) for screen fields can be defined with search helps.

� Screen fields can easily be assigned a field help (F1 help) by creating documentation for the data
element.

� An input check that ensures that the values entered are consistent can easily be defined for screen
fields using foreign keys.

� The ABAP Dictionary provides support when you set and release locks. To do so, you must create
lock objects in the ABAP Dictionary. Function modules for setting and releasing locks are
automatically generated from these lock objects; these can then be linked into the application
program.

� The performance when accessing this data can be improved for database objects (tables, views)
with buffering settings.

� By logging, you can switch on the automatic recording of changes to the table entries.

 SAP AG 1999

Linking to the Development and Runtime
Environment

ABAP
DictionaryRead type

definitions

Reads structure of
database objects

Runtime environment

Development
environment

ABAP
Interpreter

Screen
Interpreter

ABAP
tools

Screen
Painter Database

interface

n The ABAP Dictionary is actively integrated in the development and runtime environments. Each
change takes immediate effect in the relevant ABAP programs and screens.

n Examples:

� When a program or screen is generated, the ABAP interpreter and the screen interpreter access the
type definitions stored in the ABAP Dictionary.

� The ABAP tools and the Screen Painter use the information stored in the ABAP Dictionary to
support you during program development. An example of this is the Get from Dictionary function
in the Screen Painter, with which you can place fields of a table or structure defined in the ABAP
Dictionary in a screen.

� The database interface uses the information about tables or database views stored in the ABAP
Dictionary to access the data of these objects.

 SAP AG 1999

Unit Summary

l The ABAP Dictionary manages data definitions.

l User-defined types can be created in the ABAP Dictionary.
They can be used for example in ABAP programs.

l Tables and database views are defined in the ABAP
Dictionary and automatically created with this definition in
the underlying database.

l The ABAP Dictionary provides a number of services that
support program development.

l The ABAP Dictionary is actively integrated in the
development and runtime environments.

 SAP AG 1999

l Two-level domain concept

l Mapped in the relational database system

l Include structures

l Technical settings

n Data class

n Size category

n Buffering

n Logging

Tables in the ABAP Dictionary

 SAP AG 1999

Tables and Fields

Key Function fields

Row

Table

Key 1

.

.

.

Key 2

.

.

.

Key n

.

.

.

F 1

.

.

.

F 2

.

.

.

F n

.

.

.

n The structure of the objects of application development are mapped in tables on the underlying
relational database.

n The attributes of these objects correspond to fields of the table.

n A table consists of columns (fields) and rows (entries). It has a name and different attributes, such as
delivery class and maintenance authorization.

n A field has a unique name and attributes; for example it can be a key field.

n A table has one or more key fields, called the primary key.

n The values of these key fields uniquely identify a table entry.

n You must specify a reference table for fields containing a currency (data type CURR) or quantity
(data type QUAN). It must contain a field (reference field) with the format for currency keys (data
type CUKY) or the format for units (data type UNIT). The field is only assigned to the reference
field at program runtime.

 SAP AG 1999

Basic Objects of the ABAP Dictionary

uses

uses

Table

Table
field

Data elementData element

DomainDomain

n The basic objects for defining data in the ABAP Dictionary are tables, data elements and domains.
The domain is used for the technical definition of a table field (for example field type and length)
and the data element is used for the semantic definition (for example short description).

n A domain describes the value range of a field. It is defined by its data type and length. The value
range can be limited by specifying fixed values.

n A data element describes the meaning of a domain in a certain business context. It contains
primarily the field help (F1 documentation) and the field labels in the screen.

n A field is not an independent object. It is table -dependent and can only be maintained within a table.

n You can enter the data type and number of places directly for a field. No data element is required in
this case. Instead the data type and number of places is defined by specifying a direct type .

n The data type attributes of a data element can also be defined by specifying a built-in type , where
the data type and number of places is entered directly.

 SAP AG 1999

Two-Level Domain Concept: Example

Table SPFLI

MANDT

Data element S_FROMAIRPData element S_FROMAIRP Data element S_TOAIRPData element S_TOAIRP

Domain S_AIRPIDDomain S_AIRPID

CARRID ... AIRPFROMCONNID ... AIRPTO

n The flight schedule is stored in table SPFLI. Table fields AIRPFROM (departure airport) and
AIRPTO (arrival airport) have the same domain S_AIRPID. Both fields use the same domain
because both fields contain airport IDs and therefore have the same technical attributes. They have a
different semantic meaning, however, and use different data elements to document this. Field
AIRPFROM uses data element S_FROMAIRP and field AIRPTO uses data element S_TOAIRP.

 SAP AG 1999

Transparent Tables and Structures

Table

Field 1 Field 2 Field 3Field 4

Structure

Field 1 Field 2 Field 3Field 4

ABAP Dictionary

Physical definition of the table

Table
Field 1 Field 2 Field 3 Field 4

Database

n A transparent table is automatically created on the database when it is activated in the ABAP
Dictionary. At this time the database-independent description of the table in the ABAP Dictionary is
translated into the language of the database system used.

n The database table has the same name as the table in the ABAP Dictionary. The fields also have the
same name in both the database and the ABAP Dictionary. The data types in the ABAP Dictionary
are converted to the corresponding data types of the database system.

n The order of the fields in the ABAP Dictionary can differ from the order of the fields on the
database. This permits you to insert new fields without having to convert the table. When a new field
is added, the adjustment is made by changing the database catalog (ALTER TABLE). The new field
is added to the database table, whatever the position of the new field in the ABAP Dictionary.

n ABAP programs can access a transparent table in two ways. One way is to access the data contained
in the table with OPEN SQL (or EXEC SQL). With the other method, the table defines a structured
type that is accessed when variables (or more complex types) are defined.

n You can also create a structured type in the ABAP Dictionary for which there is no corresponding
object in the database. Such types are called structures. Structures can also be used to define the
types of variables.

 SAP AG 1999

Include Structures

Table 2Table 1

Field 1 Field 2 Field A Field B Field 4Field 3 Field A Field B

Field A Field B

Database

Field 1 Field 2 Field A Field BField A Field B Field 3 Field 4

Include structure

n Structures can be included in tables or other structures to avoid redundant structure definitions.

n A table may only be included as an entire table.

n A chain of includes may only contain one database table. The table in which you are including
belongs to the include chain. This means that you may not include a transparent table in a transparent
table.

n Includes may contain further includes.

n Foreign key definitions are generally imparted from the include to the including table. The attributes
of the foreign key definition are passed from the include to the including table so that the foreign key
depends on the definition in the include.

 SAP AG 1999

Technical Settings

Buffering

Table buffer

R/3

In which physical
area of the database
should the table
be stored?

Logging

Should the records
of the table be

buffered? Should changes to
the data records be
logged?

How many records
will the table
probably contain?

Size category

Data class

Data base

Data base

n You must maintain the technical settings when you define a transparent table in the ABAP
Dictionary.

n The technical settings are used to individually optimize the storage requirements and accessing
behavior of database tables.

n The technical settings can be used to define how the table should be handled when it is created on the
database, whether the table should be buffered and whether changes to entries should be logged.

n The table is automatically created on the database when it is activated in the ABAP Dictionary. The
storage area to be selected (tablespace) and space allocation settings are determined from the settings
for the data class and size category.

n The settings for buffering define whether and how the table should be buffered.

n You can define whether changes to the table entries should be logged.

 SAP AG 1999

Data Class

Tables in the ABAP Dictionary

Tablespace
Org. data

Tablespace
Master data

Tablespace
Trans. data

Tablespace
System data

Database

Organizational data Transaction data System dataMaster data

Table 1

Table 3

Table 4

Table 2

Table 6

Table 5

Table 9

Table 7

Table 8

Table 1

Table 3

Table 4

Table 2

Table 6

Table 5

Table 9

Table 7

Table 8

n The data class logically defines the physical area of the database (for ORACLE the tablespace) in
which your table should be stored. If you choose the data class correctly, the table will automatically
be created in the appropriate area on the database when it is activated in the ABAP Dictionary.

n The most important data classes are master data, transaction data, organizational data and
system data.

n Master data is data that is rarely modified. An example of master data is the data of an address file,
for example the name, address and telephone number.

n Transaction data is data that is frequently modified. An example is the material stock of a warehouse,
which can change after each purchase order.

n Organizational data is data that is defined during customizing when the system is installed and that is
rarely modified thereafter. The country keys are an example.

n System data is data that the R/3 System itself needs. The program sources are an example.

n Further data classes, called customer data classes (USR, USR1), are provided for customers. These
should be used for customer developments. Special storage areas must be allocated in the database.

 SAP AG 1999

Size Category

Initial
Extent

First
Extent

Second
Extent

Technical Settings

Size category

TABA

TABB

TABC

1

3

4

TABATABA

TABBTABB

TABCTABC

Database

n The size category describes the expected storage requirements for the table on the database.

n An initial extent is reserved when a table is created on the database. The size of the initial extent is
identical for all size categories. If the table needs more space for data at a later time, extents are
added. These additional extents have a fixed size that is determined by the size category specified in
the ABAP Dictionary.

n You can choose a size category from 0 to 4. A fixed extent size, which depends on the database
system used, is assigned to each category.

n Correctly assigning a size category therefore ensures that you do not create a large number of small
extents. It also prevents storage space from being wasted when creating extents that are too large.

n Modifications to the entries of a table can be recorded and stored using logging.

n To activate logging, the corresponding field must be selected in the technical settings. Logging,
however, only will take place if the R/3 System was started with a profile containing parameter
'rec/client'. Only selecting the flag in the ABAP Dictionary is not sufficient to trigger logging.

n Parameter 'rec/client' can have the following settings:

rec/client = ALL All clients should be logged.

rec/client = 000[...] Only the specified clients should be logged.

rec/client = OFF Logging is not enabled on this system.

n The data modifications are logged independently of the update. The logs can be displayed with the
Transaction Table History (SCU3).

n Logging creates a 'bottleneck' in the system:

� Additional write access for each modification to tables being logged.

� This can result in lock situations although the users are accessing different application tables!

Explanation of the Symbols in the Exercises and Solutions

Exercises

Solutions

Course Objectives

Business Scenario

Tips & Tricks

Warning or Caution

Data in the Exercises

Type of data Data in the training system

Data model BC_TRAVEL yes

All objects in development class
BC_DATAMODEL

yes

All objects in development class BC430 yes

When creating ABAP Dictionary objects in this course, you
should adhere to the following conventions:

• Your object names for tables, data elements and domains
should begin with Z and end with your two-digit group number
(xx).

• Use both your own data elements or domains
(Z<Objectname>xx) and standard SAP objects for the table
fields.

• All objects should be created as local objects (development
class $tmp).

The appendix contains information about the flight data model used
in the training courses.

Unit: Tables in the ABAP Dictionary

At the conclusion of these exercises you will be able to:

• Create tables and use the two-level domain concept

• Define the technical settings sensibly

• Document fields

• Create and use include structures

In these exercises the tables of the flight model will be enhanced with
employee management. This employee management will enable the
airlines to enter and evaluate data about their employees (e.g. name,
personnel number, salary, department, etc.) and about assignments within
the organization (airline departments).

In this exercise, two tables will be created for the employee data and the
airline departments.
These tables will be enhanced step by step in the following exercises.

2-1 Create two transparent tables ZEMPLOYxx and ZDEPMENTxx and define their key
fields. Define the technical settings when you activate the tables.

Note the following:

Data is maintained for three airlines. An airline has 20,000 employees and between 10
and 30 departments. Do not buffer or log the data. Buffering will be discussed in the
exercises for the next unit.

2-1-1 Create table ZEMPLOYxx. The data for the employees is maintained here. The
names and addresses of the employees and their salaries is stored here.

Table ZEMPLOYxx

Field name Data element Domain Type, Length

Client S_MANDT MANDT

Carrier S_CARR_ID S_CARR_ID

Personnel number own own NUMC, 10

First name S_FNAME S_FNAME

Last name S_LNAME S_LNAME

Department code own own CHAR, 4

Area own own CHAR, 1

Salary own own CURR, 10

2 decimal places

Currency S_CURRCODE S_CURR

2-1-2 Create table ZDEPMENTxx. This table contains the departments of the
airline. Each department can be reached with a telephone and fax number.

Table ZDEPMENTxx

Field name Data element Domain Type, Length

Client S_MANDT MANDT

Carrier S_CARR_ID S_CARR_ID

Department code own own CHAR, 4

Telephone own S_PHONE CHAR, 30

Fax own S_PHONE CHAR, 30

2-2 Document fields Personnel number and Department code.

2-3 Changes to tables ZEMPLOYxx and ZDEPMENTxx are critical and therefore must
be recorded. The maintenance transaction must note who last changed a table entry.
This can be done by appending fields for the personnel number of the last person to
change the entry and the date of the last entry to tables ZEMPLOYxx and
ZDEPMENTxx. Make sure that the same fields are available in both tables for
recording the changes by adding these fields to both tables with a substructure
ZCHANGExx. Create a new data element for field Lastchangedby, but use an
existing domain. Use S_CHDATE as data element for the date of the last change.

What actions are executed on activation in the database?

Note: In a 'real' application, the above enhancement would always cause the
standard table maintenance for the two tables to be deactivated. Your own
maintenance transactions would instead be created for the table in which the fields
for change logging would be filled internally by the program and not directly by the
user.

Creation of such transactions goes beyond the scope of this course. In this course
we will therefore assume that all users themselves (correctly) fill these fields in the
standard table maintenance routine.

Start Program BC430_CHECK in Transaction SE38. This program
checks whether your solutions are correct and fills the new tables
ZEMPLOYxx and ZDEPMENTxx with sample data needed for later
exercises.

Unit: Tables in the ABAP Dictionary

2-1 The path

Tools à ABAP Workbench à Development à Dictionary or Transaction SE11
takes you to the overview screen of the ABAP Dictionary.

2-1-1 To create table ZEMPLOYxx:

1) Mark Database table and enter table name ZEMPLOYxx in the
corresponding input field.

2) Choose Create.

3) Enter a short text in the maintenance screen for the table.

4) Choose delivery class A and mark Table maintenance allowed.

5) Now click on tab page Fields to go to the maintenance screen for the
field definitions. Enter the field names there (they need not lie in the
customer namespace).

6) Use the given data elements for fields Client, Carrier, First name,
Last name and Currency by entering the names of the data elements
in column Field type. Save your entries.

7) Create your own data elements for fields Personnel number,
Department code, Area and Salary. Enter a name (Z<object>xx) for
the data element in column Field type. Double-click on the name of
the data element. The data element definition appears.

8) Enter a short text (component of the F1 help). Now click on tab page
Field label and store the texts for the field labels there.

9) You also have to assign the data element a technical description
(domain). Click on tab page Definition and enter a name
(Z<object>xx) for your domain there. If the domain is predefined,
activate the data element and return to the maintenance screen for
the table fields (F3 or ß).. Otherwise double-click on the domain
name. The domain definition appears.

10) Define the short description, data type (for example NUMC) and
number of characters (for example 10) there. Activate the domain.

11) Navigate back one screen (F3 or ß) to the data element definition
and activate your data element.

12) Navigate back one more screen to the field definition. Start again
there with 7) until all the table fields are defined. Save your table.

13) Define the reference table and reference field for the salary field.
Double-click on the field name and enter the following in the next
dialog box:
 Reference table: ZEMPLOYxx

 Reference field:
 Currency

14) Define the key fields for table ZEMPLOYxx. Fields Client, Carrier
and Personnel number uniquely identify an entry. They must
therefore be marked as key fields. You can do this by marking the
Key column following the field name. The key fields must be at the
beginning of the field list in this order.

15) Activate the table. The maintenance screen for the technical settings
appears automatically:

Since the contents of table ZEMPLOYxx do not change frequently,
you must choose data class APPL0 (master data). The expected
number of records in table ZEMPLOYxx is 60,000, so you must
choose size category 2. The table should not be either buffered or
logged.

ZEMPLOYxx

Data class APPL0 (master data)

Size category 2

Buffering Not allowed

Logging No logging

Save the technical settings. Go back to the maintenance screen of the table
(F3 or ß). The table is activated.

2-1-2 To create table ZDEPMENTxx:

 1) to 12) see Solution 2-1-1

13) Define the key fields for table ZDEPMENTxx. Fields Client,
Carrier and Department code uniquely identify an entry. They must
therefore be marked as key fields. You can do this by marking the
Key column following the field name.

14) Activate your table and define the technical settings:

Since the contents of table ZDEPMENTxx do not change frequently,
you must choose data class APPL0 (master data). The expected
number of records in table ZDEPMENTxx is defined to be at most
90 entries, so you must choose size category 0. The table should not
be either buffered or logged.

ZDEPMENTxx

Data class APPL0 (master data)

Size category 0

Buffering Not allowed

Logging No logging

2-2 To document fields Personnel number and Department code:

1) Double-click to go to the data element in the data element definition. With
Display <-> Change switch to change mode. Press Documentation or
choose Goto à Documentation.

2) Enter a text for the fields and save your entries.

2-3 Create structure ZCHANGExx as follows:

1) In the initial screen of the ABAP Dictionary, mark Data type and enter
ZCHANGExx in the corresponding field. Choose Create.

2) Mark Structure in the next dialog box.

3) Enter the field names in column Component and the corresponding data
elements in column Component type. Create one field for the personnel
number and another one for the date of change. Use data element
S_CHDATE for the second field. Create your own data element for the first
field, as in Exercise 2-1. Use the domain you created for the personnel
number in table ZEMPLOYxx.

4) Activate structure ZCHANGExx.

Now insert ZCHANGExx as an include in tables ZEMPLOYxx and
ZDEPMENTxx as follows:

1) Go to the maintenance screen for table ZEMPLOYxx.

2) Choose New rows and position the cursor on the first new field.

3) Choose Edit à Include àInsert.

4) In the next dialog box, enter the name ZCHANGExx and choose Continue.

5) Activate the table.

6) You can display the actions that were performed in the database with
Utilities ? Activation log.

7) Start with step 1) to insert substructure ZCHANGExx in table
ZDEPMENTxx.

 SAP AG 1999

l Indexes
n Primary index and secondary index

n Structure of an index
n Data access using an index

l Table buffering

n Advantages of buffering
n Local table buffers

n Buffering types
n Buffer synchronization

n Which tables should be buffered?

Performance during Table Access

n An index can be used to speed up the selection of data records from a table.

n An index can be considered to be a copy of a database table reduced to certain fields. The data is
stored in sorted form in this copy. This sorting permits fast access to the records of the table (for
example using a binary search). Not all of the fields of the table are contained in the index. The index
also contains a pointer from the index entry to the corresponding table entry to permit all the field
contents to be read.

n When creating indexes, please note that:

� An index can only be used up to the last specified field in the selection! The fields which are
specified in the WHERE clause for a large number of selections should be in the first position.

� Only those fields whose values significantly restrict the amount of data are meaningful in an
index.

� When you change a data record of a table, you must adjust the index sorting. Tables whose
contents are frequently changed therefore should not have too many indexes.

� Make sure that the indexes on a table are as disjunct as possible.

n The database optimizer decides which index on the table should be used by the database to access
data records.

n You must distinguish between the primary index and secondary indexes of a table. The primary
index contains the key fields of the table. The primary index is automatically created in the database
when the table is activated. If a large table is frequently accessed such that it is not possible to apply
primary index sorting, you should create secondary indexes for the table.

n The indexes on a table have a three-character index ID. '0' is reserved for the primary index.
Customers can create their own indexes on SAP tables; their IDs must begin with Y or Z.

n If the index fields have key function, i.e. they already uniquely identify each record of the table, an
index can be called a unique index. This ensures that there are no duplicate index fields in the
database.

n When you define a secondary index in the ABAP Dictionary, you can specify whether it should be
created on the database when it is activated. Some indexes only result in a gain in performance for
certain database systems. You can therefore specify a list of database systems when you define an
index. The index is then only created on the specified database systems when activated.

n Table buffering increases the performance when the records of the table are read.

n The records of a buffered table are read directly from the local buffer of the application server on
which the accessing transaction is running when the table is accessed. This eliminates time-
consuming database accesses. The access improves by a factor of 10 to 100. The increase in speed
depends on the structure of the table and on the exact system configuration. Buffering therefore can
greatly increase the system performance.

n If the storage requirements in the buffer increase due to further data, the data that has not been
accessed for the longest time is displaced. This displacement takes place asynchronously at certain
times which are defined dynamically based on the buffer accesses. Data is only displaced if the free
space in the buffer is less than a predefined value or the quality of the access is not satisfactory at
this time.

n Entering $TAB in the command field resets the table buffers on the corresponding application server.
Only use this command if there are inconsistencies in the buffer. In large systems, it can take several
hours to fill the buffers. The performance is considerably reduced during this time.

n The R/3 System manages and synchronizes the buffers on the individual application servers. If an
application program accesses data of a table, the database interfaces determines whether this data lies
in the buffer of the application server. If this is the case, the data is read directly from the buffer. If
the data is not in the buffer of the application server, it is read from the database and loaded into the
buffer. The buffer can therefore satisfy the next access to this data.

n The buffering type determines which records of the table are loaded into the buffer of the application
server when a record of the table is accessed. There are three different buffering types.

n With full buffering, all the table records are loaded into the buffer when one record of the table is
accessed.

n With generic buffering, all the records whose left-justified part of the key is the same are loaded
into the buffer when a table record is accessed.

n With single -record buffering, only the record that was accessed is loaded into the buffer.

n With full buffering, the table is either completely or not at all in the buffer. When a record of the
table is accessed, all the records of the table are loaded into the buffer.

n When you decide whether a table should be fully buffered, you must take the table size, the number
of read accesses and the number of write accesses into consideration. The smaller the table is, the
more frequently it is read and the less frequently it is written, the better it is to fully buffer the table.

n Full buffering is also advisable for tables having frequent accesses to records that do not exist. Since
all the records of the table reside in the buffer, it is already clear in the buffer whether or not a record
exists.

n The data records are stored in the buffer sorted by table key. When you access the data with
SELECT, only fields up to the last specified key field can be used for the access. The left-justified
part of the key should therefore be as large as possible for such accesses. For example, if the first key
field is not defined, the entire table is scanned in the buffer. Under these circumstances, a direct
access to the database could be more efficient if there is a suitable secondary index there.

n With generic buffering, all the records whose generic key fields agree with this record are loaded
into the buffer when one record of the table is accessed. The generic key is a left-justified part of the
primary key of the table that must be defined when the buffering type is selected. The generic key
should be selected so that the generic areas are not too small, which would result in too many generic
areas. If there are only a few records for each generic area, full buffering is usually preferable for the
table. If you choose too large a generic key, too much data will be invalidated if there are changes to
table entries, which would have a negative effect on the performance.

n A table should be generically buffered if only certain generic areas of the table are usually needed for
processing.

n Client-dependent, fully buffered tables are automatically generically buffered. The client field is the
generic key. It is assumed that not all of the clients are being processed at the same time on one
application server. Language-dependent tables are a further example of generic buffering. The
generic key includes all the key fields up to and including the language field.

n The generic areas are managed in the buffer as independent objects. The generic areas are managed
analogously to fully buffered tables. You should therefore also read the information about full
buffering.

n Only those records that are actually accessed are loaded into the buffer. Single -record buffering
saves storage space in the buffer compared to generic and full buffering. The overhead for buffer
administration, however, is higher than for generic or full buffering. Considerably more database
accesses are necessary to load the records than for the other buffering types.

n Single-record buffering is recommended particularly for large tables in which only a few records are
accessed repeatedly with SELECT SINGLE. All the accesses to the table that do not use SELECT
SINGLE bypass the buffer and directly access the database.

n If you access a record that was not yet buffered using SELECT SINGLE, there is a database access
to load the record. If the table does not contain a record with the specified key, this record is
recorded in the buffer as non-existent. This prevents a further database access if you make another
access with the same key.

n You only need one database access to load a table with full buffering, but you need several database
accesses with single -record buffering. Full buffering is therefore generally preferable for small tables
that are frequently accessed.

n Since the buffers reside locally on the application servers, they must be synchronized after data has
been modified in a buffered table. Synchronization takes place at fixed time intervals that can be set
in the system profile. The corresponding parameter is rdisp/bufreftime and defines the length of the
interval in seconds. The value must lie between 60 and 3600. A value between 60 and 240 is
recommended.

n The following example shows how the local buffers of the system are synchronized. A system with
two application servers is assumed.

n Starting situation: Neither server has yet accessed records of the table TAB to be fully buffered.
The table therefore does not yet reside in the local buffers of the two servers.

n Timepoint 1: Server 1 reads records from table TAB on the database.

n Timepoint 2: Table TAB is fully loaded into the local buffer of server 1. Accesses from server 1 to
the data of table TAB now use the local buffer of this server.

n Timepoint 3: Server 2 accesses records of the table. Since the table does not yet reside in the local
buffer of server 2, the records are read directly from the database.

n Timepoint 4: Table TAB is loaded into the local buffer of server 2. Server 2 therefore also uses its
local buffer to access data of TAB the next time it reads.

n Timepoint 5: Server 1 dele tes records from table TAB and updates the database.

n Timepoint 6: Server 1 writes an entry in the synchronization table.

n Timepoint 7: Server 1 updates its local buffer.

n Timepoint 8: Server 2 accesses the deleted data records. Since table TAB resides in its local buffer,
the access uses this local buffer.

n Server 2 therefore finds the records although they no longer exist in the database table.

n If the same access were made from an application program to Server 1, this program would
recognize that the records no longer exist. At this time the behavior of an application program
therefore depends on the server on which it is running.

n Timepoint 9: The moment of synchronization has arrived. Both servers look in the synchronization
table to see if another server has modified one of the tables in its local buffer in the meantime.

n Timepoint 10: Server 2 finds that table TAB has been modified by Server 1 in the meantime. Server
2 therefore invalidates the table in its local buffer. The next access from Server 2 to data of table
TAB therefore uses the database. Server 1 does not have to invalidate the table in its buffer since it
itself is the only one to modify table TAB. Server 1 therefore uses its local buffer again the next time
to access records of table TAB.

n Timepoint 11: Server 2 again accesses records of table TAB. Since TAB is invalidated in the local
buffer of Server 2, the access uses the database.

n Timepoint 12: The table is again loaded into the local buffer of Server 2. The information about
table TAB is now consistent again in both servers and the database.

n Advantages and disadvantages of this method of buffer synchronization:

� Advantage : The load on the network is kept to a minimum. If the buffers were to be synchronized
immediately after each modification, each server would have to inform all other servers about each
modification to a buffered table via the network. This would have a negative effect on the
performance.

� Disadvantage : The local buffers of the application servers can contain obsolete data between the
moments of synchronization.

n This means that:

� Only those tables which are written very infrequently (read mostly) or for which such temporary
inconsistencies are of no importance may be buffered.

� Tables whose entries change frequently should not be buffered. Otherwise there would be a
constant invalidation and reload, which would have a negative effect on the performance.

Unit: Performance during Table Access

At the conclusion of these exercises you will be able to:

• Create indexes

• Maintain the buffering attributes of a table

In their daily work, airline employees need fast access to the data in the employee
administration tables. In this exercise, access to the data in these tables should be
speeded up.

3-1 The combination of first and last names are often used to access the personnel data
of an employee. The last name is more often known (i.e. specified in the access)
than the first name.

Create an index that supports this access. Make sure that the index is created in the
database.

3-2 To set up a flight crew, you have to assign employees (pilots and stewards) to
flights. Create a table in which the employees involved and their functions can be
entered for each flight.

A table with the corresponding structure already exists in the system. Copy this
table SFLCREW to table ZFLCREWxx. Replace the existing data element for the
employee number with your own data element.

Do not forget to activate table ZFLCREWxx.

3-3 Reconsider the settings you made for buffering tables ZDEPMENTxx and
ZFLCREWxx. Keep the following information for using these tables in mind:

The carriers have between 10 and 30 departments. Only a few carriers (maximum
3) are administered in the tables. The data about the crews of completed flights are
rolled out to an archive file every three months. Table ZFLCREWxx therefore has
relatively few entries (at most 5,000 per carrier).

Tables ZDEPMENTxx and ZFLCREWxx are accessed very frequently. Data
records are read repeatedly from these tables.

Administrative employees of only one airline work on one application server. The
data about the flight crew is only of interest within the airline. Administrative
employees of an airline, however, often have to access departmental data of other
airlines, since the airlines share some services.

Start Program BC430_CHECK in Transaction SE38. This program
checks whether your solutions are correct and fills the new table
ZFLCREWxx with sample data needed for later exercises.

If you do the supplementary exercise, only start the program after completing the
supplementary exercise.

3-4 Supplementary Exercise: Using an index on the areas might result in a gain in
performance when accessing the employee data, for example if all pilots are
frequently selected.

In performance measurements on different database systems, however, it was found
there is only a gain in performance for the ADABAS and SQL Server database
systems. Create an index and make sure that it is only created on the ADABAS and
SQL Server database systems.

Unit: Performance during Table Access

3-1 The personnel data of the employees is managed in Table ZEMPLOYxx. Create an
index for this table. It has to contain fields Client, Lastname and Firstname. Since
the last name is usually specified and is much more selective than the first name, it
must be in its index. The order of the fields is then Client, Lastname and then
Firstname.

To create the index:

1) In display mode, go to the maintenance screen of table ZEMPLOYxx and
choose Indexes.

2) In the next dialog box, confirm that you want to create an index.

3) In the following dialog box, enter a three-place index ID and choose
Continue.

4) The maintenance screen for the index appears. Enter a Short description.

5) Choose Table fields. A list of all the fields in the table appears. Mark fields
Client, Lastname and Firstname and choose Copy.

6) The fields are copied from the dialog box to the index in that order. If field
Firstname is before field Lastname, you have to change the order of the
fields. Do this by placing the cursor on the line with field Firstname and
choosing Cut. Now place the cursor on the first free line after field
Lastname and choose Paste.

7) The index is certainly not a unique index since there can be employees with
the same first and last names. There is no reason to create the index only in
certain database systems. You should therefore leave the standard settings
Non-unique index and Index in all database systems.

8) Activate the index. The index is automatically created in the database.

3-2 To copy table SFLCREW:

1) In the initial screen of the ABAP Dictionary, enter SFLCREW in field
Database table. Choose Copy.

2) In the next dialog box, enter the name ZFLCREWxx in field to table and
choose Continue.

3) In change mode, go to the table maintenance screen and replace data
element SEMP_NUM with the data element you created for the employee
number.

4) Activate the table.

3-3 You can maintain the buffering settings for the specified tables in their technical
settings. To do so, go to the maintenance screen for the table in display mode and
choose Technical settings. The desired maintenance screen appears and you can
switch to change mode here.

Since the contents of table ZDEPMENTxx are rarely changed but frequently read, it
is not advisable to buffer the table. Mark Buffering switched on. Since there are no
restrictions on the access and the table is small, you should select full buffering.
Mark Fully buffered.

Activate the technical settings of table ZDEPMENTxx.

The data of table ZFLCREWxx are often read repeatedly. Accesses that change the
contents are rare. You should therefore buffer the table. Mark Buffering switched
on. Usually only the data of one airline is needed on an application server. You
should therefore buffer the table generically with the generic key Client and
Carrier. Mark Generic buffering and select 2 as the number of generic key fields.

Activate the technical settings of table ZFLCREWxx.

3-4 If you do as specified in 3.1, the system displays the index you created in a dialog
box. In this dialog box choose Create. Include fields Client, Carrier and Area in the
index. This is not a unique index either.

To create the index only in the Adabas and SQL Server database systems:

1) Mark For selected database systems.

2) Then press the arrow symbol in this line. Select Selection list. Using the F4
help, select the identifiers for the Adabas (ADA) and SQL Server (MSS)
database systems in the list.

3) Choose Continue.

4) Activate the index.

The index is only created in the database if your training system is running on one
of the selected database systems.

 SAP AG 1999

l Fixed values

l Value table

l What is a foreign key?

l Field assignment using the check field

l Foreign key table / check table

l Semantic attributes of the foreign key

l Text table

Consistency through Input Checks

n The domain describes the value range of a field by specifying its data type and field length. If only a
limited set of values is allowed, they can be defined as fixed values.

n Specifying fixed values causes the value range of the domain to be restricted by these values. Fixed
values are immediately used as check values in screen entries. There is also an F4 help.

n Fixed values are only checked in screens. No check is made when data records are inserted in a table
by an ABAP program.

n Fixed values can either be listed individually or defined as an interval.

n The value range of a field can also be defined by specifying a value table in the domain.

n In contrast to fixed values, however, simply specifying a value table does not cause the input to be
checked. There is no F4 help either.

n If you enter a value table, the system can make a proposal for the foreign key definition.

n A value table only becomes a check table when a foreign key is defined.
If you refer to a domain with a value table in a field, but no foreign key was defined at field level,
there is no check.

n A customer wants to book a flight with American Airlines (AA). This flight with flight number 0017
is to be on November 22, 1997. The booking should be made at counter 8.

n Table SBOOK contains all the flight bookings of the carriers.

n Table SCOUNTER contains all the valid counters of the carriers.

n If an entry is made in field COUNTER of table SBOOK, you must make sure that only valid
counters can be entered. This means that the counters must be stored in table SCOUNTER.

n Question:
Are you allowed to insert the above data record in table SBOOK?

n The flight cannot be booked because American Airlines (AA) does not have a counter 8.

n No data record is selected in table SCOUNTER for the entries in the example. The entry for table
SBOOK is rejected.

n In the ABAP Dictionary, such relationships between two tables are called foreign keys and they
must be defined explicitly for the fields.

n Foreign keys are used to ensure that the data is consistent. Data that has been entered is checked
against existing data to ensure that it is consistent.

n EXAMPLE:
In this example, the foreign key table is table SBOOK. The purpose of the foreign key is to ensure
that only valid counters of carriers can be assigned to a booking. Check table SCOUNTER contains
exactly this information. Each counter is identified with three key fields in this table: MANDT,
CARRID, and COUNTNUM.

n In order to define the foreign key, these three fields are assigned to fields of the foreign key table
(foreign key fields) with which the input to be checked is entered on the screen. In table SBOOK
these are the fields: MANDT, CARRID, COUNTER. The entry is accepted if it represents a valid
counter; otherwise the system will reject it.

n The foreign key is defined for field SBOOK-COUNTER (check field), which means that the entry in
this field is checked. Field COUNTER is therefore called the check field for this foreign key.

 A foreign key is defined for field COUNTER, table SBOOK, resulting in the following field
assignment:
 Check table Foreign key table
 SCOUNTER-MANDT SBOOK-MANDT
 SCOUNTER-CARRID SBOOK-CARRID
 SCOUNTER-COUNTNUM SBOOK-COUNTER

n A combination of fields of a table is called a foreign key if this field combination is the primary key
of another table.

n A foreign key links two tables.

n The check table is the table whose key fields are checked. This table is also called the referenced
table .

n An entry is to be written in the foreign key table. This entry must be consistent with the key fields of
the check table.

n The field of the foreign key table to be checked is called the check field.

n Foreign keys can only be used in screens. Data records can be written to the table without being
checked using an ABAP program.

n Example: A new entry is to be written in table SPFLI (flight schedule). There is a check whether the
airline carrier entered is stored in table SCARR (carrier) for field SPFLI-CARRID. The record is
only copied to table SPFLI (foreign key table) if this is the case. A foreign key is defined for field
SPFLI-CARRID (check field), i.e. the checks are on this field. The corresponding check table is
table SCARR with the primary key fields MANDT and CARRID.

n In the ABAP Dictionary, the same domain is required for the check field and referenced key field of
the check table so that you do not compare fields with different data types and field lengths. Domain
equality is essential. Different data elements can be used, but they must refer to the same
domain.

n The requirement for domain equality is only valid for the check field. For all other foreign key fields,
it is sufficient if the data type and the field length are equal. You nevertheless should strive for
domain equality. In this case the foreign key will remain consistent if the field length is changed
because the corresponding fields are both changed. If the domains are different, the foreign key will
be inconsistent if for example the field length is changed.

n If the domain of the check field has a value table, you can have the system make a proposal with the
value table as check table. In this case a proposal is created for the field assignment in the foreign
key.

n CAUTION!
The constellation that a domain that itself has table SAIRPORT as value table is used following
field SAIRPORT-Airport is correct !! However, a foreign key is never defined on this field
(avoiding a loop).

n In the above example for the foreign key definition for field SBOOK-AGENCYNUM, the system
proposal is as follows based on the value table in the domain:
Check table: SBUSPART
Field assignment:
Check table Foreign key table
SBUSPART-MANDT SBOOK-MANDT
SBUSPART-BUSPARTNUM SBOOK-AGENCYNUM

n This proposal does not do what we want it to do:
Table SBUSPART contains all the business partners of airline carriers. However, only agencies are
allowed for field SBOOK-AGENCYNUM. Table SBUSPART therefore contains invalid data for
this field. The system proposal is therefore incorrect! The right check table is table STRAVELAG. It
is a subset of table SBUSPART due to its foreign key definition on field AGENCYNUM.
You must overwrite the system proposal with table STRAVELAG. If you do not know the
correct check table, the system can help you by listing all the tables in question. This includes
all the tables that have a key field with domain S_ BUSPARNUM.

n The cardinality describes the foreign key relationship with regard to how many records of the check
table are assigned to records of the foreign key table. The cardinality is always defined from the
point of view of the check table.

n The type of the foreign key field defines whether or not the foreign key field identifies a table entry.
This means that the foreign key fields are either key fields or they are not key fields or they are a
special case, namely the key fields of a text table.

n There are the following kinds of foreign key fields:

� not specified: No information about the kind of foreign key field can be given

� no key fields/candidates: The foreign key fields are neither primary key fields of the foreign key
table nor do they uniquely identify a record of the foreign key table (key candidates). The foreign
key fields therefore do not (partially) identify the foreign key table.

� Key fields/candidates: The foreign key fields are either primary key fields of the foreign key
table or they uniquely identify a record of the foreign key table (key candidates). The foreign key
fields therefore (partially) identify the foreign key table.

� Key fields of a text table : The foreign key table is a text table of the check table, i.e. the key of
the foreign key table only differs from the key of the check table in an additional language key
field. This is a special case of the category Key fields / candidates.

n Table SMEAL contains the meals served to the passengers during a flight. The meal names are
maintained in table SMEALT.

n Table SMEALT is the text table for table SMEAL since the key of SMEALT consists of the key of
SMEAL and an additional language key field (field with data type LANG).

n Table SMEALT can contain explanatory text in several languages for each key entry of SMEAL.

n To link the key entries with the text, the text table SMEALT must be linked with table SMEAL using
a foreign key. Key fields of a text table must be chosen for the type of the foreign key fields.

n The foreign key relationship is defined from SMEALT to SMEAL.

n Only one text table can be created for a table.

Unit: Consistency through Input Checks

At the conclusion of these exercises you will be able to:

• Create fixed values

• Set value tables to the correct context

• Define foreign keys

• Use the above mechanism to ensure that the data is consistent

When you enter or change the employee master data, only consistent data, i.e. valid
airline carriers, departments, areas, etc., should be allowed. This will be implemented in
the next exercise.

4-1 The employees of the airlines are divided into administration personnel (A), flight
personnel (F) and service personnel (S). They are assigned to activity areas A, F or S
accordingly. Make sure that only valid activity areas can be entered in table
ZEMPLOYxx.

4-2 Define suitable foreign keys for tables ZEMPLOYxx and ZDEPMENTxx. Use the
tables of the flight model or tables T000 (client) and SCURX (currency code) as well
as your tables to define the foreign keys. Define a foreign key check for each of the
following fields:

 ZEMPLOYxx-Client

ZEMPLOYxx-Carrier

ZEMPLOYxx-Department code

ZEMPLOYxx-Currency

and

ZDEPMENTxx-Client

ZDEPMENTxx-Carrier

Maintain the data for table ZEMPLOYxx and test the effect of your foreign key
relationships.

4-3 Some employees of carriers work in travel agencies in order to sell flights for their
companies there. Enhance table ZEMPLOYxx with a field that documents for each
employee the travel agency in which he or she works.
Enhance table ZEMPLOYxx accordingly and define the foreign key relationship.

The table of all travel agencies is called STRAVELAG.

4-4 Create a text table ZDEPMENTTxx for table ZDEPMENTxx to explain the department
code for the employees of the carriers in all countries.

Create the corresponding table and use data elements SPRAS and S_TEXT for the field
definition.

Define the required foreign key relationships.

Start Program BC430_CHECK in Transaction SE38. This program
checks whether your solutions are correct and fills the new table
ZDEPMENTTxx with sample data needed for later exercises.

Unit: Consistency through Input Checks

4-1 Call the domain maintenance screen for field ZEMPLOYxx-Area. You can do this
by navigating from the table maintenance screen to the corresponding data element
and from here to the domain (by double-clicking). Click on tab page Value range
and enter the following fixed values:

Fixed value Short description

A Administration personnel

F Flight personnel

S Service personnel

Activate your domain.

4-2 To maintain the individual foreign keys, call the maintenance routine for the
particular tables. Click on tab page Fields.

Create foreign key ZEMPLOYxx-Client as follows:

1) Place the cursor on field ZEMPLOYxx-Client. Press Foreign key or choose
Goto à Foreign key.

2) Since you are using domain MANDT for field ZEMPLOY-Client, the
system proposes value table T000 as check table.

3) Have the system make a proposal for the foreign key definition. Check the proposal. The
following fields must be assigned:

Check table CkTabFld For. key table For. key fld

T000 MANDT ZEMPLOYxx Client

4) Enter a short text and define the semantic attributes as follows:

• Type of foreign key fields: key fields/candidates

• Cardinality: 1:CN

5) Save your foreign key.

Create foreign key ZEMPLOYxx-Carrier as follows:

1) Place the cursor on field ZEMPLOYxx-Carrier. Press Foreign key or choose
Goto à Foreign key.

2) Since you are using domain S_CARR_ID for field ZEMPLOY-Carrier, you
can use value table SCARR for the foreign key definition.

3) Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

Check table ChkTablFld For. key table Foreign key field

SCARR MANDT ZEMPLOYxx Client

SCARR CARRID ZEMPLOYxx Carrier

4) Enter a short text and define the semantic attributes as follows:

• Type of foreign key fields: key fields/candidates

• Cardinality: 1:CN

5) Save your foreign key.

Create foreign key ZEMPLOYxx-Department code as follows:

1) To get a proposal for the foreign key definition, you must change the
domain for field ZEMPLOYxx-Department code. This is not absolutely
necessary for later foreign key definitions, but makes the definition easier.
Enter value table ZDEPMENTxx in the domain for this field and activate
the domain.

2) Place the cursor on field ZEMPLOYxx-Department code. Press Foreign key
or choose Goto à Foreign key.

3) Since you are using the domain of field ZDEPMENTxx-Department code
for field ZEMPLOY-Department code, you can use value table
ZDEPMENTxx for the foreign key definition.

4) Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

Check table ChkTablFld For. key table Foreign key field

ZDEPMENTxx Client ZEMPLOYxx Client

ZDEPMENTxx Carrier ZEMPLOYxx Carrier

ZDEPMENTxx Department code ZEMPLOYxx Department code

5) Enter a short text and define the semantic attributes as follows:

• Type of foreign key fields: non-key-fields/candidates

• Cardinality: 1:CN

6) Save your foreign key.

Create foreign key ZEMPLOYxx-Currency as follows:

1) Place the cursor on field ZEMPLOYxx-Currency. Press Foreign key or
choose Goto à Foreign key.

2) Since you are using domain S_CURR for field ZEMPLOYxx-Currency, you
can use value table SCURX for the foreign key definition.

3) Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

Check table ChkTablFld For. key table For. key fld

SCURX CURRKEY ZEMPLOYxx Currency

4) Enter a short text and define the semantic attributes as follows:

• Type of foreign key fields: non-key-fields/candidates

• Cardinality: 1:CN

5) Save your foreign key.

Create foreign key ZDEPMENTxx-Client as follows:

See foreign key ZEMPLOYxx-Client.

Create foreign key ZDEPMENTxx-Carrier as follows:

See foreign key ZEMPLOYxx-Carrier.

In the maintenance screen for table ZEMPLOYxx choose Utilities à Table
contents à Create entries.

Enter data and check whether your foreign key functions correctly using the F4
help.

4-3 Create a new field Agency in your table ZEMPLOYxx as follows:

1) Navigate to the field maintenance screen for table ZEMPLOYxx. Insert a
new field Agency in the field list (press New rows). In the maintenance
screen for table STRAVELAG you can see that the suitable data element is
called S_AGNCYNUM. Assign this data element to your new field
ZEMPLOYxx-Agency.

2) Position the cursor on the field Agency and have the system make a proposal
for the foreign key definition.

3) Check the proposal. The check table is SBUSPART. This check table is not
correct since it contains all the business partners of carriers and not only
agencies.

4) The correct check table is STRAVELAG. It contains the agencies the
carriers work with.

5) You can improve understanding by looking at the definition of table
STRAVELAG in a second session. Field AGENCYNUM has a foreign key
with check table SBUSPART. This means that table STRAVELAG is a
subset of table SBUSPART.
In the foreign key definition for ZEMPLOYxx-Agency, overwrite entry
SBUSBART in the input field Check table with STRAVELAG.

6) Press Copy. The system recognizes the change in the check table and suggests that it create
a proposal. Accept this offer and check the proposal. The following fields must be assigned:

Check table ChkTablFld For. key table For. key fld

STRAVELAG MANDT ZEMPLOYxx Client

STRAVELAG AGENCYNUM ZEMPLOYxx Agency

7) Enter a short description. Enter cardinality 1:CN and mark that the foreign
key fields are not key fields/candidates. Choose Copy.

8) Activate the table.

9) In the maintenance screen for table ZEMPLOYxx choose Utilities à Table
contents à Create entries.
Verify your foreign key using the F4 help.

4-4 Create your text table ZDEPMENTTxx as follows:

1) Copy table ZDEPMENTxx to table ZDEPMENTTxx.

2) Navigate to the field maintenance screen for table ZDEPMENTTxx. Delete
all the fields that are not key fields. Create the following new fields:

Field name Data element Data type, Length

Language SPRAS LANG

Description S_TEXT CHAR40

Field ZDEPMENTxx-Language must be a key field.

3) The foreign keys for fields ZDEPMENTTxx-Client and ZDEPMENTTxx-
Carrier were already correctly defined by copying. You still have to define
the foreign keys of fields ZDEPMENTTxx-Department code and
ZDEPMENTTxx-Language.

4) Place the cursor on field ZDEPMENTTxx-Department code. Press Foreign
key or choose Goto à Foreign key.

5) Since you are using the domain of field ZDEPMENTxx-Department code
for field ZDEPMENTTxx-Department code, you can use value table
ZDEPMENTxx for the foreign key definition.

6) Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

Check table ChkTablFld For. key table For. key fld

ZDEPMENTxx Client ZDEPMENTTxx Client

ZDEPMENTxx Carrier ZDEPMENTTxx Carrier

ZDEPMENTxx Department code ZDEPMENTTxx Department code

7) Enter a short text and define the semantic attributes as follows:

• Type of foreign key fields: key fields of a text table

• Cardinality: 1:CN

8) Save your foreign keys.

9) Place the cursor on field ZDEPMENTTxx-Language. Press Foreign key or
choose Goto à Foreign key.

10) Since you are using domain SPRAS for field ZDEPMENTTxx-Language,
you can use value table T002 for the foreign key definition.

11) Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

Check table ChkTablFld For. key table Foreign key field

T002 SPRAS ZDEPMENTTxx Language

12) Enter a short text and define the semantic attributes as follows:

• Type of foreign key fields: key fields/candidates

• Cardinality: 1:CN

13) Save your foreign key.

14) Activate the table.

 SAP AG 1999

l Activation of ABAP Dictionary objects

l Handling of dependent objects

l Where-used list and R/3 Repository Information
System as seen by the ABAP Dictionary

Dependencies of ABAP Dictionary Objects

n During development, you sometimes need to change an (active) object already used by the system.
Such changes are supported in the ABAP Dictionary by separating the active and inactive versions.

n The active version of an ABAP Dictionary object is the version that the components of the runtime
environment (for example ABAP processor, database interface) access. This version is not initially
changed.

n An inactive version is created when an active object is changed. The inactive version can be saved
without checking. It has no effect on the runtime system.

n At the end of the development process, the inactive version can be made the active version. This is
done by activation. The inactive version of the object is first checked for consistency. If it is
consistent, the inactive version replaces the active one. From now on, the runtime system uses the
new active version.

n The above example shows how the object status changes. An active structure contains three fields. A
field is added to this structure in the ABAP Dictionary. After this action, there is an active version
with three fields and an inactive version with four fields. During activation, the active version is
overwritten with the inactive version. The inactive version thus becomes the active version. After
this action there is only the active version with four fields.

n The information about a structure (or table) is distributed in the ABAP Dictionary in domains, data
elements, and the structure definition. The runtime object (nametab) combines this information into a
structure in a form that is optimized for access from ABAP programs. The runtime object is created
when the structure is activated.

n The runtime objects of the structures are buffered so that the ABAP runtime system can quickly
access this information.

n The runtime object contains information about the overall structure (e.g. number of fields) and the
individual structure fields (field name, position of the field in the structure, data type, length, number
of decimal places, reference field, reference table, check table, conversion routine, etc.).

n The runtime object of a table contains further information needed by the database interface for
accessing the table data (client dependence, buffering, key fields, etc.).

n Runtime objects are created for all ABAP Dictionary objects that can be used as types in ABAP
programs. These are data elements, table types and views, as well as structures and tables.

n If an object that is already active is modified, this can affect other objects that use it (directly or
indirectly). These objects using another object are called dependent objects. On the one hand, it
might be necessary to adjust the runtime objects of these dependent objects to the changes. On the
other hand, a change might sometimes make a dependent object inconsistent.

n For this reason, the dependent objects are determined and activated (if necessary) when an active
object is activated. The active versions of the dependent objects are activated again. In particular,
new and inactive versions of objects using the changed object are not changed.

n Example: When you change a domain, for example its data type, all the data elements, structures
and tables referring to this domain must be activated again. This activation is automatically triggered
when the domain is activated. This ensures that all affected runtime objects are adjusted to the
changed type information.

n If an ABAP Dictionary object has a table as dependent object, its database object as well as its
runtime object might have to be adjusted when the dependent object is activated. The method used
here will be discussed in the next unit.

n Changing an ABAP Dictionary object might also affect its dependent objects. Before making a
critical change (such as changing the data type or deleting a field) you should therefore define the set
of objects affected in order to estimate the implications of the planned action.

n There is a where -used list for each ABAP Dictionary object with which you can find all the objects
that refer to this object. You can call the where-used list from the maintenance transaction of the
object.

n You can find direct and indirect usages of an ABAP Dictionary object with the where-used list. You
also have to define which usage object types should be included in the search (e.g. all structures and
tables using a data element). You can also search for usages that are not ABAP Dictionary objects
(e.g. all programs using a table). The search can also be limited by development class or user
namespace.

n If an object is probably used by several objects, you should perform the search in the background.

n The Repository Information System ABAP Dictionary is part of the general Repository Information
System. It helps you search for ABAP Dictionary objects and their users.

n The where-used list for Repository objects can be called from the information system. The
information system also enables you to search for objects by their attributes.

n In addition to the object-specific search criteria (e.g. buffering type for tables), you can search for all
objects by development class, short description or author and date of last change.

n The object lists created by the Repository Information System are entirely integrated in the ABAP
Workbench. They permit you to navigate directly to the maintenance transactions of the objects
found.

Unit: Dependencies of ABAP Dictionary Objects

At the conclusion of these exercises you will be able to:

• Enhance tables and structures with fields

• Use the R/3 Repository Information System and the where-used list
for ABAP Dictionary objects

Information about the head of the department should be stored in the employee
management system. The change log should also be made more detailed. This exercise
makes the appropriate enhancements to the tables and structures.

5-1 Each department of an airline has a head of department. The assignment between the department and
the head of the department should be mapped in the flight model. Enhance table ZDEPMENTxx
with field Dephead Define a suitable foreign key for this field.

Use the two-step domain concept.

5-2 The change log for tables ZEMPLOYxx and ZDEPMENTxx is not precise enough.
In addition to the person who made the last change and the date of this change, you
also want to record the time of the last change. Have a suitable field inserted in both
tables as easily as possible. Use data element S_TIME.

Make sure that the field is inserted in both tables. Check the activation log of the
tables and structures involved.

Start Program BC430_CHECK in Transaction SE38. It checks
whether your solutions are correct.

5-3 Create a list of the following ABAP Dictionary objects:

5-3-1 All domains with fixed values whose names begin with Z.

5-3-2 All table fields that use data element S_FNAME.

5-3-3 All tables of the flight model (development class BC_DATAMODEL) that
have delivery class A.

5-4 Determine all the programs that use table SFLIGHT.

5-5 What are the data elements created by your neighbors called?

Unit: Dependencies of ABAP Dictionary Objects

5-1 In our model, people are identified by their personnel number. Therefore the new
field to be added to table ZDEPMENTxx must contain personnel numbers (and not
names). The field should therefore refer to the domain for personnel numbers that
you created in the first exercise. Since the person to be managed in this case has a
special role, you should create a new data element and not use the one already
created for the personne l number. You can either first create the data element and
then maintain the table, or create the data element from the table maintenance
screen with forward navigation. The second way is described below:

1) Go to change mode in the maintenance screen for table ZDEPMENTxx.
Click on tab page Fields.

2) Choose New rows.

3) Enter the new field directly following the existing fields by entering a
suitable field name in the first column and entering a name for the data
element to be created in column Field type.

4) Save the table definition.

5) Double click on the name of the new data element to be created. Confirm
that you want to create a data element.

6) Enter a short text for the data element. Enter the domain name that you
already created for the personnel number in field Domain.

7) Click on tab page Field label and enter the corresponding text there.

8) Activate the data element. Go back to the maintenance screen for table
ZDEPMENTxx by choosing Back.

9) Create the foreign key for the new field in the usual manner. The check
table is table ZEMPLOYxx. If you stored this table as a value table for the
domain for the personnel number, the system will make this proposal. If not
you have to enter it yourself. You can copy the system proposal in the field
allocation of the foreign key. The cardinality is 1:CN and the foreign key
fields are not foreign key fields/candidates.

10) Activate the table.

5-2 The fields for the change log can be found in the include structure ZCHANGExx.
The new field should therefore be inserted in this structure. The field is
automatically inserted in tables ZEMPLOYxx and ZDEPMENTxx using the
include mechanism. Proceed as follows:

1) In the initial screen of the ABAP Dictionary, select Data type and enter
ZCHANGExx in the corresponding field. Choose Change.

2) Click on tab page Components. Enter the name for the new field in the first
free row of the component list and enter S_TIME in column Component
type.

3) Activate the structure.

4) With Utilities → Activation log you can find the activation log of the
structure. You can see here that tables ZEMPLOYxx and ZDEPMENTxx
are activated as dependent objects and were enhanced with the new field.

5) Go to display mode in the maintenance screen for table ZEMPLOYxx (or
ZDEPMENTxx). Choose Utilities → Table contents → Create entries. You
can see here that the table was really enhanced with the corresponding field.

5-3 All the exercises can be solved with the Repository Information System. You can
do this from the initial screen of the ABAP Dictionary with Environment
→ Repository Information System. Expand the nodes for the ABAP Dictionary.

1) Expand the node Basic objects. Double-click on Domains. In the selection
screen, enter Z* in the first field. Choose All selections. In the enhanced
selection screen, mark Only domains with fixed values. You can create the
desired list with Execute.

2) Choose Back twice to return to the initial screen of the Repository
Information System. Expand the Fields node. Double-click on Table fields.
Choose All selections and enter S_FNAME in field Data element. You can
create the desired list with Execute.

3) Choose Back twice to return to the initial screen of the Repository
Information System. Node Basic objects is still expanded. Double-click on
Database tables. Enter development class BC_DATAMODEL and (after
choosing All selections) delivery class A in the selection screen. You can
create the desired list with Execute.

5-4 Go to the initial screen of the ABAP Dictionary. Choose Database table and enter
SFLIGHT in the corresponding field. Choose Where-used list. The usage in
programs is already marked (alone) in the next dialog box. You can create the
desired list with Execute.

5-5 You can create the desired list again in the Repository Information System ABAP
Dictionary. Expand the node Basic objects and double-click on Data elements. You
can define your neighbor's data elements with either a pattern search for the name
(if your neighbors adhered to the given naming convention) or with Last changed
by (after choosing All selections). If you have two groups of neighbors, you have to
use Multiple selection. You can restrict the selection with the date of the last change
(the last change should be no earlier than the beginning of the course) at least in the
first case (naming convention).

 SAP AG 1999

l Changes to database tables
l Effect of changes to the table structure

l Table conversion
l Possible problems during conversions

l Append structures

Changes to Database Tables

n Correct access by ABAP programs to a database table is only possible if the runtime object of the
table is consistent with the structure of the table in the database. Each time the table is changed in the
ABAP Dictionary, you must check if the database structure of the table must be adjusted to the
changed ABAP Dictionary definition of the table when it is activated (when the runtime object is
rewritten).

n The database structure does not have to be altered for certain changes to the ABAP Dictionary. For
example, you do not have to change the database structure when the order of the fields in the ABAP
Dictionary is changed (other than for key fields). In this case the changed structure is simply
activated in the ABAP Dictionary and the database structure remains unchanged.

n The database table can be adjusted to the changed definition in the ABAP Dictionary in three
different ways:

� By deleting the database table and creating it again. The table on the database is deleted, the
inactive table is activated in the ABAP Dictionary, and the table is created again on the database.
Data existing in the table is lost.

� By changing the database catalog (ALTER TABLE). The definition of the table on the database is
simply changed. Existing data is retained. However, indexes on the table might have to be built
again.

� By converting the table. This is the most time-consuming way to adjust a structure.

n If the table does not contain any data, it is deleted in the database and created again with its new
structure. If data exists in the table, there is an attempt to adjust the structure with ALTER TABLE.
If the database system used is not able to do so, the structure is adjusted by converting the table.

n The following example shows the steps necessary during conversion.

n Starting situation: Table TAB was changed in the ABAP Dictionary. The length of field 3 was
reduced from 60 to 30 places.

n The ABAP Dictionary therefore has an active (field 3 has a length of 60 places) and an inactive
(field 3 still has 30 places) version of the table.

n The active version of the table was created in the database, which means that field 3 currently has 60
places in the database. A secondary index with the ID A11, which was also created in the database, is
defined for the table in the ABAP Dictionary.

n The table already contains data.

n Step 1: The table is locked against further structure changes. If the conversion terminates due to an
error, the table remains locked. This lock mechanism prevents further structure changes from being
made before the conversion has been completed correctly. Data could be lost in such a case.

n Step 2: The table in the database is renamed. All the indexes on the table are deleted. The name of
the new (temporary) table is defined by the prefix QCM and the table name. The name of the
temporary table for table TAB is therefore QCMTAB.

n Step 3: The inactive version of the table is activated in the ABAP Dictionary. The table is created on
the database with its new structure and with the primary index. The structure of the database table is
the same as the structure in the ABAP Dictinary after this step. The database table, however, does
not contain any data.

n The system also tries to set a database lock for the table being converted. If the lock is set,
application programs cannot write to the table during the conversion.

n The conversion is continued, however, even if the database lock cannot be set. In such a case
application programs can write to the table. Since in such a case not all of the data might have been
loaded back into the table, the table data might be inconsistent.

n You should therefore always make sure that no applications access the table being converted
during the conversion process.

n Step 4: The data is loaded back from the temporary table (QCM table) to the new table (with
MOVE-CORRESPONDING). The data exists in the database table and in the temporary table after
this step. When you reduce the size of fields, for example, the extra places are truncated when you
reload the data.

n Since the data exists in both the original table and temporary table during the conversion, the storage
requirements increase during the process. You should therefore verify that sufficient space is
available in the corresponding tablespace before converting large tables.

n There is a database commit after 16 MB when you copy the data from the QCM table to the original
table. A conversion process therefore needs 16 MB resources in the rollback segment. The existing
database lock is released with the Commit and then requested again before the next data area to be
converted is edited.

n When you reduce the size of keys, only one record can be reloaded if there are several records whose
key cannot be distinguished. It is not possible to say which record this will be. In such a case you
should clean up the data of the table before converting.

n Step 5: The secondary indexes defined in the ABAP Dictionary for the table are created again.

n Step 6: The temporary table (QCM table) is deleted.

n Step 7: The lock set at the beginning of the conversion is deleted.

n If the conversion terminates, the table remains locked and a restart log is written.

n Caution: The data of a table is not consistent during conversion. Programs therefore should not
access the table during conversion. Otherwise a program could for example use incorrect data when
reading the table since not all the records were copied back from the temporary table. Conversions
therefore should not run during production! You must at least deactivate all the applications that
use tables to be converted.

n You must clean up terminated conversions. Programs that access the table might otherwise run
incorrectly. In this case you must find out why the conversion terminated (for example overflow of
the corresponding tablespace) and correct it. Then continue the terminated conversion.

n Since the data exists in both the original table and temporary table during conversion, the storage
requirements increase during conversion. If the tablespace overflows when you reload the data from
the temporary table, the conversion will terminate. In this case you must extend the tablespace and
start the conversion in the database utility again.

n If you shorten the key of a table (for example when you remove or shorten the field length of key
fields), you cannot distinguish between the new keys of existing records of the table. When you
reload the data from the temporary table, only one of these records can be loaded back into the table.
It is not possible to say which record this will be. If you want to copy certain records, you have to
clean up the table before the conversion.

n During a conversion, the data is copied back to the database table from the temporary table with the
ABAP statement MOVE-CORRESPONDING. Therefore only those type changes that can be
executed with MOVE-CORRESPONDING are allowed. All other type changes cause the conversion
to be terminated when the data is loaded back into the original table. In this case you have to recreate
the old state prior to conversion. Using database tools, you have to delete the table, rename the QCM
table to its old name, reconstruct the runtime object (in the database utility), set the table structure in
the Dictionary back to its old state and then activate the table.

n If a conversion terminates, the lock entry for the table set in the first step is retained. The table can
no longer be edited with the maintenance tools of the ABAP Dictionary (Transaction SE11).

n A terminated conversion can be analyzed with the database utility (Transaction SE14) and then
resumed. The database utility provides an analysis tool with which you can find the cause of the
error and the current state of all the tables involved in the conversion.

n You can usually find the precise reason for termination in the object log. If the object log does not
provide any information about the cause of the error, you have to analyze the syslog or the short
dumps.

n If there is a terminated conversion, two options are displayed as pushbuttons in the database utility:

� After correcting the error, you can resume the conversion where it terminated with the Continue
adjustment option.

� There is also the Unlock table option. This option only deletes the existing lock entry for the table
. You should never choose Unlock table for a terminated conversion if the data only exists in the
temporary table, i.e. if the conversion terminated in steps 3 or 4.

n Append structures permit you to append customer fields to a SAP standard table without having to
modify the table definition.

n An append structure is a structure which is assigned to exactly one table. There can be several
append structures for a table.

n When a table is activated, all the active append structures for the table are found and their fields are
appended to the table. If an append structure is created or changed, the table to which it is assigned is
also activated and the changes also take effect there when it is activated.

n Like all structures, an append structure defines a type that can be used in ABAP programs.

n Customers create append structures in their namespace. The append structures are thus protected
against overwriting during an upgrade.

n The new versions of the standard tables are imported during the upgrade. When the standard tables
are activated, the fields contained in the active append structures are appended to the new standard
tables. When append structures are added to a table, you therefore do not have to manually adjust the
customer modifications to the new SAP version of the table (Transaction SPDD) during the upgrade.

n The order of the fields in the ABAP Dictionary can differ from the order of the fields in the database.
You therefore do not have to convert the table when you add an append structure or insert fields in
an existing append structure. The new fields are simply appended to the table in the database. You
can always adjust the structure by adjusting the database catalog (ALTER TABLE).

n The new version of the SAP standard table is activated and the new field is appended to the database
table.

n Please note the following points about append structures:

� No append structures may be created for pooled and cluster tables.

� If a long field (data type LCHR or LRAW) occurs in a table, it cannot be extended with append
structures. This is because such long fields must always be in the last position of the field list, i.e.
they must be the last field of the table.

� If you as a customer add an append structure to an SAP table, the fields in this append structure
should be in the customer namespace for fields, that is they should begin with YY or ZZ. This
prevents name collisions with new fields inserted in the standard table by SAP.

� If you as a partner have your own reserved namespace for your developments, the fields you select
in append structures should always lie in this namespace.

Unit: Changes to Database Tables

At the conclusion of these exercises you will be able to:

• Make changes to existing objects

• Convert tables

• Enhance standard tables with append structures without modifying
them

The original design of employee management is no longer appropriate
after some organizational changes at the airlines. It is therefore necessary
to make small changes to objects already created in previous exercises.
These changes will be made in this exercise.

6-1 The design of table ZFLCREWxx is no longer appropriate. The field for the role of
the employee during the flight is too long. Correct this error by reducing the field
length to 15 places.

Create a new data element ZROLExx and replace the existing data element with the
new one. When you define data element ZROLExx, do not use a domain; instead
enter the data type and length directly when you define the data element. Activate
the table.

6-2 The employees with management or maintenance functions have their workplace at
an airport. They can be reached at this airport using a telephone number. Also
record where the administrative employees work (office). Include this information
in table ZEMPLOYxx.

Create an append structure for table ZEMPLOYxx containing the following
information:

Field Data element

Airport S_AIRPORT

Office S_BUREAUNO

Telephone S_TELNO

Note that the field names in an append structure must lie in the customer
namespace for fields. The field names should therefore begin with ZZ or YY.

6-3 Create a suitable foreign key for field Airport of the append structure.

The table of all airports is called SAIRPORT.

For a complete definition of the foreign key you must also define a field of the
appending table (ZEMPLOYxx).

Start Program BC430_CHECK with Transaction SE38 after this
exercise. The program checks whether your solutions are correct.

Unit: Changes to Database Tables

6-1 Go to change mode in the maintenance screen for table ZFLCREWxx. Take the
following steps.

1) Overwrite data element SEMP_ROLE in column Field type with the name
of your data element ZROLExx. Save the change.

2) Double-click on the name ZROLExx. In the next dialog box, confirm that
you want to create the data element.

3) The maintenance screen for data elements appears. Enter a short text.

4) Click on tab page Definition. Mark Built-in type. You can now enter values
for fields Datatype, Length and Decplaces. Enter CHAR as data type and 15
as length.

5) On tab page Field label, maintain the text for the data element.

6) Activate the data element.

7) You go to the activation log. You are reminded that shortening the field
requires a conversion of table ZFLCREWxx.

8) Go back to the table maintenance screen.

9) Navigate to the database utility with Utilities → Database utility.

10) Choose Activate and adjust database. Confirm the next security query. The
system converts the table.

6-2 To define the append structure for table ZEMPLOYxx:

1) Go to display mode in the maintenance screen for table ZEMPLOYxx.

2) Choose Goto ? Append structure.

3) In the next dialog box, enter the required name for the append structure. It
must satisfy the usual naming conventions. Choose Continue.

4) The maintenance screen for the append structure is displayed. Maintenance
of the append structure is analogous to that for a structure.

5) Enter a short text and insert fields Airport, Office and Telephone with the
specified data elements.

6) Note that all the fields of an append structure must lie in the customer
namespace. The field names therefore must begin with ZZ or YY.

7) Activate the append structure. Display the activation log with Goto ?
Activation log.

Table ZEMPLOYxx is automatically adjusted when the append structure is
activated. The new fields are appended to the existing fields in the database.

6-3 The foreign key must be defined in the append structure maintenance routine. You
can go there either by entering its name as data type in the initial screen of the

ABAP Dictionary and choosing Change or with Goto → Append structure in the
maintenance screen for table ZEMPLOYxx. Take the following steps:

1) Place the cursor on field Airport. Choose the key icon. Copy the system
proposal.

2) In a dialog box you are informed that the foreign key is not completely
specified. Choose Continue.

 The foreign key cannot be fully specified in the append structure since the
key of check table SAIRPORT contains the client field and the field for the
airport code, but the append structure does not contain the client field.

3) The maintenance screen for the foreign key appears. The check table and the
field assignment are already filled due to the system proposal. Enter a
suitable Short description.

4) You now have to complete the field assignment. Remove the marking for
generic mapping. Then enter ZEMPLOYxx in column For. key table and
the name of the client field of this table in column For. key field.

5) Choose Non-key-fields/candidates as the type of foreign key fields (since
the Airport field is not a key field of table ZEMPLOYxx) and as cardinality
C (since not every employee is assigned to an airport) to CN (since several
employees can be assigned to the same airport).

6) Choose Copy and activate the append structure.

 SAP AG 1999

l Why do you need views?
l Creating a view by join, projection and selection

l Join conditions and foreign keys
l Selection of data with views

l Database views

l Maintenance views
l Inner and outer joins

Views

n Data for an application object is often distributed on several database tables. Database systems
therefore provide you with a way of defining application-specific views on data in several tables.
These are called views.

n Data from several tables can be combined in a meaningful way using a view (join). You can also
hide information that is of no interest to you (projection) or only display those data records that
satisfy certain conditions (selection).

n The data of a view can be displayed exactly like the data of a table in the extended table
maintenance.

n The structure of a view and selection of the data using this view will be shown with an example.

n Given two tables TABA and TABB. Table TABA contains 2 entries and table TABB 4 entries.

n The tables are first appended to one another. This results in the cross-product of the two tables, in
which each record of TABA is combined with each record of TABB.

n Usually the entire cross-product is not a meaningful selection. You should therefore limit the cross-
product with a join condition. The join condition describes how the records of the two tables are
related.

n In our example, Field 3 of TABB identifies Field 1 of TABA. The join condition is then:

TABA - Field 1 = TABB - Field 3

n With this join condition, all the records whose entry in Field 1 is not identical to the entry in Field 3
are removed from the cross product. The column for Field 3 in the view is therefore unnecessary.

n Often some of the fields of the tables involved in a view are of no interest. You can explicitly define
the set of fields to be included in the view (projection).

n In our example, Field 4 is of no interest and can therefore be hidden.

n The set of records that can be displayed with the view can be further restricted with a selection
condition.

n In our example, only those records with value 'A' in Field 4 should be displayed with the view.

n A selection condition therefore can also be formulated with a field that is not contained in the view.

n Example: Travel agencies sometimes have to check which customer is booked on which flights. The
corresponding data is distributed on several tables:

SCUSTOM: Customer data, such as the customer number, name and address

SBOOK: Booking data, such as the carrier, flight number and passenger (customer number)

SPFLI: Flight data, such as the city of departure and city of arrival

n You have to create a view on tables SCUSTOM, SBOOK and SPFLI to obtain the booking data.

n In this case the join conditions are:

SBOOK-MANDT = SCUSTOM-MANDT

SBOOK-CUSTOMID = SCUSTOM-ID

SPFLI-MANDT = SBOOK-MANDT

SPFLI-CARRID = SBOOK-CARRID

SPFLI-CONNID = SBOOK-CONNID

n You can get the bookings for a particular customer by selecting the corresponding records for keys
MANDT and CUSTOMID in table SBOOK.

n You can get the flight data from table SPFLI for each booking in table SBOOK by selecting the
corresponding record for the keys MANDT, CARRID and CONNID from table SPFLI.

n You can display only the customer bookings which were not canceled using the view with the
following selection condition:

SBOOK-CANCELED <> 'X'

n The join conditions can also be derived from the existing foreign key relationships. Copying the join
conditions from the existing foreign keys is supported in the maintenance transaction.

n The field names of the underlying table fields are normally used as field names in the view.
However, you can also choose a different field name. This is necessary for instance if two fields with
the same name are to be copied to the view from different tables. In this case you must choose a
different name for one of the two fields in the view.

n You would get the same results using nested SELECT statements:

SELECT * FROM SCUSTOM WHERE ID = CUSTOMID.

SELECT * FROM SBOOK WHERE CUSTOMID = SCUSTOM-ID.

SELECT * FROM SPFLI WHERE CARRID = SBOOK-CARRID AND

 CONNID = SBOOK-CONNID

WRITE: / ‘Customer’, SCUSTOM-NAME, ‘booked on’, SPFLI-CARRID, SPFLI-CONNID,
‘from’, SPFLI-CITYFROM, ‘to’, SPFLI-CITYTO, ‘on’, SBOOK-FLDATE.

ENDSELECT.

ENDSELECT.

ENDSELECT.

n Selection with a database view, however, is usually more efficient than selection with a nested
SELECT statement.

n As of Release 4.0 you can formulate the join condition directly in OPEN SQL.

n A view has type character and can be accessed in programs like all other types and can be used to
define data objects.

n A database view is defined in the ABAP Dictionary and automatically created on the database during
activation. Accesses to a database view are passed directly to the database from the database
interface. The database software performs the data selection.

n If the definition of a database view is changed in the ABAP Dictionary, the view created on the
database must be adjusted to this change. Since a view does not contain any data, this adjustment is
made by deleting the old view definition and creating the view again in the ABAP Dictionary with
its new definition.

n The maintenance status defines whether you can only read with the view or whether you can also
write with it. If a database view was defined with more than one table, this view must be read only.

n The data read with a database view can be buffered. View data is buffered analogously to tables. The
technical settings of a database view control whether the view data may be buffered and how this
should be done. The same settings (buffering types) can be used here as for table buffering. The
buffered view data is invalidated when the data in one of the base tables of the view changes.

n You can include entire tables in database views. In this case all the fields of the included table
become fields of the view (whereby you can explicitly exclude certain fields). If new fields are
included in the table or existing fields are deleted, the view is automatically adjusted to this change.
A new or deleted field is therefore automatically included in the view or deleted from it.

n If an append structure is added to a table included in a view, the fields added with the append
structure are automatically included in the view.

n To include a table in a view, you must enter the character '*' in field View field in the view
maintenance, the name of the table to be included in the field Table and the character '*' again in the
field Field name.

n If you do not want to include a field of the included table in the view, proceed as follows:

� Enter a '-' in the field View field.

� Enter the name of the included table in the field Table.

� Enter the name of the field in the field Field name.

n Data that is distributed on more than one table often forms a logical unit, called an application object.
You should be able to display, change and create the data of such an application object together.
Users usually are not interested in the technical implementation of the application object, such as the
distribution of the data on several tables.

n You can maintain complex application objects in a simple way using a maintenance view. The data
is automatically distributed on the underlying database tables.

n All the tables used in a maintenance view must be linked with a foreign key. This means that the join
conditions are always derived from the foreign key in the maintenance view. You cannot enter the
join conditions directly as in a database view.

n A maintenance interface with which the data of the view can be displayed, changed and created must
be generated from the definition of a maintenance view in the ABAP Dictionary.

n When the maintenance interface is created, function modules that distribute the data maintained with
the view on the underlying tables are automatically generated.

n The maintenance interface is generated with the Transaction Generate Table View (Transaction
SE54) or from the view maintenance screen with Environment -> Tab.maint.generator.

n The set of data that can be selected with a view greatly depends on whether the view implements an
inner join or an outer join.

n With an inner join, you only get those records which have an entry in all the tables included in the
view. With an outer join, on the other hand, those records that do not have a corresponding entry in
some of the tables included in the view are also selected.

n The hit list found with an inner join can therefore be a subset of the hit list found with an outer join.

n Database views implement an inner join. You only get those records which have an entry in all the
tables included in the view.

n Maintenance views implement an outer join.

Unit: Views

At the conclusion of these exercises you will be able to:

• Create views

• Define join conditions

• Define selection conditions

• Buffer database views

The data existing for an employee is distributed on several tables (corresponding to the
relational data model). For some exercises, however, a complete view on this data is
needed. In this exercise the corresponding views are implemented by creating views.

7-1 The flight personnel (all pilots and stewards) must be selected when a flight crew is
set up. Not all the data in table ZEMPLOYxx may be displayed when this data is
accessed. For example, the employee setting up the teams may not see the salary of
the crew members. The telephone number of the employee's department should be
output in case of questions.

7-1-1 Create a suitable database view ZEMPFLYxx that satisfies these
requirements. The following information about an employee should be
displayed:

• Client

• Carrier

• Personnel number

• First name

• Last name

• Telephone number of the department

• Department code

7-1-2 Make sure that only flight personnel can be selected with the view.

7-1-3 You probably will have to access the data using the view frequently. The
selected data should therefore be buffered in order to increase performance.
Choose full buffering as buffering type.

7-2 To set up the flight crews, you have to select the existing employee assignments for
flights. Additional information about the flight, such as the city of departure and
city of arrival, is of particular interest.

7-2-1 Create a database view ZCREWSxx to display which employees are
assigned to what flights.

The following data should be displayed:

• Client

• Carrier

• Flight connection

• Date of flight

• Personnel number

• First and last names of the employee

• Role of the employee on the flight (pilot, copilot, steward)

• Type of airplane

• City of departure of the flight

• City of arrival of the flight

Use the join conditions from the foreign key between tables ZEMPLOYxx
and ZFLCREWxx. Create these foreign keys before defining the view.

Table SFLIGHT contains the information about the type of airplane. The
cities of departure and arrival can be found in table SPFLI.

7-2-2 Enter yourself as an employee of carrier AA (American Airlines) and assign
yourself to a flight as pilot. Then display your cities of departure and arrival
with the view.

7-3 Supplementary Exercise: Write an ABAP program which outputs the crew
assigned to a flight. Select the data with view ZCREWSxx. The following data
should be output:

• Carrier

• Flight

• Date of flight

• City of departure

• City of arrival

• Pilot, copilot

• Steward

If you already attended an ABAP programming course, you can now edit the
output. A clear form for the output would be for example:

<Carrier> <Flight> on <Date_of_flight> from <City_of_departure> to
<City_of_arrival>:

Pilot: xx

Copilot: xx

Stewards: xx, xx, xx

xx is here the first name, last name and personnel number of the corresponding
person.

7-4 Supplementary Exercise: Create a maintenance view with the name
ZPARTNERxx, with which you can easily maintain new business partners. The
business partners are entered in table SBUSPART. A business partner can be either
a flight customer or a travel agency. If it is a travel agency, there will be a
corresponding entry in table STRAVELAG.

The view should also permit you to maintain tables SBUSPART and STRAVELAG
at one time. Include all the necessary fields of the tables in the view.

Generate the maintenance interface. Use the following parameters:

Function group: ZZBC430xx

Authorization group: SUNI

Maintenance type: one-step

Overview screen: 100

Maintain the data of a new travel agency using the enhanced table maintenance
(System → Services → Table maintenance → Ext. table maint.).

Unit: Views

7-1 The view should permit a view on data in tables ZEMPLOYxx and ZDEPMENTxx.
To create the view:

1) In the initial screen of the ABAP Dictionary, mark object type View, enter
the object name ZEMPFLYxx and choose Create.

2) A dialog box appears in which you should select the view type. Mark
Database view and press Choose.

3) Enter a short text in the next screen.

The view should display data about employees (from table ZEMPLOYxx) and
departments (from table ZDEPMENTxx).

4) First enter table ZEMPLOYxx in field Tables.

5) Choose Relationships. All the foreign key relationships of table
ZEMPLOYxx to other tables are listed. Mark the relationship to table
ZDEPMENTxx and choose Copy.

6) The join conditions are copied from the foreign key. In a different mode,
display the foreign key between the two tables and notice the relationship
between the foreign key and the join conditions.

7) You now have to copy fields from the tables to the view. Click on tab page
View fields.

8) Choose Table fields. In the next dialog box, mark table ZEMPLOYxx and
choose Choose.

9) All the fields of table ZEMPLOYxx are listed. Mark fields Client, Carrier,
Personnel number, First name, and Last name. Choose Copy. The fields are
now inserted in the view.

10) Again choose Table fields. In the dialog box, choose table ZDEPMENTxx
and insert fields Department telephone and Department code in the view as
described above.

 Only flight personnel should be selected with the view. You can define this
restriction with a selection condition.

11) Click on tab page Selection conditions.

12) The restriction whether an employee belongs to the flight personnel is
contained in field ZEMPLOYxx-Area. Enter it in columns Table and Field
name.

13) Flight personnel is identified by the value 'F' in field Area. Enter EQ in the
column Operator and 'F' (including the apostrophes) in column Compar.
value.

You now have to buffer the view.

14) Choose Goto ? Technical settings. The maintenance screen for the technical
settings of the view appears. With the exception of some attributes that are
meaningless for views and which are therefore not displayed, the screen is
analogous to the corresponding maintenance screen for tables.

15) Mark Buffering switched on and Fully buffered.

16) Save the technical settings and return to the view maintenance screen.

17) Activate the view.

7-2 The view should permit a common view on data in tables ZFLCREWxx,
ZEMPLOYxx, SFLIGHT and SPFLI. To create the view:

1) First create the foreign key. To do this, go to the maintenance screen for
table ZFLCREWxx. Define a foreign key with check table ZEMPLOYxx
for field EMP_NUM. Use the field assignment proposed by the system. The
cardinality of the rela tionship is 1:CN and the foreign key fields are key
fields.

2) Select object type View in the initial screen of the ABAP Dictionary, enter
the object name ZCREWSxx and choose Create.

3) A dialog box appears in which you should select the view type. Mark
Database view and press Choose.

4) Enter a short text in the next screen.

The view should display data about the assignment of employees to flights (in table
ZFLCREWxx), about employee data (in table ZEMPLOYxx) and about flight data
(in table SFLIGHT). The information about the cities of departure and arrival are in
the flight schedule (table SPFLI) and not directly in table SFLIGHT.

5) First enter table ZFLCREWxx in field Tables.

6) Now include table ZEMPLOYxx in the view and link it with table
ZFLCREWxx. You can create the join conditions from the foreign key
between the tables.

7) Position the cursor on ZFLCREWxx and choose Relationships.

8) A dialog box appears listing all existing foreign key relationships of table
ZFLCREWxx to other tables. Mark the relationship to table ZEMPLOYxx
and choose Copy.

9) Table ZEMPLOYxx is entered in field Tables and the join conditions are
created from the foreign key between the two tables.

Create the following join conditions:

ZEMPLOYxx-Client = ZFLCREWxx-CLIENT

ZEMPLOYxx-Carrier = ZFLCREWxx-CARRID

ZEMPLOYxx-Personnel number = ZFLCREWxx-EMP_NUM

10) Include table SFLIGHT in the view in the same way. Create the join
conditions from the foreign key between tables ZFLCREWxx and
SFLIGHT. The join condition should have the following form:

SFLIGHT-MANDT = ZFLCREWxx-CLIENT

SFLIGHT-CARRID = ZFLCREWxx-CARRID

SFLIGHT-CONNID = ZFLCREWxx-CONNID

SFLIGHT-FLDATE = ZFLCREWxx-FLDATE

11) Include table SPFLI in the view (as described above). The join conditions
can be created from the foreign key between tables SFLIGHT and SPFLI.
The join condition should have the following form:

SPFLI-MANDT = SFLIGHT-MANDT

SPFLI-CARRID = SFLIGHT-CARRID

SPFLI-CONNID = SFLIGHT-CONNID

12) Now include the following fields in the view (see the solution to Exercise
1):

From table ZFLCREWxx fields MANDT, CARRID, CONNID, FLDATE,
EMP_NUM and ROLE.

From table ZEMPLOYxx fields Last name and First name.

From table SFLIGHT field PLANETYPE.

From table SPFLI fields CITYFROM and CITYTO.

13) Activate the view.

To enter yourself as an employee, call Utilities → Table contents → Create entries
from the maintenance screen of table ZEMPLOYxx. You can maintain the data
record here. Enter yourself in table ZFLCREWxx for a flight in the same way. You
can then search for the information from the maintenance screen for view
ZFLCREWxx with Utilities → Content.

7-3 Look at program SVIEW_CREW as a sample solution.

7-4 Proceed as follows:

1) In the initial screen of the ABAP Dictionary, mark object type View, enter
the object name ZPARTNERxx and choose Create.

2) A dialog box appears in which you should select the view type. Mark
Maintenance view and choose Choose.

3) Enter a short text in the next screen.

You want to maintain the data in tables SBUSPART and STRAVELAG together in
the maintenance view. If you wanted to enter a new partner directly, you would first
have to enter it in table SBUSPART. Only then could you enter the corresponding
data in table STRAVELAG (because of the existing foreign key check between
SBUSPART and STRAVELAG). You therefore first have to include table
SBUSPART in the definition of the maintenance view.

4) Enter table SBUSPART in the field Tables. The key fields of this table are
automatically included in the view as fields.

5) Place the cursor in field Tables on entry SBUSPART. Choose
Relationships.

6) A dialog box appears listing all existing foreign key relationships of table
SBUSPART to other tables. Mark the foreign key relationship to table
STRAVELAG and choose Copy.

7) The join conditions are created from the foreign key. The join conditions
have the following form:

SBUSPART-MANDANT = STRAVELAG-MANDT

SBUSPART-BUSPARTNUM = STRAVELAG-AGENCYNUM

8) You now have to include the fields of both tables in the view. Go to tab
page View fields. Position the cursor on table SBUSPART and choose Table
fields. A list of all the fields of the table appears. Choose Select all and then
press Copy.

9) Include all the fields of table STRAVELAG with the exception of fields
MANDT and AGENCYNUM in the view in the same way. These fields are
linked to the corresponding fields of table SBUSPART with the join
conditions and therefore should not appear in the view.

10) Activate the view.

Now generate a maintenance interface for the view.

11) Choose Utilities → Table maintenance generator.

12) Enter authorization group SUNI and function group ZZBC430xx in the next
screen.

13) Mark maintenance type one-step. Select number 0100 as maintenance
screen number of the overview screen.

14) Choose Create. The development class of the function group and the
generated maintenance objects are prompted. In both cases choose Local
object.

15) Call the extended table maintenance with the given menu path and enter the
data of a new travel agency. With the Data Browser (in the menu
environment of the initial screen of the ABAP Dictionary), verify that the
data of the new travel agency was written in tables SBUSPART and
STRAVELAG.

 SAP AG 1999

l Input help in the R/3 System
l ABAP Dictionary object search help

n Selection method of a search help
n Dialog behavior of a search help

n Interface of a search help

l Attaching search helps to fields
l Collective search helps and elementary search helps

l Append search helps

Search Helps

n The input help (F4 help) is a standard function of the R/3 System. It permits the user to display a list
of possible values for a screen field. A value can be directly copied to an input field by list selection.

n The fields having an input help are shown in the R/3 System by the input help key to the right of the
field. This key appears as soon as the cursor is positioned on the corresponding screen field. The help
can be started either by clicking on this screen element or with function key F4.

n If the number of possible entries for a field is very large, you can limit the set of displayed values by
entering further restrictions.

n The display of the possible entries is enhanced with further useful information about the displayed
values. This feature is especially useful if the field requires the entry of a formal key.

n Since the input help is a standard function, it should look and behave the same throughout the entire
R/3 System. The development environment therefore provides tools for assigning a standardized
input help to a screen field.

n The precise description of the input help for a field is usually defined by its semantics. For this
reason, the input help for a field is normally defined in the ABAP Dictionary.

n A number of requirements must be met for the input help of a screen field (search field):

n Information (about the context) known to the system must be taken into consideration in the input
help. This includes entries the user already made in the current input template as well as information
obtained in previous dialog steps. Normally the input help uses the context to limit the set of possible
values.

n The input help must determine the values that can be offered to the user for selection. The data to be
displayed as supplementary information in the list of possible values must also be determined. When
the possible values are determined, the restrictions resulting from the context and from further search
conditions specif ied by the user must also be taken into consideration.

n The input help must hold a dialog with the user. This dialog always contains the presentation of the
possible values (with supplementary information) in list form and the possibility to select a value
from this list. A search template in which the user can define conditions for the values to be
displayed is also sometimes required .

n If the user selects a value, the input help must return it to the search field. The input template often
contains more fields (often only display fields) containing further explanatory information about the
search field. The input help should also update the contents of these fields in this case.

n The ABAP Dictionary object search help is used to describe an input help. The definition of a
search help contains the information the system needs to satisfy the described requirements.

n The interface of the search help controls the data transfer from the input template to the F4 help and
back. The interface defines the context data to be used and the data to be returned to the input
template when a value is selected.

n The internal behavior of the search help describes the F4 process itself. This includes the selection
method with which the values to be displayed should be determined as well as the dialog behavior
describing the interaction with the user.

n As with a function module, search helps distinguish between the interface with which it exchanges
data with other software components and the internal behavior (for function modules, the latter is
defined by the source text).

n It only makes sense to define a search help if there is a mechanism available with which the search
help can be accessed from a screen. This mechanism is called the search help attachment and will
be described later.

n Like the editor for function modules, the editor for search helps also enables you to test an object.
You can thus test the behavior of a search help without assigning it to a screen field.

n The possible values displayed for a field by the input help are determined at runtime by a selection
from the database. When a search help is defined, you must define the database object from which
the data should be selected by specifying a table or a view as the selection method.

n It makes sense to use a view as selection method if the data about the possible values that is relevant
for the input help is distributed on several tables. If this data is all in one table or in the
corresponding text table, you can use the table as a selection method. The system automatically
ensures that the text of the text table is used in the user's logon language.

n If there is not yet a view that combines the data that is relevant for an input help, you must first
create it in the ABAP Dictionary.

n Maintenance views may not be used as the selection method for search helps. Normally a database
view is used. However, you should note that database views (in the R/3 System) are always created
with an inner join. As a result, only those values having an entry in each of the tables involved are
offered in the input help. Sometimes the values should be determined with an outer join. In this case
you should choose a help view as the selection method. You can find more information about help
views in the appendix.

n If the selection method of a search help is client-dependent, the possible values are only selected in
the user's logon client.

n The possible values are presented in the dialog box for displaying the hit list and the user can select
values from here. If the possible values are formal keys, further information should also be
displayed.

n If the hit list is very large, the user should be able to define further restrictions for the attributes of
the entry. Restricting the set of data in this way both increases the clarity of the list and reduces the
system load. Additiona l conditions can be entered in a further dialog window, the dialog box for
restricting values.

n The dialog type of a search help defines whether the dialog box for restricting values should be
displayed before determining the hit list.

n You must define the characteristics to appear on either (or both) of the dialog boxes as parameters
in the search help. You can use all the fields of the selection method (with the exception of the client
field) and the non-key fields of your text table as parameters.

n You define which parameter should appear in which dialog box (in what order) by assigning the
parameters positions in the two dialog boxes. You can thus use different parameters (or different
orders) in the two dialog boxes.

n Types must be defined for search help parameters with data elements. These define the display in the
two dialog boxes. If nothing else is defined, a parameter uses the data element of the corresponding
field of the selection method.

n When you define a parameter of a search help, you must also define whether it should be used to
copy data to the input help (IMPORT parameter) or whether to return data from the input help
(EXPORT parameter).

n The IMPORT and EXPORT parameters of a search help together make up your interface. (This is
also analogous to function modules.)

n You can also define interface parameters that do not appear in either the dialog box for displaying
the hit list or the dialog box for restricting values. This is useful for example when screen fields that
do not appear on either of the two dialog boxes are to be updated when you select a value.

n The location from which the IMPORT parameters of a search help get their values and the screen
fields in which the contents of the EXPORT parameters of the search help are returned are defined in
the search help attachment.

n The search field is a special case. Its contents are only used in the input help if it is a search string
(that is, if it contains a ´*´ or a ´+´) and the parameter linked with the search field is an IMPORT
parameter.

n Parameters that only contain additional information about the search field should not be defined as
IMPORT parameters since the user must otherwise empty the corresponding screen fields each time
before he can define a new value with the input help.

n A search help describes the flow of an input help. The search help can only take effect using a
mechanism that assigns the search help to this field. This mechanism is called the search help
attachment to the field.

n Attaching a search help to a field has an effect on the field's behavior. It is therefore considered to be
part of the field definition.

n The semantic and technical attributes of a screen field (type, length, F1 help, ...) are not normally
defined directly when the input template is defined. On the contrary, only a reference to an ABAP
Dictionary field (usually with the same name) is specified in the Screen Painter. The screen field
takes on the attributes of this field from the ABAP Dictionary.
The same principle is also used to define the input help of a screen field. The search help is thus
attached to the ABAP Dictionary search field and not to the screen field.

n In the search help attachment, the interface parameters of the search help and the screen fields
providing data for the input help or getting data from the input help are assigned to one another. The
search field must be assigned to an EXPORT parameter of the search help at this time. This
parameter should also be an IMPORT parameter so that the user can take advantage of search
patterns that are already entered.

n Fields that do not have a search help attachment can also have an input help since further
mechanisms (e.g. domain fixed values) are also used for the F4 help.

n There are three mechanisms for attaching a search help to a field of the ABAP Dictionary.

n A search help can be attached directly to a field of a structure or table. The definition of this
attachment is analogous to that of a foreign key. You have to define an assignment (between the
interface parameters of the search help and the fields of the structure) for which the system makes a
proposal.

n If a field has a check table, its contents are automatically offered as possible values in the input help.
The key fields of the check table are displayed. If a check table has a text table, its first character-like
non-key field is displayed.
If you are not satisfied with the described standard display of the data of the check table, you can
attach a search help to the check table. This search help is used for all the fields that have this table
as check table. You have to define an assignment between the interface of the search help and the
key of the check table when you define the attachment.

n The semantics of a field and its possible values are defined by its data element. You can therefore
attach a search help to a data element. The search help is then available for all the fields that refer to
this data element. In the attachment you must define an EXPORT parameter of the search help for
the data transfer.

n Attaching a search help to a check table (or a data element) can result in a high degree of reusability.
However, there are restrictions on passing further values via the interface of the search help.

n In order to be able to offer a meaningful input help for as many screen fields as possible, the R/3
System uses a number of mechanisms. If there is more than one such mechanism available for a
field, the one that is furthest left or at the top of the above hierarchy is used.

n In addition to the options described above for defining the input help of a field in the ABAP
Dictionary, you can also define it in the screen field. The disadvantage, however, is that there is no
automatic reuse.

n With the screen event POV you can program the input help of a field by yourself. You can adjust the
design of the help to the standard help using the function modules
F4IF_FIELD_VALUE_REQUEST or F4IF_INT_TABLE_VALUE_REQUEST.
However, you should check to see if the part of the input help that you programmed yourself should
be implemented as a search help exit instead (see appendix).

n You can also attach a search help to a screen field in the Screen Painter. There are some functional
restrictions on this kind of attachment as compared with attachment in the Dictionary.

n You should no longer use the input checks defined directly in the flow logic of the screen, from
which it is also possible to derive input helps.

n The function Technical info is offered in the hit list in the menu of the right mouse key. It can be
used to find out which of the specified mechanisms is being used.

n You sometimes have to search a large amount of data with an input help. This means that you might
have to wait a long time for the possible entries to be displayed, and can also result in a significant
increase in the load on the system.

n When you define a search help, you should therefore check whether you should take measures to
optimize the accessing behavior for the selection method. This is especially true if the selection uses
a view and thus more than one physical table.

n If the number of entries in the selection method is very large, you should restrict the hit list with
further conditions. This also increases the clarity of the hit list. The additional conditions can directly
result from the context, or can be entered in the dialog box for restricting values by the user. The
performance of the input help can frequently be significantly improved by creating an index on the
fields used to formulate the restrictions.

n If the number of entries in the selection method is relatively small, you should always check whether
the selection method can be buffered.

n In the relational data model, entities are usually represented by formal keys. In real life, however,
these entities are often identified by one or more of their attributes. For example, the key for a person
is the personnel number. A person will generally describe another with his name and possibly his
address.

n The attributes used to identify an entity can differ from one user to the next and from situation to
situation. A user wants to use these attributes in an input help to define a value for a field that
requires that a formal key be entered.

n We therefore need search paths permitting access to the data using non-key fields. Several different
search paths should be possible for one field.

n A search path for a field can be implemented with a search help having the form described above. To
describe an input help with more than one alternative search path, a set of search helps can be
combined into a new object in the R/3 System. Since this object is the description of the input help
for a field, it is also called a search help.

n In contrast to the elementary search helps described above, the search helps that combine several
search paths are called collective search helps .

n Collective search helps are sometimes used to map the distribution of the possible entries for a field
into several (disjunct) datasets.

n Like an elementary search help, a collective search help has an interface of IMPORT and EXPORT
parameters with which it exchanges data. Using this interface, the collective search help can be
attached to fields, tables and data elements exactly like an elementary search help.
Only one search help can be attached to a field, table or data element. Several search paths are
therefore attached with a collective search help.

n You can omit the components for describing the dialog behavior and data selection when you define
a collective search help. The included search helps are listed here. You must assign the parameters of
the collective search help to the interface parameters of the included search help for each inclusion.

n A search help can also be included in several collective search helps and at the same time itself be
attached to fields, tables and data elements. A collective search help can also be included in another
collective search help.

n When you use a collective search help, you are offered the elementary search helps contained in the
collective search help as parallel tab pages. If you repeatedly use a collective search help, the tab
page that was last used is automatically active. This is because most users always use the same
search path.

n The set of search paths that are meaningful for an object greatly depends on the particular
circumstances of the SAP customer. The customer often would like to enhance the standard SAP
collective search helps with his own elementary search helps. Release 4.6 provides an append
technique that permits the enhancement of collective search helps without modifications.

n An append search help is a collective search help that is assigned to another collective search help
(its appending object) and that enhances it with the search helps it includes. The append search help
uses the interface of its appending objects.

n The append search help lies in the customer namespace. Normally the search helps included in the
append search help are also created by the customer and lie in the customer's namespace. However,
the required elementary search help might already be provided by SAP, in which case the customer
only has to add it to his own append search help.

n Append search helps are used with SAP to improve component separation. Some SAP collective
search helps therefore already have one or more append search helps in the standard search help.
Customer enhancements should always be made by creating a separate append search help.

n SAP collective search helps often contain elementary search helps that are not required by all
customers. The search helps you do not need can be hidden using an append search help. To do this,
the corresponding search help must be included in the append search help and the hidden flag must
be set.

Unit: Search Helps

At the conclusion of these exercises you will be able to:

• Implement input helps with elementary search helps

• Apply the different features of search help attachments in the ABAP
Dictionary

• Define input helps with more than one search path using collective
search helps

• Add or remove search paths for collective search helps without
modifications

Many management tasks require that you search for employee data. Suitable search
options are needed to do this. Such search options will be implemented in this exercise.

8-1 Go to the display screen for table ZDEPMENTxx and call Utilities → Table
contents →?Create entries. An input template appears in which you can create new
entries for table ZDEPMENTxx (i.e. new departments). The head of the new
department should also be defined here. Make this entry in field Department head.
Maintenance of this field should be supported with an input help that displays the
(personnel number of the) employee.

Verify that the field already has an input help. Find out which input help
mechanism is used here.

The objective is to make the input help for check table ZEMPLOYxx more user-
friendly. Check your success by calling the input help again.

To do this, create an elementary search help ZEMPLOYxx.

The following attributes should appear in the specified order in the hit list:

• Carrier

• First name

• Last name

• Personnel number

• Department code

Because of the large number of employees, you should restrict the displayed values
by specifying the first and/or last names of the person wanted before displaying the
hit list.

Keep in mind that the last name is used more frequently as a restriction than the
first name.

If a carrier was already specified before the input help was called, only its
employees are offered. Otherwise an input field on the input template for the carrier
will be filled when the employee is selected.

Make sure that the search help defined for the check table help of table
ZEMPLOYxx is used and check your success as described above.

8-2 Verify that the input help for field ZFLCREWxx-EMP_NUM is defined with
the search help you just created by calling Create entries for table ZFLCREWxx.
Understand the underlying mechanism.

The input help for field ZFLCREWxx-EMP_NUM shows all employees. However,
you only want to look at flight personnel for the given field. The objective is to
correct this.

You should therefore create a search help ZEMPLOY_FLYxx that only displays
flight personnel. The display attributes of the search help should be identical to
those of search help ZEMPLOYxx. However, since the group of flight personnel is
not too large, the hit list can be displayed immediately in this case. The user should
be able to limit the employees with their first and last names from this list.

Using a suitable search help attachment, make sure that the search help is used for the given field
and check your success as described.

Consider whether you can use work from previous exercises here. Is it necessary
or sensible to create your own view for this exercise?

8-3 Supplementary Exercise: With Create entries, verify that the fields containing the
personnel number of the last person to make the change in tables ZEMPLOYxx and
ZDEPMENTxx do not have their own input help.

The objective here is to define a suitable input help for these two fields. The two
search helps defined so far cannot be used because table changes can only be made
by administrative employees. The input help to be defined should therefore display
only these.

Define search help ZEMPLOY_ADMxx that displays the administrative employees
of the airlines. The search help should have the same display attributes as
ZEMPLOY_FLYxx. However, it is not easy to estimate the number of
administrative employees. Make sure that the search help directly displays the
values found if there are no more than 100. Otherwise you should first offer a
search template in which you can define the employee's airline as well as the first
and last names.

Attach the search help to the data element. Verify that the search help is now used
both in ZEMPLOYxx and in ZDEPMENTxx for the input help of field
Lastchangedby.

Check whether the requirements for field Carrier specified in Exercise 1 are
satisfied. How do you explain this effect? Can you get better results by using a
different type of attachment?

8-4 You might want to offer further search paths for finding employees. To do this, take
the following steps:

• Copy search help ZEMPLOYxx to search help ZEMPLOY_SIMPLExx.

• Convert search help ZEMPLOYxx to a collective search help.

• Include search help ZEMPLOY_SIMPLExx in search help ZEMPLOYxx.

Check if the input help of field ZDEPMENTxx-Supervisor changed due to these
operations.

8-5 You really have to enhance the input help for the employees with another search
path: This search path should give you an overview of all the employees involved
in a flight.

To do this, create another elementary search help ZEMPLOY_FLIGHTxx.
When you use this search help, the user can limit the search to the flight personnel
for certain flights before displaying the possible values. The flight should be
identified by its cities of arrival and departure and by its flight date.
The carrier should be defined as in Exercise 1.
The following information should appear in the hit list for the search help:

• Carrier

• First name

• Last name

• Personnel number

• Flight

• Date of flight
Make sure that the search help you created is available as an alternative search path for finding
employees and verify your results.

Use your solutions from previous units.

8-6 Your system has special requirements when searching for employees:

8-6.1.1 An additional search path that only offers flight personnel should be offered.

8-6.1.2 The search path with which employees can be found by their flights is not
required.

Change the input help for field ZDEPMENTxx-Department head accordingly
without modifying search help ZEMPLOYxx (or a table that is involved).

8-7 Supplementary Exercise: Call the function Create entries for table ZEMPLOYxx.
Verify that the check table help for table ZDEPMENTxx is used for field
Department code. Find out where the displayed text field comes from. Check the
behavior of the input help for field Carrier on the input template.

Now enhance the check table help just tested so that the telephone number of the

department appears in the hit list in addition to the information already displayed.
Take the necessary steps and check your success as usual.

8-8 Supplementary Exercise: This exercise demonstrates the use of help views (see
appendix).

Enhance the search help defined in Exercise 7 so that the last name of the head of
the department also appears in the hit list. Make sure that those departments that
have no description in the user's logon language or for which the Department head
field is empty are also displayed.

Make sure that the column header with the last names of the department heads is
called 'Department head' and not 'Last name' in the hit list. Use data element
S_HEAD.

Check your success in the usual manner.

Unit: Search Helps

8-1 Starting with the maintenance transaction for table ZDEPMENTxx, call the F4 help
as described. Choose Techn. info (with the right mouse button) in the hit list. In
Search help you can find out that the input help is the check table help for table
ZEMPLOYxx and that it is a pure check table help (without a search help and
without a text table).

To create search help ZEMPLOYxx:

1) Choose Search help in the initial screen of the ABAP Dictionary and enter
ZEMPLOYxx in the corresponding field.

2) Choose Create. In the next dialog box, confirm that you want to create an
elementary search he lp.

3) Enter a short text for your search help.

4) The search help should support the search for employees. These are
managed in table ZEMPLOYxx. You therefore have to select this table (or a
view on this table) as selection method. The table is sufficient for this
exercise. Enter it in field Selection method.

5) To obtain the required behavior, choose dialog type Complex dialog with
value restriction.

6) Choose the search help parameters using the F4 help. You should retain the
hit list with the possible search help parameters by selecting Hold list, since
you don't have to call the help again in this case. Select fields Carrier, First
name, Last name, Personnel number and Department code as parameters.

7) Mark all parameters as EXPORT parameters (column EXP). Mark the
attribute to be searched for (i.e. Personnel number) and the hierarchically
higher Carrier as IMPORT parameters (Column IMP). This ensures that a
corresponding entry in the input template is taken into consideration (as
described in the exercise).

8) You can define the hit list by assigning the corresponding position numbers
(e.g. 1, 2, 3, 4, 5) in column LPos.

9) You can define the dialog box for restricting values by assigning position
numbers in column SPos. You should therefore enter positive numbers in
these columns for parameters First name and Last name, where the value of
Last name should be smaller than that of First name.

10) Activate your search help. The search help is not yet effective for field
ZDEPMENTxx-Department head. However, you can try out the search help
immediately with the Test function.

The search help you just created can only improve the check table help of table
ZEMPLOYxx (and thus the input help of field ZDEPMENTxx-Department head) if
it was attached to table ZEMPLOYxx. You can do this as follows:

1) Go to change mode in the maintenance screen for this table. Choose Goto →
Search help → For table. In the next dialog box, enter the name of search
help ZEMPLOYxx. Choose Continue.

2) The proposal created by the system for assigning the search help parameters
to the key fields of the table is probably correct. Check this and copy the
definition.
Activate table ZEMPLOYxx.

3) Call the Create entries function for table ZDEPMENTxx again. The input
help of field Department head should now behave as desired. If you call
Techn. info again, you can confirm that the search help you just defined is in
effect.

8-2 Call the input help as described. With Techn. info you can verify that search help
ZEMPLOYxx is really in effect and that this is because table ZEMPLOYxx is also
check table of field ZFLCREWxx-EMP_NUM.

The search help to be created for the flight personnel should be very similar to the
search help for all employees. It would therefore make sense to copy search help
ZEMPLOYxx to search help ZEMPLOY_FLYxx and then modify it. Alternatively.
search help ZEMPLOY_FLYxx can be created analogously to the method
described above, also making the following changes:

• The short text for search help ZEMPLOY_FLYxx should be adjusted to suit its meaning.

• Change the dialog type to Immediate value display (Dropdown).

The two changes, however, do not solve the main problem in this exercise, namely
that the search help should display only flight personnel. You can do this by
selecting a view that only contains flight personnel as selection method.
You already defined such a view in Exercise 7-1. Entering this view as selection
method and activating the search help will solve the problem. However, this
assumes that you named the view fields the same as the underlying fields of table
ZEMPLOYxx. Otherwise you have to adjust the names of the search help
parameters to the names of the view fields.

The solution just described, however, has one disadvantage. View ZEMPFLYxx is
defined with a join on tables ZEMPLOYxx and ZDEPMENTxx. However, only
information from table ZEMPLOYxx is needed for the search help. An
unnecessarily complex database query is therefore created when you use search
help ZEMPLOY_FLYxx. This can have a negative effect on the performance of the
input help.

You should therefore create a new view having only base table ZEMPLOYxx. This
view can be obtained for example by copying it from view ZEMPFLYxx. You then
have to remove base table ZDEPMENTxx from this copy. Join conditions and view
fields referring to this table are also deleted.
This view should now be entered as selection method for search help
ZEMPLOY_FLYxx.

The search help only becomes effective for field ZFLCREWxx-EMP_NUM when
it has been attached. Go to change mode in the maintenance screen for table
ZFLCREWxx. Position the cursor on field EMP_NUM. Choose Goto → Search
help → For field.
In the next dialog box, enter the name of search help ZEMPLOY_FLYxx. Choose

Continue.
The proposal created by the system for assigning the search help parameters to the
fields of the table is probably correct. Check this and copy the definition.
Activate table ZFLCREWxx.

Check your success as described.

Note: Of course you are not recommended to attach search help
ZEMPLOY_FLYxx to table ZEMPLOYxx. This would have the desired effect for
field ZFLCREWxx-EMP_NUM. However, only flight personnel would be offered
for all other fields to be checked against table ZEMPLOYxx as well. This, however,
is a senseless restriction for example for field ZDEPMENTxx-Department head

Note: Using the default values for search help parameters described in the
appendix, you can also define the required search help ZEMPLOY_FLYxx without
using a view at all. Keep selection method ZEMPLOYxx. Include Area as an
additional parameter in the search help. Leave columns IMP, EXP, LPos and SPos
empty for this parameter. Enter the value 'F' (including the apostrophes) in column
Default value. The search help thus defined also does what you desire.

There is also a way to modify search help ZEMPLOYxx so that it can be used for
the desired function without detracting from the results of Exercise 1. Parameter
Area must be added to search help ZEMPLOYxx here. It must be marked as an
IMPORT parameter (mark column IMP, leave all other columns empty). You can
now attach search help ZEMPLOYxx to field ZFLCREWxx-EMP_NUM. When
you assign the fields to the search help parameters, you have to assign the constant
'F' (including the apostrophes) to parameter Area.
After these actions, the input help of field ZFLCREWxx-EMP_NUM will function
as desired, whereas the input help of field ZDEPMENTxx-Department head is not
affected by these changes.
This solution, however, would not result in a search help for the flight personnel.
You would have to do this again when you solve Exercise 8-6.

8-3 Check if an input help exists for the fields as described. If it does not exist, it is
possible that no foreign key was defined for these fields.

Search help ZEMPLOY_ADMxx to be defined should be very similar to search
help ZEMPLOY_FLYxx. You should therefore create it by copying and then make
the following changes:

• The short text for search help ZEMPLOY_ADMxx should be adjusted to suit its meaning.

• Change the dialog type to Dialog depends on set of values.

• Since the airline should also appear in the dialog box for restricting values, there must be
an entry in column SPos for the corresponding parameters. This parameter must be lower
than both existing parameters. If necessary, increment them.

You also have to make sure that the search help only displays administrative
employees. It is best if you copy the view created in the previous exercise and
replace the value 'F' in the copy with 'A' in the selection condition. After activating
this view you can enter it as selection method for search help ZEMPLOY_ADMxx.
Activate the search help.

The search help will be effective for the two fields if you go in change mode to the
maintenance transaction of the data element you created in Exercise 2-3 for Last

changed by. In Search help, enter ZEMPLOY_ADMxx in field Name. In field
Parameter, enter the name of the field for the personnel number (can be selecting
with the F4 help).
Activate the data element.

Check your success in the usual manner. Copying the airline does not function
correctly in both directions in this case. To check this, enter a value in field Carrier
before calling the input help. It is not used in the input help. Vice versa, selecting a
value for Last changed by does not update the airline.
This effect can be explained in that it is not possible to take further parameters into
consideration when attaching a search help to a data element. In the present case,
attaching the search help to field ZCHANGExx-Changer would not have corrected
this error since field Carrier is not contained in structure ZCHANGExx. This field
therefore could not have been taken into consideration in the attachment.

8-4 Proceed as follows:

1) Copy search help ZEMPLOYxx to search help ZEMPLOY_SIMPLExx and
activate the new search help.

2) In change mode, go to the maintenance screen for search help
ZEMPLOYxx. Choose Edit → Change search help type and confirm it in
the next dialog box.

3) Click on tab page Included search helps. Enter search help
ZEMPLOY_SIMPLExx.

4) Position the cursor on the search help just entered. Choose Parameter
assignment. Have the system make a proposal for the assignment.

5) The proposal is probably correct. To be on the safe side, check it and then
copy it.

6) Activate search help ZEMPLOYxx.

By calling the input help for field ZDEPMENTxx-Department head you can see
that the input help is still functioning. With Techn. info you can verify that a
collective search help is now in effect.

8-5 You already defined a suitable selection method (view ZCREWSxx) for the new
elementary search help ZEMPLOY_FLIGHTxx in Exercise 7-2. You can now
proceed as follows:

1) In the initial screen of the ABAP Dictionary select Search help. Enter the
name ZEMPLOY_FLIGHTxx in the corresponding field and choose Create.
In the next dialog box, confirm that you want to create an elementary search
help.

2) Enter a short text. Choose Complex dialog with value restriction as dialog
type.

3) Enter ZCREWSxx as selection method.

4) Choose the following search help parameters using the F4 help: Carrier,
First name, Last name, Personnel number, Flight number, Flight date,
Departure city and Arrival city.

5) Mark all parameters as EXPORT parameters (column EXP). Mark Carrier
and Personnel number as IMPORT parameters (Column IMP).

6) Assign position numbers for the parameters in column LPos. Leave this
column empty for parameters Departure city and Arrival city.

7) Assign position numbers for parameters Departure city, Arrival city and
Flight date in column SPos.

8) Activate the search help ZEMPLOY_FLIGHTxx.

You now have to include search help ZEMPLOY_FLIGHTxx in collective search
help ZEMPLOYxx. Proceed as follows:

1) In change mode, go to the maintenance screen for search help
ZEMPLOYxx. Click on tab page Included search helps.

2) Enter search help ZEMPLOY_FLIGHTxx directly below search help
ZEMPLOY_SIMPLExx in the list of search helps.

3) Position the cursor on the search help just entered. Choose Parameter
assignment. In the next dialog box, confirm that you want to create a
proposal for the parameter assignment.

4) The parameter assignment proposed by the system is probably correct.
Check this and copy the assignment.

5) Activate search help ZEMPLOYxx.

You can check your success as usual by calling the input help for field
ZDEPMENTxx-Department head.

8-6 Since you want to make the changes without modifying existing objects, you have
to create an append search help for collective search help ZEMPLOYxx. Proceed as
follows:

1) In display mode, go to the maintenance screen for search help
ZEMPLOYxx. Choose Goto → Append search helps.

2) A name for the append search help is proposed in the next dialog box. You
can copy this name.

3) Enter a short description for the append search help.

4) Click on tab page Included search helps.

5) Enter ZEMPLOY_FLYxx and ZEMPLOY_FLIGHTxx in the list of
included search helps. Mark column Hidden for the second entry.

6) Position the cursor on the name of search help ZEMPLOY_FLYxx. Choose
Parameter assignment. In the next dialog box, confirm that you want to
create a proposal for the parameter assignment.

7) The parameter assignment proposed by the system is probably correct.
Check this and copy the assignment.

8) Activate your append search help.

You can check your success as usual by calling the input help for field
ZDEPMENTxx-Department head.

8-7 Call the input help for field ZEMPLOYxx-Department code as described. With
Techn. info you can see that the input help is determined with check table
ZDEPMENTxx of this field. You can also see that there is a text table for the check
table.
In this case too, entries that already exist in field Carrier are taken into
consideration in the F4 help. Similarly, field Carrier is updated when a value is

selected from the hit list.

To make the required enhancement, you must create an elementary search help and
attach it to table ZDEPMENTxx. Since all the data to be used in the input help are
contained in table ZDEPMENTxx and its text table ZDEPMENTTxx, table
ZDEPMENTxx can be used as the selection method of this search help.
Proceed as follows:

1) In the initial screen of the ABAP Dictionary select Search help. Enter a
name for the search help to be created in the corresponding field.

2) Choose Create and confirm that you want to create an elementary search
help in the next dialog box.

3) Enter a short text for your search help.

4) Enter ZDEPMENTxx as selection method.

5) With the input help, select search help parameters Carrier, Department
code, Description and Telephone.

6) Mark all parameters as EXPORT parameters (column EXP). Mark
parameters Carrier and Department code as IMPORT parameters (Column
IMP).

7) Assign position numbers in the hit list for the parameters in column LPos.

8) The check table help can provide upon request a dialog box for restricting
values having the fields Carrier and Department code. You can retain this
behavior by assigning position number for these two parameters in column
SPos.

9) Activate the search help.

10) Go to change mode in the maintenance screen for table ZDEPMENTxx.
Choose Goto → Search help → For table.

11) In the next dialog box enter the name of the search help you just created and
choose Continue.

12) The proposal created for assigning the search help parameters to the key
fields of table ZDEPMENTxx is probably correct. Check this and copy the
assignment.

13) Activate table ZDEPMENTxx.

Check your success in the usual manner.

8-8 You can find the last names of the department heads in table ZEMPLOYxx. The
data of the search help must be selected with the three tables ZDEPMENTxx,
ZDEPMENTTxx and ZEMPLOYxx.
You must therefore select a view as selection method of the search help. The
exercise states that this view must implement an outer join. You must therefore
choose a help view.
To define the help view:

1) In the initial screen of the ABAP Dictionary select View. In the
corresponding field, enter a name beginning with the prefix H_Z for the
help view.

2) Choose Create and confirm that you want to create a help view in the next
dialog box.

3) Enter a short text for the help view.

4) Enter ZDEPMENTxx in the only input field in the area Tables.

5) Position the cursor on the table names just entered and choose
Relationships. In the next dialog box mark the relationship to table
ZEMPLOYxx under Referenced tables and the relationship to table
ZDEPMENTTxx under Dependent tables. Copy this selection.

6) Click on tab page View fields. Some fields that you should not change are
already entered here. You have to include the following fields in the view
using the Table fields function: ZDEPMENTxx-Telephone,
ZDEPMENTTxx-Description and ZEMPLOYxx-Last name.

7) Activate the help view.

You can now adjust the search help to the additional requirements. Proceed as
follows:

1) Go to the maintenance screen for the search help created in the previous
exercise. Replace ZDEPMENTxx with the help view you just created in
field Selection method.

2) Choose the additional search help parameter Last name using the input help.
Assign it a position in the hit list in column LPos. Note that this column
may not contain a duplicate (positive) number. You might therefore have to
adjust the position numbers of the other parameters.

3) To assign the desired title in the hit list of the column containing the last
names of the department heads, mark column Modified for parameter Last
name (it is to the right of column Data element). You can now enter values
for the data element of this parameter. Replace the entered data element
S_LNAME with S_HEAD.

4) Activate the search help.

Check your success in the usual manner.

Note: You can already specify the alternative data element for column Last name
when you define the help view. To do so you must mark column Mod for field Last
name in the maintenance screen for the view fields of the help view. You can then
replace data element S_LNAME with S_HEAD. In this case you can leave out step
4 in the above description.

 SAP AG 1999

Section: ABAP Programming Techniques

 SAP AG 1999

l Components of an ABAP program

l Processors within a work process

l ABAP programs: Types and execution methods

Contents

The ABAP Runtime Environment

An ABAP program contains the following components:

n Source code
...containing the ABAP statements

n Screens
... consist of the screen layout and associated flow logic . You normally create the layout of a screen
using the Screen Painter. However, there are special kinds of screens, called selection screens and
lists, whose layout and flow logic are designed exclusively using ABAP statements.

n Interface
...contains all of the entries in the menus, the standard toolbar, the application toolbar, and function
key settings. It contains titles and statuses. A status is a collection of function key settings and
menus.

n Text elements
... are language-specific. They can be translated either directly from the text element maintenance
tool, or using a special translation tool.

n Documentation
... is also language-specific. Always write documentation from the user's point of view. If you want
to document the programming techniques you have used, use comments in the program code instead.

n Variants
... allow you to predefine the values of input fields on the selection screen of a program.

ABAP is an event-driven programming language, and as such is suited to processing user dialogs. The
source code of an ABAP program consists of two parts:

n Declarations
Declarations include the statements for global data types and objects, selection screens, and (in
ABAP Objects) local classes and interfaces within the program.

n Processing Blocks (indivisible program units)
Each processing block must be programmed as a single entity. There are two basic kinds of
processing blocks:
Event Blocks :
Event blocks are introduced by an event keyword. They are not concluded explicitly, but end when
the next processing block starts.
Dialog Modules and Procedures:
Dialog modules and procedures are introduced and concluded using keywords.
The contents of all processing blocks form the processing logic.

When you generate the program, these parts are compiled to form the load version. This is interpreted
at runtime.

 In the simplest case, your program will consist of a single source code unit that contains all of the
relevant processing blocks. To make your programs easier to understand, and to increase the degree
to which your programs can be reused, you should use include programs.

 When you create a program from the Object Navigator, the system proposes to create a TOP include
for the program. This option is particularly useful when you create module pools.

n When you create a processing block, the system always asks in which include program it should
insert the relevant ABAP code.

n If the include program does not exist, the system creates it and inserts an INCLUDE statement for it
in the main program.

n If you name your program according to the naming convention SAPM{Y|Z}<rem_name> and then
create a new processing block, the system proposes the name of the new include using the following
convention:
M{Y|Z}<rem_name><abbrev><num>.

n When you create further processing blocks, the system automatically proposes the appropriate
include program.

 In this way, the system helps you to create programs whose structures are easy to understand. The
standardized naming convention will help you to find your way around other people's programs.

The R/3 System is based on a client/server architecture with the three tiers database server, application
server, and presentation server. It allows a large number of users with inexpensive and relatively slow
machines to take advantage of a smaller number of faster, expensive application servers by occupying
work processes on them. Each work process on an application server is assigned to a work process on
the (expensive, even more powerful) database server.

User dispatching is the process by which the individual clients at presentation server level are assigned
to a work process for a particular length of time. The work process in turn is linked to a work process in
the database. Once the user input from a dialog step has been processed, the user and program context
is "rolled out" of the work process so that the work process can be used for another dialog step from
another user while the first user is making entries on the next screen. This makes the best possible use
of the resources available on the application server.

The three-tier architecture makes the system easily scalable . To add extra users, you merely have to
install more inexpensive presentation servers. You can also increase the efficiency of the whole system
by adding extra application servers with their associated work processes.

 The work processes in the middle layer - often called the application server - are software
components that are responsible for processing dialog steps. They are implemented as "virtual
machines". This ensures that ABAP programs can run independently of the hardware platform on
which the R/3 System is installed.

 Work processes contain other software components that are responsible for various tasks within a
dialog step:

n Screen processor
The screen processor is responsib le for communication between the SAPgui and the work process
(via the dispatcher). It processes the screen flow logic and passes field contents to the processing
logic in the program.

n ABAP processor
The ABAP processor executes the processing logic in the ABAP program and communicates with
the database interface. The screen processor tells the ABAP processor which part of the program
(module) needs to be processed (according to the screen flow logic).

n Database interface
The database interface is responsib le for the communication with the database. It allows access to
tables and Repository objects (including ABAP Dictionary objects), controls transaction execution
(COMMIT and ROLLBACK), and administers the table buffer on the application server.

 The individual processing blocks are called in a predetermined sequence at runtime, regardless of the
position in which they occur in the program. Once a processing block has been called, the
statements within it are processed seqeuentially.

n Event block
If the system program or a user triggers an event for which the corresponding event block has been
written in the processing logic, that event block is processed. The program flow is controlled either
by the system or the user.

n Modularization unit
When the system encounters a modularization unit call within a processing block, it calls the
corresponding processing block. In this case, the program flow is controlled by the programmer.

 Assigning transaction codes
To allow a module pool to be executed, you must assign a transaction code to it. You can (but do
not have to) assign a transaction code to an executable (type 1) program.

 You assign a dialog transaction to a module pool. The following steps occur when you run a dialog
transaction:

n First, the LOAD-OF-PROGRAM event is triggered. Once this event block has been executed, the
ABAP processor passes control to the screen processor. For an example of how to use this new
event, refer to the example in the Function Groups and Function Modules unit.

n The screen processor processes the intial screen specified in the transaction definition. The initial
screen can be a selection screen (regardless of the program type). The PROCESS BEFORE
OUTPUT event is triggered and control passes to the ABAP processor, which processes the first PBO
module.

n The ABAP processor executes the processing block and returns control to the screen processor.
Once all PBO modules have been processed, the contents of any ABAP fields with identically-
named corresponding fields on the screen are transported to the relevant screen fields. Then the
screen is displayed (screen contents, active title, active status).

n Once the user has chosen a dialog function (such as ENTER), the contents of the screen fields are
transported back to the corresponding identically-named fields in the ABAP program, and the
processing blocks that belong to the PROCESS AFTER INPUT event are processed. The system
then continues by processing the next screen.

 The only processing logic that is processed in a dialog transaction are the statements belonging to the
LOAD-OF-PROGRAM event and those occurring in the various modules.
However, you can also use the statement LEAVE TO LIST-PROCESSING. This makes all of the
list processing events available to you.

 You can only assign a report transaction to an executable (type 1) program. In a report transaction,
the system calls particular events in a fixed sequence, and calls a series of standard screens. The
following steps occur when you run a report transaction:

n First, the LOAD-OF-PROGRAM event is triggered.

n Then the INITIALIZATION event is triggered.

n Next, the standard selection screen is called (if you have declared one), and its corresponding events
are triggered: AT SELECTION-SCREEN OUTPUT and AT SELECTION-SCREEN.

n Next, the START-OF-SELECTION event is triggered. (This is the default event block. If you omit
this event keyword, all statements that are not assigned to another processing block are treated as
though they belong to it.)

n If you have attached a logical database to your program, the system triggers the GET <node> and
GET <node> LATE events.

n Then the END-OF-SELECTION event is triggered.

n You can also include screen processing (as in module pools) by using the CALL SCREEN statement.

 You can start executable (type 1) programs without using a transaction code. You can also run them
in the background.

 If you fill the list buffer of the basic list (using the WRITE, SKIP, and ULINE statements), two
further events are triggered: At the beginning of each new page, the TOP-OF-PAGE event is
triggered, and the END-OF-PAGE event is triggered at the end of each page.

 Once the END-OF-SELECTION event block has been processed, interactive list processing starts.
The system displays the formatted basic list . The user can now trigger further events.

n If the user double-clicks a line or triggers the function code PICK in some other way, the AT
LINE-SELECTION event is triggered. In the standard list status, this function code is always
assigned to function key <F2>. In turn, <F2> is always assigned for a mouse double -click.

n If you fill the list buffer of the detail list (of which you may have up to twenty) using the WRITE,
SKIP, and ULINE statements, two further events are triggered:
At the beginning of each new page, the TOP-OF-PAGE DURING LINE-SELECTION event is
triggered, and the END-OF-PAGE DURING LINE-SELECTION event is triggered at the end of
each page. (These events are not displayed in the graphic.) Interactive list processing is started
again. The system displays the formatted detail list (screen 120).

n Any other function codes that have not been "trapped" by the system trigger the event AT USER-
COMMAND.

 The following types of programs cannot be executed directly. Instead, they serve as containers for
modularization units that you call from other programs. When you call one of these modularization
units, the system always loads its entire container program.
Further information about this is provided later on in the course.

n Function group (type F)
A function group can contain function modules, local data declarations for the program, and screens.
For further information, refer to the Function Groups and Function Modules unit.

n Include program (type I)
An include program can contain any ABAP statements.
 For further information, refer to the Program Organization section of this unit.

n Global interface (type J)
An interface pool can contain global interfaces and local data declarations.
 For further information, refer to the Introduction to ABAP Objects unit.

n Global class (type K)
A class pool can contain global classes and local data declarations.
 For further information, refer to the Introduction to ABAP Objects unit.

n Subroutine pool (type S) (external subroutines)
A subroutine pool can contain subroutines and local data declarations.
 Caution! Type S programs are obsolete and have been replaced by function groups .

Unit: ABAP Runtime Environment
Topic: Creating Repository Objects

At the conclusion of these exercises, you will be able to:

• Create development classes

• Create programs

You are a programmer for an airline consortium, and it is your job to
write analysis programs for several airlines.

1. Log onto the operating system and then to the R/3 training system (your instructor will tell
you its name) with the user name BC402-##. Enter a new password.
is your two-digit group number.

2. You need to create a development class as a container for your Repository objects. The
development class must be assigned to a change request. You also need to create two
programs.
is your two-digit group number.
Model solutions:
BC402
SAPBC402_TYPS_COUNTERLIST1
SAPBC402_TYPS_FLIGHTLIST1

2-1 Create the development class Z##_BC402.

2-2 Create an executable (type 1) program Z##_BC402_COUNTERLIST1
without a TOP include.

2-3 Create an executable program Z##_BC402_FLIGHTLIST1
without a TOP include.

From this point onwards, you should always work with the Object
Navigator. This provides you with an overview of all of the
Repository objects in your development class. From here, you can
select objects you want to work on.

Unit: ABAP Runtime Environment
Topic: Creating Repository objects

2-2 Model solution SAPBC402_TYPS_COUNTERLIST1

&---
*& Report SAPBC402_TYPS_COUNTERLIST1 *
*& *
&---
*& solution to exercise 1 data types and data objects . *
*& *
&---

REPORT sapbc402_typs_counterlist1.

2-3 Model solution SAPBC402_TYPS_FLIGHTLIST1

&---
*& Report SAPBC402_TYPS_FLIGHTLIST1 *
*& *
&---
*& solution of exercise 2 datatypes and dataobjects *
*& *
&---

REPORT sapbc402_typs_flightlist1.

 SAP AG 1999

l Kinds of data types

l Defining data types

l Kinds of data objects and how to declare them

l Field symbols and references

Contents

Data Types and Data Objects

To work with data at runtime, you need to store it in the program at runtime and address it from your
program. The system needs to know the type of the data (for example, character string, whole number,
table consisting of name, currency amount, and date, and so on). A data object is a named memory
area that is structured according to a particular data type . The type normally specifies all of the
attributes of the data object. Using the name, you can access the contents, that is the data, directly. The
name may be a compound name consisting of more than one single name.

You could regard a data type as being similar to the construction plans for a building. The plans could
be used for more than one building, which would all have the same type, but you would still be able to
tell them apart. Suppose the buildings were used for storage. You would find a particular item using
the address of the building, and knowing on which floor, in which room, and in which shelf or bin it
was stored. You would have to consider carefully when drawing up your plans the kinds of things you
would want to store in your buildings.

The ABAP language is very flexible. Some of the attributes of a data type do not have to be specified
until you use it to declare a data object, or, in some cases, not until runtime. It also allows you to use
data objects that you have already declared or ABAP Dictionary objects as the basis for new types or
data objects.

There are various places in the ABAP Workbench in which you can store and define data types:

n ABAP Dictionary
The ABAP Dictionary contains 23 predefined data types, which serve as a basis for all other ABAP
Dictionary objects (such as domains, data elements, data types, and so on). These ABAP Dictionary
types are available for use globally throughout the system.
As well as the Dictionary objects used to access tables (tables, views, search helps, and so on), you
can also (from Release 4.5) create global data types in the ABAP Dictionary.
Previously, the only way to define global data types was to use a type group. Type groups are still
supported, but the concept is actually obsolete now that it is possible to define global data types in
the ABAP Dictionary.

n ABAP programs
Data types that you define in an ABAP program are local, that is, only valid within that program.
You use the ten predefined ABAP data types as a basis for your own types.

Both global and local data types fit into the schematic diagram above. The names used above should
make it easier for you to understand the following slides and the online documentation.

n The technical attributes of an elementary field are defined by an elementary type .

n A structure type consists of components.

n A table type consists of a line type , access type , key definition, and key type .

n In certain exceptional cases, types only desscribe part of the attributes of a data object. For example,
a table type does not specify how many lines the table will have. This attribute is not set until
runtime, and only affects that one data object.

n You can nest types "deeply" to any level. That means:
A structured type can have components that are themselves structured or table types. This enables
you to construct very complex data types. However, the smallest indivisible unit is always an
elementary type.

The ABAP Dictionary contains a series of predefined data types to represent the external data types of
the various database systems.

n When you define a field with type CURR in the ABAP Dictionary, you must always link to a
currency. You do this by specifying a field with the type CUKY. (When you create a list, you use the
CURRENCY addit ion in the WRITE statement). The same applies to type QUAN, which must always
link to a field with type UNIT.

n Type FLTP is useful for calculations involving very large or very small numbers. This usually only
occurs in scientific applications or when making estimates.

n For business calculations, you should always use type DEC or QUAN. The arithmetic is the same as
that to which you are used "on paper" - the system calculates precisely to the last decimal place.

n A typical use for type NUMC is for postal code fields - fields in which only digits should be allowed,
but with which you do not want to perform calculations. (It is, however, possible to use conversions
and calculate with alpha-numeric data.) For further details about arithmetic and conversions, refer to
the Statements unit.

n Based on their underlying data type, some data objects are displayed according to formatting
options (for example, country-specific date formats). Each user defines these formats in their user
defaults.

All of these data types apart from string and rawstring are elementary types. For technical reasons,
these are classified as nested types. This has consequences for certain uses, such as the INTO clause
of a SELECT statement.

n Data element
Data elements have a business meaning (field label, help text, and so on). Up to and including
Release 4.0, it was only possible to specify the technical attributes of a data element by specifying a
domain. Each domain had to have a predefined Dictionary type assigned to it. This is still possible.
However, it is now possible to enter a predefined Dictionary type directly. If you want to ensure that
the technical attributes of a group of data elements can only be changed centrally, you should
continue to use domains.
As part of ABAP Objects , you can now designate a data element a reference type and declare
global types for references to global classes or interfaces. Note that, in this case, the type of the data
element is no longer elementary, but nested. The same applies when you use the predefined types
string and rawstring.

n Structure
Each component of a structure must have a name so that it can be addressed directly. For the type of
a component you may specify a predefined Dictionary type, a data element, a structured type, or a
table type. This allows you to construct nested data types. Note the consequences we have already
mentioned with particular kinds of access. For example, if a structure contains a component with the
type reference or string, you cannot use INTO CORRESPONDING FIELDS OF in a SELECT
statement. Instead, you must list the components in the INTO clause.

The data type of an internal table is fully specified by its:

n Line type
The line type defines the attributes of the individual fields. You can specify any ABAP data type.

n Key definition
The key fields and their sequence determine the criteria by which the system identifies table lines.

n Key type
You can define the key as either unique or non-unique . The uniqueness of the key must be
compatible with the access type you have chosen for the table. If the key is unique, there can be no
duplicate entries in the table.

n Access type
Unlike database tables, the system assigns line numbers to certain kinds of internal tables. This
means that you can use the index to access lines as well as the key. We sometimes use the term
"table type " to refer to this.

We can also divide up internal table types into three kinds by their access type:

n Standard tables. In a standard table, you can access data using either the table index or the key.
Since the key of a standard table always has to be non-unique for compatibility reasons, the system
searches the whole table each time you access it using the key. Consequently, you should always use
the index to access a standard table whenever possible.

n Sorted tables. In a sorted table, the system automatically stores the entries and inserts new entries
sorted by the table key. The system uses a binary search on the table when you access it using the
key. You can specify the key of a sorted table as unique. You will often use the key to access a
sorted table, but it is also possible to use the index. Standard tables and sorted tables are generically
known as index tables.

n Hashed tables. You can only access a hashed table using the key. There are certain conditions
under which you can considerably reduce the access times to large tables by using a hashed table.
The key of a hashed table must always be unique.

You do not have to specify the access type fully. You can either omit it altogether, or specify it
partially (index table). The table type is then generic, and, by omitting certain attributes, we can use
it to specify the types of interface parameters.

To find out the access type of an internal table at runtime, use the statement DESCRIBE TABLE
<itab> KIND <charfield>.

The line type specifies the semantic and technical attributes of the individual fields in a line. As
already mentioned, you can specify either another table type, a structured type, or an elementary
type. If you only use an elementary type, the internal table will have a single column with no
component name (unstructured table).

Key definition

n The default key consists of all character (alphanumeric) components of the line type that are not
themselves table types. In this case, it would be empty (only possible with standard tables).

n It is particularly useful to name the line type , that is, the whole line, as the key if the table type is
unstructured.

n You can also name key components and their sequence explicitly.

n A final possibility is not to specify the key, leaving it generic instead.

Key type

As well as defining the key as unique and non-unique , you can specify a generic key type by omitting
the specification.

For further information about choosing the right table type attributes, refer to the Internal Table
Operations unit.

n Type F is useful for calculations involving very large or very small numbers. This usually only
occurs in scientific applications or when making estimates.

n For business calculations, you should always use type P. The arithmetic is the same as that to which
you are used "on paper" - the system calcualtes precisely to the la st decimal place.

n A typical use for type N is for postal code fields - fields in which only digits should be allowed, but
with which you do not want to perform calculations. (It is, however, possible to use conversions and
calculate with alpha-numeric data.) For further details about arithmetic and conversions, refer to the
Statements unit.

n Unlike type C, N, or X fields, the length of a string or hexadecimal string is not statically defined.
Instead, it is variable, and, at runtime, will always take the length of its current contents. The
memory is managed dynamically by the system. Strings and hexadecimal strings can have any
length.

n You cannot currently use STRING or XSTRING to specify the type of a screen field.

You can only define a new data type based on an existing type. Use the TYPE addition to refer to data
types, that is, predefined ABAP types, user-defined local types, predefined ABAP Dictionary types,
user-defined ABAP Dictionary types, or fields or entire lines from database tables. If you refer to
an ABAP Dictionary type, changes to the global type are automatically passed on to your type. This
ensures that your type is always compatible with the corresponding ABAP Dictionary object. Types
that refer to the ABAP Dictionary also have the advantages of formatting options, field help, and
possible entries help.
The underlying ABAP Dictionary data type is converted into the corresponding ABAP data type
when the program is generated. For further information, refer to the ABAP syntax documentation
for the TABLES statement.

If a global and a local data type both have the same name, the system uses the local type .

Use the LIKE addition to refer to the type of a data object that you have already declared. This also
applies to the next slides.

Elementary types
The length specification after the type name for ABAP data types C, N, and X specifies the number of
characters in the type. For type P fields, you can also set the number of decimal places. If you omit
these specifications, the system uses the default values (refer to the chart under Predefined ABAP
Types).

Structured types
Use the statements

TYPES BEGIN OF <structype>.

and

TYPES END OF <structype>.

to enclose the list of components in your structure. Any type definitions may appear between the
two statements. You can also construct nested data types.
To refer to the line type of a table type or an internal table, use the additions TYPE LINE OF
<itabtype> or LIKE LINE OF <itab> respectively.

Table types
Similarly to when you create table types in the ABAP Dictionary, you must specify various attributes
here:

n The line type after ... TABLE OF (as always, if you refer to a data type, use TYPE, if you refer to
a data object that has already been declared, used LIKE);

n The access type before TABLE OF ... (If you omit this, the system uses the default access type,
which is standard. You can also specify a generic table type using INDEX or ANY.);

n The key definition after the key type (to specify the default key, use the DEFAULT KEY addition);
You can also specify fields from the (flat) line type and specify the sequence explicitly. If the table
is unstructured, you can use the TABLE LINE addition);

n The key type after ...WITH (UNIQUE or NON-UNIQUE).
If you omit the key specification entirely, the system uses the non-unique default key.

n For information about the optional INITIAL SIZE <n> addition, refer to the page Declaring
Internal Tables.

We have not yet introduced reference types. These will be discussed in conjunction with field symbols
and references.

Similarly to when you define data types, you must specify a type when you declare data objects. You
can do this in one of two ways:

n Either by referring to a data type (using the TYPE addition), or a data object in the program that has
already been declared (using the LIKE addition). You can use exactly the same syntax variants in
the DATA statement as when you declare local data types using the TYPES statement.

n You can also construct a field, structure, or internal table directly in a DATA statement, without
having to define your own data type first.

In most cases, you will want to change the value of data objects at runtime. They are therefore also
known as variables. You can assign a starting value to a data object using the VALUE addition. If
you do not, the system assigns it the initial value appropriate to its type (see the table under
Predefined ABAP Types).

There are two further statements that you can use to declare special data objects:

n STATICS declares local variables in a subroutine whose values are retained in subsequent
subroutine calls instead of being initialized again. For further information, refer to the Subroutines
uint.

n CLASS-DATA, an ABAP Objects statement, allows you to declare static class attributes.

With the exception of the WITH HEADER LINE addition, the syntax for declaring internal table
objects is exactly the same as that used to define table types or other kinds of data objects. The addition
allows you to create an internal table with a header line . However, this is an obsolete programming
technique, and you should consequently no longer use it. For more information about header lines,
along with general information about internal tables, refer to the Internal Table Operations unit.

Dynamic table extension
Unlike arrays in other programming languages, the number of lines in an internal table is increased
automatically by the ABAP runtime environment as required. You therefore do not have to worry
about managing the size of the table, but only about inserting, reading, or deleting lines. This makes
chained lists redundant in ABAP.

INITIAL SIZE addition
When you create an internal table, the system allocates 256 bytes to it. The system then allocates a
block of 8 KB to the table when you first add data, followed by further 8KB blocks as required. If you
are only expecting to place a few lines in your table, or are using nested internal tables, it may be worth
restricting the first automatic extension using the addition INITIAL SIZE <n>. You may do this
either in the data object definition or in the type definition. <n> is the maximum number of lines that
you are expecting to put in the table. When the system first allocates memory, it allocates the product
of <n> and the length of the line. In the second step, it allocates twice that amount, and then in
subsequent steps, it allocates between 12 and 16 KB.

Selection screens are a special kind of screen whose layout you program directly in the processing logic
using ABAP statements . In an executable (type 1) program, there is a standard selection screen
(screen number 1000). The definition of the standard selection screen does not require the statements
that normally mark the beginning and end of a selection screen definition, neither does it require an
explicit call. The following statements allow you to easily create screens on which the user can enter
data.

n PARAMETERS creates an input field on the selection screen with the type you specify and a variable
in the program with the same name. You cannot use f, string, xstring, or references to specify
the type.

n SELECT-OPTIONS creates a pair of "from - to" fields on the screen, in which it is possible to enter
sets of complex selections for a specified variable. The values that the user enters are stored in an
internal table that the system creates automatically. The internal table has four fields sign,
option, low, and high.

n You can also create this kind of table using …{TYPE|LIKE} RANGE OF … . However, tables
declared in this way are not linked to the selection screen.

For further information about these statements, refer to the courses BC405 (Techniques of List
Processing and ABAP Query) and BC410 (Programming User Dialogs).

Constants and literals are fixed data objects - you cannot change their values at runtime.

n You define constants using the ABAP keyword CONSTANTS. In it, you must use the VALUE
addition to assign a value to your constant.
Recommendation:
Avoid using literals wherever possible. Use constants instead. Your programs will then be easier to
maintain.

n Literals allow you to specify a value directly in an ABAP statement. There are two kinds of literals -
numeric literals and text literals. Text literals must always be enclosed in single quotes. Integers
(including a minus sign if appropriate) can be represented as numeric literals. They are mapped to
the data types i and p (based on the interval that each data type can represent).
Example :
DATA: result1 TYPE i, result2 LIKE result1.
result1 = -1000000000 / 300 * 3. "result1: 999.999-
result2 = -10000000000 / 300 * 3. "result2: 10.000.000-
A numeric literal can contain up to 31 digits.
All other values (decimal and floating point numbers, strings, and so on) must be given as text
literals. The system converts the data type if necessary.
A text literal can contain up to 255 characters.
If you want a single quote to appear in a text literal, you must use two single quotes in order for it to
be interpreted as part of the literal and not the closing single quote.

Text symbols are a special form of text literals.

You can create a set of text symbols for any program. These can be used for output in various ways.
The advantage of text symbols over normal text literals is that they can be translated. Furthermore,
text elements are stored separately from the program source code, making your program easier to
understand.

Text symbols are often used to create lists that are not language-specific. You can also use them to
assign texts dynamically to screen objects. (Static text elements for screen objects are a special
case, and can be translated).

You can display text symbols in two different ways using the WRITE statement:

n WRITE text-<ts1>. (where <ts1> can be any three-character ID).

n WRITE '<default text>'(<ts2>). (where <ts2> can be any three-character ID).
In this case, <ts2> is displayed if there is a text for it in the current logon language. If there is not,
the default text is displayed.

When you use screens, the system automatically transports field contents from the processing logic to
the screen and back, but only where screen fields and ABAP fields have the same names.
Restriction:
If you use screen fields with a reference to the ABAP Dictionary (Get from Dictionary function in
the Screen Painter), you must use the TABLES statement to declare a data object with the same
name as the ABAP Dictionary object in order for the field transport to work. Structures you declare
like this are often referred to as work areas .

There are numerous advantages to using an ABAP Dictionary reference: Dictionary objects normally
include foreign key checks, field help, possible entries, and the necessary error dialogs.
Consequently you can catch inconsistent data as soon as the user enters it and before you even leave
the screen.

If you program your own field checks, the field contents must already have been transported to the
program. If you forget to reset the field when a check fails, an unwanted value may remain in the
work area. You also face the same danger if you are not sure whether work areas are shared by more
than one program.

To avoid these dangers, you should regard TABLES work areas as an interface between the screen and
program, and only use them in this context. They provide data for the screen at the end of the PBO
event, and receive it again when the values are transported from the screen.

Logical databases are special ABAP programs that you can attach to an executable (type 1) program.
They read data from the database and pass it to the executable program. Because the task of reading
the data has been passed to the logical database, your own ABAP program becomes considerably
simpler.

The logical database passes the data to your program using interface work areas that you declare using
the NODES <node> statement. The statement creates a variable <node> that refers to the data
type in the ABAP Dictionary with the same name.

The data is passed to your program record by record. Each time the logical database makes a record
available to your program, the corresponding GET <node> or GET <node> LATE event is
triggered. In your program, you can code the relevant event blocks.

You can determine the type of the data record returned by the logical database using the TYPE addition.
However, you are restricted to types that are supported by the logical database. For further
information about this statement, refer to the online documentation or course BC405 (Techniques of
List Processing and ABAP Query).

The data object SPACE is a constant with type C and length 1. It contains a single space.

The system automatically creates a structure called sy for each program, based on the ABAP
Dictionary structure syst. The individual components of the structure are known as system fields .
They contain values that inform you about the current state of the system. The values are updated
automatically by the ABAP runtime environment.

You can access individual system fields using the notation sy-<system field>.

System fields are variables, so you can change them in your programs. However, you should only do
this in cases where it is explicitly recommended in the documentation (for example, navigating
between list levels by manipulating sy-lsind). In all other cases, you should only read the
contents of system fields, since by changing them you might overwrite information that is important
for subsequent steps in the program.

The online documentation contains a list of all system fields with notes on their use. You can also
display the structure syst in the ABAP Dictionary.

n You declare field symbols using the FIELD-SYMBOLS <<fs>> statement. The brackets (<>) are
part of the syntax.
Field symbols allow you symbolic access to an existing data object. All of the changes that you make
to the field symbol are applied to the data object assigned to it. If the field symbol is not typed
(TYPE ANY), it adopts the type of the data object. By specifying a type for the field symbol, you
can ensure that only compatible objects are assigned to it.
Field symbols are similar to dereferenced pointers .

n You use the ASSIGN statement to assign a data object to the field symbol <<fs>>. To lift a type
restriction, use the CASTING addition. The data object is then interpreted as though it had the data
type of the field symbol. You can also do this with untyped field symbols using the CASTING
TYPE <type> addition.

n Use the expression <<fs>> IS ASSIGNED to find out whether the fie ld symbol <<fs>> is
assigned to a field.

n The statement UNASSIGN <<fs>>. sets the field symbol <<fs>> so that it points to nothing.
The logical expression <<fs>> IS ASSIGNED is then false.
An untyped field symbol that does not have a data object assigned to it behaves (for compatibility
reasons) like a constant with type C and length 1.

n The statement TYPES <reftype> TYPE REF TO data. *) defines a reference type to a data
object. DATA... defines the corresponding reference itself. Such a reference is a field in which an
address can be stored.

n The GET REFERENCE OF <data object> INTO <reference> statement writes the
address of the data object (already declared) into the reference variable. In other words, the reference
points to the data object in memory.
Thus ABAP uses reference semantics (changes apply to the address) as well as value semantics, as
used in field symbols (where changes apply to the data objects). However, in ABAP, reference
semantics is restricted to assignments.

n The dereferencing operator ->* in the ASSIGN statement allows you to assign the data object to
which the reference points to a field symbol. You can then access the value of the data object.

n You can create a data object with a specified type at runtime using the CREATE DATA
<reference> statement. This data object has no name, but the reference points to its address.
(See also GET REFERENCE OF...)

n For further information about using references in ABAP Objects, refer to the Introduction to ABAP
Objects unit.

n __________________________

n *) Note : Data in this context is not a keyword, but rather a predefined name like space or p.

You can use type casting dynamically when you assign a data object to a field symbol. The graphic
presents an example of this.

The name of the database table is not known until runtime (and consequently, neither is the line type).
Since you cannot specify a dynamic INTO clause in the SELECT statement, the system writes the
data records into the long character field line.

The assignment to field symbol <fs_wa> and the type casting then make it possible to access the field
as though it were a flat structure. All type attributes are inherited from the database table. (You can
also refer to the line type of an ABAP Dictionary object using the TYPE addition.)
If you knew the component names, you could display the fields directly using
WRITE <fs_wa>-... .

However, you will not normally know the names of the components. In this case, you must use the
ASSIGN COMPONENT variant, in which the components of the structure <fs_wa> are assigned
one-by-one to the field symbol <fs_comp> and then displayed. When the loop runs out of
components, the program reads the next data record.

Problem
The address of line must satisfy the same address rules as a table structure (address must be
divisible by four with no remainder). You can force this by declaring an integer field dummy directly
before declaring line. (Integers are always stored at addresses that are divisible by four.)

Unlike conventional data objects, you can specify the type of a data object created at runtime
dynamically. The above example is a slightly modified version of the example on the previous page.

This time, the idea is the create the data object for the INTO clause dynamically at runtime . In this
case, the type is already known (you have entered the table name), and there are no more alignment
problems. The statement ASSIGN d_ref->* to <fs_wa> assigns the data object to the field
symbol. The data type of the table is inherited by the field symbol, so type casting is no longer
necessary.

Instead of using a long character field, you can now write the data record into the data object with the
same type to which the reference d_ref is pointing, by using the field symbol <fs_wa>.

You will sometimes need to find out the attributes of a data object at runtime , especially when you use
field symbols and references. The DESCRIBE FIELD statement returns various type attributes of
variables.
Caution:
If you query the length of a field with type string or xstring, the system does not return the
length of the string. Instead, it returns the length of the string reference, which is always eight bytes.
To find out the length of the string, use the OUTPUT-LENGTH addition.

The statement DESCRIBE TABLE <itab> LINES <n> returns the number of lines in an internal
table.

Since the introduction of ABAP Objects , there is now a system called the RTTI concept (Run Time
Type Information) that you can use to find out type attributes at runtime. It is based on system
classes. The concept includes all ABAP types, and so covers all of the functions of the statements
DESCRIBE FIELD and DESCRIBE TABLE.

Unit: Data Types and Data Objects:
Topic: Defining data types
 and data objects

At the conclusion of these exercises, you will be able to:

• Define data types

• Define variables and selection options

• Declare field symbols

You are a programmer for an airline consortium, and it is your job to
write analysis programs for several airlines.

1. Complete the program Z##_BC402_COUNTERLIST1.
Create a suitable internal table to allow you to buffer the names of airports and their codes.
Create a second internal table for airlines, airports, and counter numbers.
is your two-digit group number.
Model solution:
SAPBC402_TYPS_COUNTERLIST1

1-1 Define the structure type t_airport. It should have the following structure:

Component Type
id sairport-id
name sairport-name

1-2 Define the structure type t_counter. It should have the following structure:

Component Type
airport scounter-airport
airp_name sairport-name
carrid scounter-carrid
countnum scounter-countnum

1-3 Declare the internal table it_carr_counter as a standard table with the line
type t_counter and a non-unique default key.

1-4 Declare the structure wa_counter with the data type t_counter.

1-5 Declare the internal table it_airport_buffer as a hashed table with the line
type t_airport. The unique key should contain the component id.

1-6 Declare the structure wa_airport with data type t_airport.

1-7 On the standard selection screen, declare the selection option so_carr for the
field wa_counter-carrid.

1-8 Maintain a selection text.

2. Complete the program Z##_BC402-FLIGHTLIST1:
Declare an internal table to hold flight timetable data for various airlines.
It should later be possible to assign one or more available aircraft types to each airline.
This should be implemented as a second internal table, nested in the line type of the
original table.
To type the inner internal table, you will first create two ABAP Dictionary objects.
You should also declare a selection table for the set of airlines for which the authorization
check was successful.
is your two-digit group number.
Model solutions:
BC402_TYPS_PLANE
BC402_TYPS_PLANETAB
SAPBC402_TYPS_FLIGHTLIST1

2-1 In the ABAP Dictionary, create the global structure Z##_BC402_PLANE. It
should have the following structure (remember that you must relate a currency field
to the amount field):

Component Type using data element
PLANETYPE S_PLANETYE
SEATSMAX S_SEATSMAX
AVG_PRICE S_PRICE
CURRENCY S_CURRCODE

2-2 In the ABAP Dictionary, create the global structure Z##_BC402_PLANETAB. For
the line type, use the global structure Z##_BC402_PLANE. Define the internal
table as a standard table with a non-unique key consisting of the component
PLANETYPE.

2-3 In the program, define the structure type t_flight. It should have the following
structure: (Note that the last component has a global table type.)

Component Type
carrid sflight-carrid
connid sflight-connid
fldate sflight-fldate
cityfrom spfli-cityfrom
cityto spfli-cityto
seatsocc sflight-seatsocc
paymentsum sflight-paymentsum
currency sflight-currency
it_planes z##_bc402_planetab

2-4 Define the internal table type t_flighttab with line type t_flight. It should
be a sorted table with the unique key carrid connid fldate.

2-5 Declare a structure wa_flight with the data type t_flight.

2-6 Declare an internal table it_flights with the data type t_flighttab.

2-7 On the standard selection screen, declare the selection option so_carr for the
field wa_flight-carrid.

2-8 Declare a selection table allowed_carriers for fields with type t_flight-
carrid.

... TYPE RANGE OF ...

2-9 Declare a work area wa_allowed_carr for the selection table
allowed_carriers.

2-10 Maintain the selection texts.

Unit: Data Types and Data Objects:
Topic: Defining data types
 and data objects

1 Model solution SAPBC402_TYPS_COUNTERLIST1

&---
*& Report SAPBC402_TYPS_COUNTERLIST1 *
*& *
&---
*& solution of exercise 1 data types and data objects *
*& *
&---

REPORT sapbc402_typs_counterlist1.

TYPES:

 BEGIN OF t_airport,
 id TYPE sairport-id,
 name TYPE sairport-name,
 END OF t_airport,

 BEGIN OF t_counter,
 airport TYPE scounter-airport,
 airp_name TYPE sairport-name,
 carrid TYPE scounter-carrid,
 countnum TYPE scounter-countnum,
 END OF t_counter.

DATA:

 it_carr_counter TYPE STANDARD TABLE OF t_counter,

 wa_counter TYPE t_counter,

 it_airport_buffer TYPE HASHED TABLE OF t_airport
 WITH UNIQUE KEY id,

 wa_airport TYPE t_airport.

SELECT-OPTIONS so_carr FOR wa_counter-carrid.

2 Model solution SAPBC402_TYPS_FLIGHTLIST1

&---
*& Report SAPBC402_TYPS_FLIGHTLIST1 *
*& *
&---
*& solution of exercise 2 data types and data objects *
*& *
&---

REPORT sapbc402_typs_flightlist1.

TYPES:

 BEGIN OF t_flight,
 carrid TYPE spfli-carrid,
 connid TYPE spfli-connid,
 fldate TYPE sflight-fldate,
 cityfrom TYPE spfli-cityfrom,
 cityto TYPE spfli-cityto,
 seatsocc TYPE sflight-seatsocc,
 paymentsum TYPE sflight-paymentsum,
 currency TYPE sflight-currency,
 it_planes TYPE bc402_typs_planetab,
 END OF t_flight,

 t_flighttab TYPE SORTED TABLE OF t_flight
 WITH UNIQUE KEY carrid connid fldate.

DATA:
 wa_flight TYPE t_flight,
 it_flights TYPE t_flighttab.

SELECT-OPTIONS so_carr FOR wa_flight-carrid.

* for authority-check:

DATA:
 allowed_carriers TYPE RANGE OF t_flight-carrid,
 wa_allowed_carr LIKE LINE OF allowed_carriers.

 SAP AG 1999

l Assigning values

l Processing strings and parts of fields

l Numeric operations

l Program flow control

Contents

Statements

Use CLEAR to reset any variable data object to the initial value appropriate to its type .

n In a structure, each component is reset individually.

n In an internal table w ithout a header line, all of the lines are deleted.

Use MOVE to copy the contents of one data object to another variable data object.
With complex objects, you can either address the components individually or use a "deep copy". If the
source and target objects are compatible (see next page), the system copies the objects component by
component or line by line.
If they are not compatib le, the system converts the objects as long as there is an appropriate conversion
rule.

If you are copying between two structures, and only want to copy values between identically-named
fields, you can use the MOVE-CORRESPONDING statement.

The conversion mechanisms explained on the following pages apply not only to the MOVE and MOVE-
CORRESPONDING statements, but also to calculations and value comparisons.

Unlike the MOVE statement, when you use WRITE... TO... to assign values, the target field is
always regarded as a character field, irrespective of its actual type. WRITE...TO behaves in the same
way as when you write output to a list. This allows you to use formatting options when you copy data
objects (for example, country-specific date formatting).

If two data types are not compatible but there is a converion rule, the system converts the source object
into the type of the target object when you assign values, perform calculations, or compare values.

The following pages contain the basic forms of the conversion rules, and examples for the most
frequent cases. For a full list of all conversion rules, refer to the ABAP syntax documentation for the
MOVE statement.

If there is no conversion rule defined for a particular assignment, the way in which the system reacts
depends on the context in which you programmed the assignment.

n If the types of the objects involved are defined statically, a syntax error occurs.
Example:
DATA: date TYPE d VALUE '19991231', time TYPE t.
FIELD-SYMBOLS: <fs_date> TYPE d, <fs_time> TYPE t.
ASSIGN: date TO <fs_date>, time TO <fs_time>.
<fs_time> = <fs_date>.

n If the types of the objects involved are defined dynamically, a runtime error occurs, because the
system cannot tell in the syntax check whether they are convertible or not.
Example (remainder as above):
...
FIELD-SYMBOLS: <fs_date> TYPE ANY, <fs_time> TYPE ANY.
...

In general, there is a rule for converting every predefined ABAP data type into any other predefined
type.

Special cases:

n There are no rules for converting from type D to type T or vice versa, or for converting ABAP
Objects data types (object reference to object reference, object reference to interface reference).
Assignments or comparisons of this type cause syntax errors (where it is possible for the system to
detect them).

n When you assign a type C field to a type P field, you may only use digits, spaces, a decimal point,
and a plus or minus sign. The target field must also be large enough.

n When you convert a packed number to a type C field, the leading zeros are converted into spaces.

For full information about conversion rules for elementary types, refer to the online documentation in
the ABAP Editor for the MOVE statement.

The ABAP runtime environment has rules for converting

n Structures to non-compatible structures

n Elementary fields to structures

n Structures to elementary fields

In each case, the system converts the source variables to character fields and fills the target structures
byte by byte. The relevant conversion rules for elementary fields then apply.

Internal tables can only be converted into other internal tables. The system converts the lines types
according to the relevant rule for structures.

The example above shows that copying between non-compatible types may result in the target fields
containing values that cannot be interpreted properly. To avoid this problem, you should copy
values field by field in these cases. This ensures that the system applies the correct conversion rule
for elementary fields.
If you want to manipulate strings, it is better to use the statements expressly intended for this
purpose.

You can use the following statements to process strings in ABAP:

n SEARCH To search in a string

n REPLACE To replace the first occurrence of a string

n TRANSLATE To replace all specified characters

n SHIFT To shift a character at a time

n CONDENSE To remove spaces

n CONCATENATE To chain two or more strings together

n OVERLAY To overlay two strings

n SPLIT To split a string

In all string operations, the operands are treated like type C fields, regardless of their actual field type.
They are not converted.

n All of the statements apart from TRANSLATE and CONDENSE set the system field sy-subrc.
SEARCH also sets the system field sy-fdpos with the offset of the beginning of the string found.

n All of the statements apart from SEARCH distinguish between upper- and lowercase.

n To find out the occupied length of a string, use the standard function STRLEN().

The system searches the field <field> for the string <searchstring>. The search string can have the
following form:

n '<str>' String (trailing blanks are ignored)

n '.<str>.' Any string between the periods
 (spaces are included in the search.)

n '<str>*' A string beginning with and including '<str>'

n '<str>*' A string beginning with and including '<str>'

The offset of the found string is placed in the system field sy-fdpos If the search string is not found,
sy-fdpos contains the value 0 and sy-subrc is set to 4.

You can use SEARCH <itab> instead of SEARCH <field>. The system then searches for the
search string <searchstring> within the internal table <itab>. In this variant, the system also
sets the system field sy-tabix to the index of the line containing the search string.

n REPLACE <str1> WITH <str2> INTO <field>.
Replaces the first occurrence of <str1> in <field> with <str2>.

n TRANSLATE <field> USING <str>.
Replaces all letters in <field> according to <str>. <str> contains the search and replacement
characters in pairs. For the example: TRANSLATE ... USING 'AB'.

n TRANSLATE <field> TO UPPER|LOWER CASE
Replaces all lowercase letters in <field> with uppercase (or vice versa).

n SHIFT <field> [<var>] [RIGHT] [CIRCULAR].
<var> can be one of the following:
BY <n> PLACES Shifts <field> by <n> characters
UP TO <str> Shifts <field> up to the beginning of <str>
The additions have the following effect:
RIGHT Shifts to the right
CIRCULAR Shifts to the right - characters shifted off the right-hand edge of the field reappear on
the left.

n CONDENSE <field> [NO-GAPS].
Consecutive spaces are replaced by a single space or are deleted.
Note:
You can delete leading or trailing spaces using
SHIFT <field> LEFT DELETING LEADING SPACE or
SHIFT <field> RIGHT DELETING TRAILING SPACE.

n SPLIT <field> AT <sep> INTO <f1> ... <fn>|TABLE <itab>}.
Splits <field> at each occurrence of the separator string <sep> and places the parts into the fields
<f1> <fn> or into consecutive lines of the internal table <itab>.

n CONCATENATE <f1> ... <fn> INTO <f> [SEPARATED BY <separator>].
Combines the fields <f1>... <fn> in <ifeld>. Trailing spaces are ignored in the component
fields. You can use the SEPARATED BY <separator> addition to insert the string
<separator> between the strings <f1>... <fn>.

n OVERLAY <f1> WITH <f2> [ONLY <str>].
<f2> overlays <f1> at all positions where <f1> contains a space or one of the characters in
<str>.

Note
See also Accessing Parts of Fields.

In any statement that operates on a character-type field, you can address part of the field or structure by
specifying a starting posit ion and a number of characters. If the field lengths are different, the
system either truncates the target or fills it with initial values. The source and target fields must have
the type X, C, N, D, T, or STRING. You can also use structures.

Example

MOVE <field1>+<off1>(<len1>) TO <field2>+<off2>(<len2>).

This statements assigns <len1> characters of field <field1> starting at offset <off1> to
<len2> characters of <field2> starting at offset <off2>.

Caution
Under Unicode *) only fields with type C, X, and STRING are suitable for partial access. In other
cases, you should use field symbols with casting.

*) Language- and culture-independent character set.

In ABAP, you can program arithmetic expressions nested to any depth. You must remember that
parentheses and operators are keywords, and must therefore be preceded and followed by at least one
space.

The ABAP runtime environment contains a range of functions for different data types. The opening
parenthesis belongs to the functions name itself (and is therefore not separated from it by a space).
The remaining elements of each expression must be separated by spaces.

The expressions are processed in normal algebraic sequence - parenthetical expressions, followed by
functions, powers, multiplication and division, and finally, addition and subtraction.

A calculation may contain any data types that are convertible into each other and into the type of the
result field. The system converts all of the fields into one of the three numeric data types (I, P, or
F), depending on the data types of the operands. The ABAP runtime system contains an arithmetic
for eachh of the three data types. The system then performs the calculation and converts it into the
data type of the result field.

The DIV (integer division) and MOD (remainder of a division) always return whole numbers.

In integer and packed number arithmetic, the system always rounds to the corresponding decimal place.
So, for example:
DATA int TYPE i. int = 4 / 10. " result: 0
 int = 5 / 10. " result: 1
or
DATA: pack TYPE p DECIMALS 2. pack = 4 / 1000. " result: 0.00
 pack = 5 / 1000. " result: 0.01.
However, intermediate results using packed numbers are always accurate to 31 decimal places.
The arithmetic used depends on how the system interprets the numeric literals:
DATA int TYPE i. int = 1000000000 / 300000000 * 3. " result: 9
 int = 10000000000 / 3000000000 * 3. " result: 10

If you do not set the fixed point arithmetic option in the program attributes, the DECIMALS addition in
the DATA statement only affects the output, not the arithmetic. In this case, all numbers are
interpreted internally as integers, regardless of the position of the decimal point. You would then
have to calculate the number of decimal places manually and ensure that the number was displayed
correctly. Otherwise, the results would be meaningless.
DATA: pack TYPE p DECIMALS 2.
pack = '5000.00' * '0.20'. " result: pack = 100000.00
Furthermore, the system would also round internally (integer arithmetic - see above).

The fixed point arithmetic option is always selected by default. You should always accept this
value and use packed numbers for business calculations.

Calculations using data type F are always , for technical reasons, imprecise.
Example
Suppose you want to calculate 7.72% of 73050 and display the result accurate to two decimal places.
The answer should be 5310.74 (73050 * 0.0727 = 5310.735). However, the program returns the
following:
DATA: float TYPE f, pack TYPE p DECIMALS 2.
float = 73050 * '0.0727'. " result: 5.3107349999999997E+03
pack = float. WRITE pack. " result: 5310.73
You should therefore only use floating point numbe rs for approximations. When you compare
numbers, always used intervals, and always round at the end of your calculations.

There are four general categories of runtime error that can occur in calculations:

n A field that should have been converted could not be interpreted as a number.

n A number range is too small for a conversion, value assignment, or to store intermediate results.

n You tried to divide by zero.

n You passed an invalid argument to a built-in function
(For example: ... log(-3) ...).

For further information, refer to the ABAP syntax documentation for the COMPUTE statement.

n If you assign a date fields to a numeric field, the runtime system calculates the number of days that
have elapsed since 01.01.0001.

n Conversely, when you assign a numeric value to a date field, the system interprets it as the number
of days since 01.01.0001.

n Before any calculations are performed with dates, the value of the date field is converted into its
numeric value (number of days since 01.01.0001)

The above example calculates the last day of the previous month.

When you calculate with time fields, the system uses a similar procedure, that is, it counts the number
of seconds since 0:00:00.

Comparisons between non-numeric data objects are interpreted differently according to their data type.

n If possible: Conversion into numbers (heaxadecimal, for example, as dual number);

n Date and time: Interpreted as earlier/later, so 31.12.1999 < 01.01.2000;

n Other characters: Lexical interpretation according to character codes. The two operands are
given the same length and filled with trailing spaces where necessary;

n References: System compares address and data type.
 It only makes sense to compare for equality.

When you join and negate comparisons, the usual rules for logical expressions apply:
NOT is stronger than AND, and AND is stronger than OR.
Example
 NOT f1 = f2 OR f3 = f4 AND f5 = f6 is the same as
(NOT (f1 = f2)) OR (f3 = f4 AND f5 = f6).
You should therefore enclose the components expressions of your comparisons in parentheses, even
when it is not strictly necessary, to make them easier to understand, and for additional safety.
You can also considerably improve the runtime of your programs by optimizing the structure of your
expressions.

For each of the above relational operators, there is a corresponding negative expression.

The logical expression ... <str1> <op> <str2> .. can contain an operator <op> as follows:

n CO <str1> only contains characters from <str2>;

n CN <str1> contains not only characters from <str2> (corresponds to NOT <str1> CO
<str2>);

n CA <str1> contains at least one character from <str2>;

n NA <str1> does not contain any characters from <str2>;

n CS <str1> contains the string <str2>;

n NS <str1> does not contain the string <str2>;

n CP <str1> contains the pattern <str2>;

n NP <str1> does not contain the pattern <str2>;

The system field sy-fdpos contains the offset of the character that satisfies the condition, or the
length of <str1>.

In the first four expressions, the system takes into account upper- and lowercase letters and the full
length of the string (SPACE column).

To specify patterns, use '*' for any string, and '+' for any character. The escape symbol is '#'.

n In a CASE - ENDCASE structure, you test a data object for equality against various values. When
a test succeeds, the corresponding statement block is executed. If all of the comparisons fail, the
OTHERS block is executed, if you have programmed one.

n In an IF - ENDIF structure, you can use any logical expressions. If the condition is met, the
corresponding statements are executed. If none of the conditions is true, the ELSE block is executed,
if you have programmed one.

In both cases, the system only executes one statement block, namely that belonging to the first valid
case.

If each condition tests the same data object for equality with another object, you should use a CASE-
ENDCASE structure. It is simpler, and requires less runtime .

Outside a loop, you can make the execution of all remaining statements in the current processing
block conditional using CHECK. If the check fails, processing resumes with the first statement in the
next processing block.

There are four loop structures. The number of the current loop pass is always available from the system
field sy-index. If you use nested loops, the value of sy-index refers to the current one. You
can take control over loop processing using the CHECK <logical expression> and EXIT
statements. For further information, refer to Leaving Processing Blocks. The graphic shows how you
can control the further processing of a loop.

n Unconditional/Index-based loops
The statements between DO and ENDDO are executed until you end the loop with a termination
statement. You can specify a maximum number of loop passes. If you do not, you have an endless
loop.

n Conditional loops
The statements beween WHILE and ENDWHILE are repeated as long as the condition <logical
expression> is met.

n Multiple -line access to an internal table
For further information, refer to the Internal Table Operations unit.

n Multiple -record access to a database table or view
Refer to the courses BC400 (ABAP Workbench: Concepts and Tools)
and BC405 (Techniques of List Processing and ABAP Query), and the syntax documentation for the
SELECT statement.

Reminder
A processing block is an ABAP event block or modulariziation unit.

n You can use the ABAP statement CHECK <logical expression> outside a loop to
terminate the processing block if the logical condition is not met. Processing continues with the first
statement in the next processing block. Within a loop, processing resumes at the beginning of the
next loop pass.

n The EXIT statement can behave in three different ways: Within a loop, it terminates the loop
processing completely. Outside a loop but in one of the events listed under Events I, it makes the
system display the current contents of the list buffer. Events from the other groups listed above can
still be triggered. In the case of LOAD-OF-PROGRAM, START-OF-SELECTION is triggered.

n In all other cases, EXIT has the same effect as CHECK.

n The statements LEAVE PROGRAM and LEAVE TO TRANSACTION <tcode> terminate the
current program.

n When you send a termination (type A) message, the current program ends, and the entire program
stack is destroyed. For further information, refer to the unit Program Calls and Passing Data.

Within a processing block, you can use the structure CATCH SYSTEM-EXCEPTIONS...
ENDCATCH to catch runtime errors. If the specified system exception occurs, the system leaves the
statements in the block and continues processing after the ENDCATCH statement. This construction
only catches runtime errors at the current call level. If you call a subroutine in which a runtime
error is triggered, you must catch this error in the subroutine itself.

Each runtime error is assigned to an ERROR class. For a full list, refer to the syntax documentation
for the CATCH statement.

You can specify one of the following as the system exception <excpt> that you want to catch:

n A single error (for example, convt_no_number);

n ERROR classes (for example, arithmetic_errors);

n All catchable runtime errors.

The return code values <rc1>... <rcn> must be numeric literals.

The return code assigned to the runtime error that occurred is placed in the system field sy-subrc. If
more than one value was assigned to it, the system uses the first. This is particularly important if you
specify two different ERROR classes that contain the same runtime error.

CATCH SYSTEM-EXCEPTIONS ... ENDCATCH constructions can be nested to any depth. If a
runtime error occurs, the system searches for an assignment in the current statement block. If it does
not find one, it searches in the next-highest block, and so on. Processing resumes after the
ENDCATCH statement of the block in which the assignment was found.

The above example nests three CATCH SYSTEM-EXCEPTIONS ... ENDCATCH structures.
Before each ENDCATCH statement is a statement that causes a runtime error.

At which statement does the system set the field sy-subrc? With which value? At which statement
does processing resume?

The division by zero in the innermost block triggers the runtime error bcd_zerodivide. However,
there is no assignment for the error in this block.

Consequently, the system looks in the next-highest block for the error, where it is assigned. sy-subrc
is set to 4.

The system resumes processing at the first statement after the middle ENDCATCH statement. The
assignment of a string (which cannot be interpreted as a packed number) to a packed number field is
therefore not executed, even though we would have caught the ensuing runtime error
convt_no_number in our program.

Finally, we trigger the runtime error convt_overflow by assigning a number to the packed field
that is too big for it. A return code is assigned to this error in the outer block.

sy-subrc is set to 2.

The system resumes processing after the corresponding ENDCATCH statement.

 SAP AG 1999

l General information

l Access using the index

l Access using the key

l Access using field symbols

l Applied example

Contents

Internal Table Operations

There are two ways of accessing the records in an internal table:

n By copying individual records into a work area. The work area must be compatible with the line
type of the internal table.
You can access the work area in any way, as long as the component you are trying to access is not
itself an internal table. If one of the components is an internal table, you must use a further work
area, whose line type is compatible with that of the nested table.
When you change the internal table, the contents of the work area are either written back to the table
or added as a new record.

n By assigning the individual data records to an appropriate field symbol. Once the system has read an
entry, you can address its components directly via its address. There is no copying to and from the
work area. This method is particularly appropriate for accessing large or complex tables.

If you want to read more than one record, you must use a LOOP... ENDLOOP structure. You can
then change or delete the line that has just been read, and the system applies the change to the table
body. You can also change or delete lines using a logical condition.

When you use the above statements with sorted tables, you must ensure that the sort sequence is
maintained.

Within a loop, the INSERT statement adds the data record before the current record in the table. If
you want to insert a set of lines from an internal table into another index table, you should use the
INSERT LINES OF <itab> variant instead.

When you read single data records, you can use two further additions:

n In the COMPARING addition, the system compares the field contents of a data record with those in
the work area for equality.

n In the TRANSPORTING addition, you can restrict the data transport to selected fields.

Other statements for standard tables

n SORT <itab> [ASCENDING|DESCENDING]
 [BY <f1> [ASCENDING|DESCENDING] ..
 <fn> [ASCENDING|DESCENDING]][AS TEXT] [STABLE].
These statements sort the table by the table key or the specified field sequence. If you do not use an
addition, the system sorts ascending. If you use the AS TEXT addition, character fields are sorted in
culture-specific sequence. The relative order of the data records with identical sort keys only remain
constant if you use the STABLE addition.

n APPEND <wa> INTO <rank> SORTED BY <f>.
This statement appends the work area to the ranked list <ranked> in descending order. The ranked
list may not be longer than the specified INITIAL SIZE, and the work area must satisfy the sort
order of the table.

The statements listed here can be used freely with both standard and sorted tables.

When you change a single line, you can specify the fields that you want to change using the
TRANSPORTING addition. Within a loop, MODIFY changes the current data record.

If you want to delete a set of lines from an index table, use the variant DELETE <itab> FROM...
TO.. or WHERE... instead of a loop. You can program almost any logical expression after WHERE.
The only restriction is that the first field in each comparison must be a component of the line structure
(see the corresponding Open SQL statements). You can pass component names dynamically.
If you want to delete the entire internal table , use the statement CLEAR <itab>.

In the LOOP AT... ENDLOOP structure, the statements within the loop are applied to each data
record in turn. The INTO addition copies entries one at a time into the work area.
The system places the index of the current loop pass in the system field sy-tabix. When the loop has
finished, sy-tabix has the same value that it had before the loop started.
Inserting and deleting lines within a loop affects the following loop passes.

Access to a hashed table is implemented using a hash algorithm. Simplified, this means that the data
records are distributed randomly but evenly over a particular memory area.. The addresses are stored
in a special table called the hashing table . There is a hash function, which determines the address at
which the pointer to a data record with a certain key can be found. The function is not injective, that is,
there can be several data records stored at a single address. This is implemented internally as a chained
list. Therefore, although the system still has to search sequentially within these areas, it only has to
read a few data records (usually no more than three). The graphic illustrates the simplest case, that is, in
which there is only one data record stored at each address.

Using a hash technique means that the access time no longer depends on the total number of entries in
the table. On the contrary, it is always very fast. Hash tables are therefore particularly useful for large
tables with which you use predominantly read access.

Data records are not inserted into the table in a sorted order. As with standard tables, you can sort
hashed tables using the SORT statement:
SORT <itab> [ASCENDING|DESCENDING]
 [BY <f1> [ASCENDING|DESCENDING] ..
 <fn> [ASCENDING|DESCENDING]][AS TEXT].

Sorting the table can be useful if you later want to use a loop to access the table.

You can use the statements listed here with tables of all three types. Apart from a few special cases,
you can recognize the statements from the extra keyword TABLE. The technical implementation of the
statements varies slightly according to the table type.

As a rule, index access to an internal table is quickest. However, it sometimes makes more sense to
access data using key values. A unique key is only possible with sorted and hashed tables. If you use
the syntax displayed here, your program coding is independent of the table type (generic type
specification, easier maintenance).

With a standard table, inserting an entry has the same effect as appending. With sorted tables with a
non-unique key, the entry is inserted before the first (if any) entry with the same key.

To read individual data records using the first variant, all fields of <wa1> that are key fields of
<itab> must be filled. <wa1> and <wa2> can be identical. If you use the WITH TABLE KEY
addition in the second variant, you must also specify the key fully. Otherwise, the system searches
according to the sequence of fields that you have specified, using a binary search where possible. You
can force the system to use a binary search with a standard table using the BINARY SEARCH addition.
In this case, you must sort the table by the corresponding fields first. The system returns the first entry
that meets the selection criteria.

Similarly to when you read entries, when you change and delete entries using the key and a work area,
you must specify all of the key fields.

You can prevent fields from being transported into the work area during loop processing by using the
TRANSPORTING NO FIELDS addition in the WHERE condition. (You can use this to count the
number of a particular kind of entry.)

Other statements for all table types

n DELETE ADJACENT DUPLICATES FROM <itab>
 [COMPARING <f1> .. <fn>| A L L F I E L <fn>}|ALL FIELDS}].
The system deletes all adjacent entries with the same key field contents apart from the first entry.
You can prevent the system from only comparing the key field using the COMPARING addition. If
you sort the table by the required fields beforehand, you can be sure that only unique entries will
remain in the table after the DELETE ADJACENT DUPLICATES statement.

n Searches all lines of the table <itab> for the string . If the search is successful, the system sets the
fields sy-tabix and sy-fdpos.

n FREE <itab>.
Unlike CLEAR, which only deletes the contents of the table, FREE releases the memory occupied by
it as well.

If you want to access your data using the index and do not need your table to be kept in sorted order or
to have a unique key, that is, when the sequence of the entries is the most important thing, not
sorting by key or having unique entries, you should use standard tables. (If you decide you need to
sort the table or access it using the key or a binary search, you can always program these functions
by hand.)

This example is written to manage a waiting list.
Typical functions are:

n Adding a single entry,

n Deleting individual entries according to certain criteria,

n Displaying and then deleting the first entry from the list,

n Displaying someone's position in the list.

For simplicity, the example does not encapsulate the functions in procedures.

The first thing we do in the example is to declare line and table type, from which we can then declare a
work area and our internal table. We also require an elementary field for passing explicit index
values.

This example omits the user dialogs and data transport, assuming that you understand the principles
involved. We really only want to concentrate on the table access:

n Adding new entries
The data record for a waiting customer is only added to the table if it does not already exist in it. If
the table had a unique key, you would not have had to have programmed this check yourself.

n Deleting s ingle entries according to various criteria
The criterion is the key field. However, other criteria would be possible - for example, deleting data
records older than a certain insertion date reg_date .

n Displaying and deleting the first entry from the list
Once a customer comes to the top of the waiting list, you can delete his or her entry. If the waiting
list is empty, such an action has no effect. Consequently, you do not have to check whether there are
entries in the list before attempting the deletion.

n Displaying the position of a customer in the waiting list
As above, you do not need to place any data in the work area. We are only interested in the values of
sy-subrc and sy-tabix. If the entry is not in the table, sy-tabix is set to zero.

At this stage, let us return to the special case of the restricted ranked list:

DATA <rank> {TYPE|LIKE} STANDARD TABLE OF ... INITIAL SIZE <n>. ...

APPEND <wa> INTO <rank> SORTED BY <f>.

When you choose to use a sorted table, it will normally be because you want to define a unique key.
The mere fact that the table is kept in sorted order is not that significant, since you can sort any kind of
internal table. However, with sorted tables (unlike hashed tables), new data records are inserted in the
correct sort order. If you have a table with few entries but lots of accesses that change the contents, a
sorted table may be more efficient than a hashed table in terms of runtime.

The aim of the example here is to modify the contents of a database table. The most efficient way of
doing this is to create a local copy of the table in the program, make the changes to the copy, and then
write all of its data back to the database table. When you are dealing with large amounts of data, this
method both saves runtime and reduces the load on the database server.

Since the internal table represents a database table in this case, you should ensure that its records have
unique keys. This is assured by the key definition. Automatic sorting can also bring further
advantages.

When you change a group of data records, only the fields price and currency are copied from the
work area.

For information about changing database tables (data consistency, authorization and locking issues),
refer to course BC414 (Programming Database Updates) and the online documentation.

The hash algorithm calculates the address of an entry based on the key. This means that, with larger
tables, the access time is reduced significantly in comparison with a binary search. In a loop, however,
the hashed table has to search the entire table (full table scan). Since the table entries are stored
unsorted, it would be better to use a sorted table if you needed to run a loop through a left-justified
portion of the key. It can also be worth using a hashed table but sorting it.

A typical use for hashed tables is to buffer detailed information that you need repeatedly and can
identify using a unique key. You should bear in mind that you can also set up table buffering for a table
in the ABAP Dictionary to cover exactly the same case. However, whether the tables are buffered on
the application table depends on the size of the database table. Buffering in the program using hashed
tables also allows you to restrict the dataset according to your own needs, or to buffer additional data as
required.

In this example, we want to allow the user to enter the name of a city, and the system to display its
geographical coordinates.

First, we fill our "buffer table" city_list with values from the database table sgeocity.

Then, we read an entry from the hashed table, specifying the full key.

The details are displayed as a simple list.

At this point, it is worth repeating that you should only use this buffering technique if you want to keep
large amounts of data locally in the program. You must ensure that you design your hashed table so
that it is possible to specify the full key when you access it from your program.

You can define internal tables either with (WITH HEADER LINE addition) or without header lines.
An internal table with header line consists of a work area (header line) and the actual table body.
You address both objects using the same name. The way in which the system interprets the name
depends on the context. For example, the MOVE statement applies to the header line, but the SEARCH
statement applies to the body of the table.

To avoid confusion, you are recommended to use internal tables without header lines. This is
particularly important when you use nested tables. However, internal tables with header line do offer a
shorter syntax in several statements (APPEND, INSERT, MODIFY, COLLECT, DELETE, READ,
LOOP). Within ABAP Objects, you can only use internal tables without a header line.

You can always address the body of an internal table <itab> explicitly by using the following syntax:
<itab>[]. This syntax is always valid, whether the internal table has a header line or not.
Example
DATA itab1 TYPE TABLE OF i WITH HEADER LINE.
DATA itab2 TYPE TABLE OF i WITH HEADER LINE.

itab1 = itab2. " Only header lines will be copied
itab1[] = itab2[]. " Copies table body

You can only use the COLLECT statement with internal tables whose non-key fields are all numeric
(type I, P, or F).

The COLLECT statement adds the work area or header line to an internal entry with the same type or, if
there is none, adds a new entry to the table. It searches for the entry according to the table type and
defined key. If it finds an entry in the table, it adds all numeric fields that are not part of the key to the
existing values. If there is not already an entry in the table, it appends the contents of the work area or
header line to the end of the table.

When you read a table line using READ or a series of table lines using LOOP AT, you can assign the
lines of the internal table to a field symbol using the addition ... ASSIGNING <<field
symbol>>. The field symbol <<field symbol>> then points to the line that you assigned,
allowing you to access it directly. Consequently, the system does not have to copy the entry from
the internal table to the work area and back again.

The field symbol <<field_symbol>> must have the same type as the line type of the internal table.

However, there are also certain restrictions when you use this technique:

n You can only change the contents of key fields if the table is a standard table .

n You cannot use the SUM statement in control level processing. (The SUM statement adds all of the
numeric fields in the work area.)

This technique is particularly useful for accessing a lot of table lines or nested tables within a loop.
Copying values to and from the work area in this kind of operation is particularly runtime-intensive.

In this example, the user should be able to enter a departure city, for which all possible flights are then
listed.

To do this, we decla re an innner table (cofl_list) and an outer table(travel_list) with
corresponding work areas.

A further internal table (conn_list) buffers and sorts all of the flight connections.

Note
In order to allow loop access using field symbols, the buffer table and the inner internal table must have
the same type. Furthermore, we want to sort the table by various criteria later on. Consequently, we are
using standard tables, not sorted tables.

We also need to declare three field symbols with the line types of the internal tables.

First, the flight connections starting in the city entered in pa_start are assigned to the field symbol
<fs_conn>.

We are only interested in the arrival city of each flight connection. This is the first entry in a line of the
outer table travel_list.

Before this can be entered properly sorted, the inner table wa_travel-cofl_list must be filled
with the cities that can be reached from it. To do this, the program looks for the corresponding flight
connections and appends them to the inner table.

Next, the field cityfrom is initialized, since it is required for control level processing in the display.
The table is then sorted by field cityto and carrid.

Because of the control level processing used here, only new arrival cities are written in the list.

Note
It would have been possible to solve this problem using nested SELECT statements. However, this is
not a realistic proposition because of the excessive load that we would then place on the database
server.

Index access (APPEND, INSERT ... INDEX, LOOP ... FROM TO and so on) is possible for
standard and sorted tables. A possible consequence of this is that you may cause a runtime error by
violating the sort sequence if you use INSERT with an index or APPEND on a sorted table.

SORT can only apply to standard and hashed tables. It has no positive effect in a sorted table, and can
lead to a syntax or runtime error if the attempted sort violates the key sequence.

You can use key access for any table type, but the runtime required varies according to the table type.
The runtime depends on whether the values are part of the key (so the sequence in which you pass them
is also significant). INSERT for a standard table or hashed table using the key has the same effect as
the APPEND statement.

The system supports control level processing for all table types. Hashed and standard tables must be
sorted beforehand.

Preview
If you want to process data records with different structures, you can use extracts . For further
information about control level processing and extracts, refer to course BC405 (Techniques of List
Processing and ABAP Query).

Unit: Internal table operations
Topic: Filling internal tables
 and accessing their entries

At the conclusion of these exercises, you will be able to:

• Fill internal tables

• Access their entries

You are a programmer for an airline consortium, and it is your job to
write analysis programs for several airlines.

1. Extend your program from task 1 of the previous exercises:
You should fill the table with the list of airport names, and then the other table with the
assignment of airlines to airports and counter numbers. You should then display the
second table in a list.
is your two-digit group number.
Model solution:
SAPBC402_TABS_COUNTERLIST2

1-1 Copy your solution to exercise 1 from the last unit (or the model solution) to the
new program Z##_BC402_COUNTERLIST2.

1-2 Fill the internal table it_airport_buffer with the codes of the airports and
their names from the transparent table SAIRPORT.

1-3 Use a loop to select data from the transparent table SCOUNTER for all of the
airlines in the user’s selection. You can fill the fields carrid, countnum, and
airport in the work area wa_counter directly. To fill airp_name, you must
use a single-record access to the internal table it_airport_buffer. Once you
have filled the work area, append it to the internal table it_carr_counter.

1-4 Display the internal table it_carr_counter sorted by the fields airport and
carrid in ascending order.

2. Extend your program from section 2 of the previous exercises:
You should now run an authorization check to see if the user is authorized to see the data
for the airlines that he or she included in the selection on the selection screen.
You should then place the airlines that the user chose and for which he or she has
authorization in a suitable internal table.
You will then display the output in a list.
is your two-digit group number.
Model solution:
SAPBC402_TABS_FLIGHTLIST2

2-1 Copy your solution to exercise 2 from the last unit (or the model solution) to the
new program Z##_BC402_FLIGHTLIST2.

2-2 Event block AT SELECTION-SCREEN:
Use a loop on the transparent table SCARR to fill the low field of work area
wa_allowed_carr.
Now perform an authorization check against the authorization object S_CARRID
for this airline and the activity ‘Display’ (use the Pattern function in the ABAP
Editor).
Only if the check is successful should you fill the sign and option fields of the
work area and append it to the selection table.

2-3 Event block START-OF-SELECTION:
Use the view BC402_FLIGHTS to fill the elementary fields of the internal table
it_flights. However, at this stage, leave the inner internal table it_planes
initial.
You cannot use the “array fetch” variant of the SELECT statement with nested
internal tables. You must therefore program a loop with the target fields listed in
the INTO clause, and insert the work area into the table in the correct sort order.

2-4 Then, display the contents of the internal table it_flights as a list. To do this,
use a field symbol <fs_flight>, appropriately typed.
Display only those flights for which there is at least one booking. When you
display the amount, remember the currency addition.

2-5 Maintain appropriate list headers.

You can run the program and then maintain the list headers from the
displayed list.

Unit: Internal table operations
Topic: Filling internal tables
 and accessing their entries

1 Model solution SAPBC402_TABS_COUNTERLIST2

&---
*& Report SAPBC402_TABS_COUNTERLIST2 *
*& *
&---
*& solution of exercise 1 operations on internal tables *
*& *
&---

REPORT sapbc402_tabs_counterlist2.

TYPES:

BEGIN OF t_airport,
 id TYPE sairport-id,
 name TYPE sairport-name,
 END OF t_airport,

 BEGIN OF t_counter,
 airport TYPE scounter-airport,
 airp_name TYPE sairport-name,
 carrid TYPE scounter-carrid,
 countnum TYPE scounter-countnum,
 END OF t_counter.

DATA:

 it_carr_counter TYPE STANDARD TABLE OF t_counter,

 wa_counter TYPE t_counter,

 it_airport_buffer TYPE HASHED TABLE OF t_airport
 WITH UNIQUE KEY id,

 wa_airport TYPE t_airport.

SELECT-OPTIONS so_carr FOR wa_counter-carrid.
START-OF-SELECTION.

* buffer the airport names:

 SELECT id name
 FROM sairport
 INTO CORRESPONDING FIELDS OF TABLE it_airport_buffer.

* fill an internal table with all counters of the selected
* carriers:

 SELECT carrid countnum airport
 FROM scounter
 INTO CORRESPONDING FIELDS OF wa_counter
 WHERE carrid IN so_carr.

 READ TABLE it_airport_buffer
 INTO wa_airport
 WITH TABLE KEY id = wa_counter-airport.
 wa_counter-airp_name = wa_airport-name.
 APPEND wa_counter TO it_carr_counter.

 ENDSELECT.

 SORT it_carr_counter BY airport carrid ASCENDING AS TEXT.

* display list:

 LOOP AT it_carr_counter INTO wa_counter.
 WRITE: / wa_counter-airport,
 wa_counter-airp_name,
 wa_counter-carrid,
 wa_counter-countnum.
 ENDLOOP.

2 Model solution SAPBC402_TABS_FLIGHTLIST2

&---
*& Report SAPBC402_TABS_FLIGHTLIST2 *
*& *
&---
*& solution of exercise 2 operations on internal tables *
*& *
&---

REPORT sapbc402_tabs_flightlist2.

TYPES:

 BEGIN OF t_flight,
 carrid TYPE spfli-carrid,
 connid TYPE spfli-connid,
 fldate TYPE sflight-fldate,
 cityfrom TYPE spfli-cityfrom,
 cityto TYPE spfli-cityto,
 seatsocc TYPE sflight-seatsocc,
 paymentsum TYPE sflight-paymentsum,
 currency TYPE sflight-currency,
 it_planes TYPE bc402_typs_planetab,
 END OF t_flight,

 t_flighttab TYPE SORTED TABLE OF t_flight
 WITH UNIQUE KEY carrid connid fldate.

DATA:
 wa_flight TYPE t_flight,
 it_flights TYPE t_flighttab.

SELECT-OPTIONS so_carr FOR wa_flight-carrid.

FIELD-SYMBOLS <fs_flight> TYPE t_flight.

* for authority-check:

DATA:
 allowed_carriers TYPE RANGE OF t_flight-carrid,
 wa_allowed_carr LIKE LINE OF allowed_carriers.

START-OF-SELECTION.

* fill a range table with the allowed carriers:

 SELECT carrid
 FROM scarr
 INTO wa_allowed_carr-low
 WHERE carrid IN so_carr.

 AUTHORITY-CHECK OBJECT 'S_CARRID'
 ID 'CARRID' FIELD wa_allowed_carr-low
 ID 'ACTVT' FIELD '03'. " display
 IF sy-subrc <> 0.
 CLEAR wa_allowed_carr.
 ELSE.
 wa_allowed_carr-sign = 'I'.
 wa_allowed_carr-option = 'EQ'.
 APPEND wa_allowed_carr TO allowed_carriers.
 ENDIF.

 ENDSELECT.

* fill an internal table with connection and flight data
* for the allowed carriers:

 SELECT carrid connid fldate cityfrom cityto
 seatsocc paymentsum currency
 FROM bc402_flights
 INTO (wa_flight-carrid, wa_flight-connid,
 wa_flight-fldate,
 wa_flight-cityfrom, wa_flight-cityto,
 wa_flight-seatsocc,
 wa_flight-paymentsum, wa_flight-currency)
 WHERE carrid IN allowed_carriers.

 INSERT wa_flight INTO TABLE it_flights.

 ENDSELECT.

* display list, using field-symbol:

 LOOP AT it_flights ASSIGNING <fs_flight>
 WHERE seatsocc > 0.
 WRITE: / <fs_flight>-carrid,
 <fs_flight>-connid,
 <fs_flight>-fldate,
 <fs_flight>-cityfrom,
 <fs_flight>-cityto,
 <fs_flight>-seatsocc,
 <fs_flight>-paymentsum
 CURRENCY <fs_flight>-currency,
 <fs_flight>-currency.
 ENDLOOP.

 SAP AG 1999

l Defining the interface

l Calling subroutines

l Lifetime and visibility

l Use

Contents

Subroutines

A subroutine is an internal modularization unit within a program, to which you can pass data using an
interface. You use subroutines to encapsulate parts of your program, either to make the program
easier to understand, or because a particular section of coding is used at several points in the
program. Your program thus becomes more function-oriented, with its task split into different
constituent functions, and a different subroutine responsible for each one.

As a rule, subroutines also make your programs easier to maintain. For example, you can execute them
"invisibly" in the Debugger, and only see the result. Consequently, if you know that there are no
mistakes in the subroutine itself, you can identify the source of the error faster.

Structure of a Subroutine

n A subroutine begins with the FORM statement and ends with ENDFORM.

n After the subroutine name, you program the interface. In the FORM statement, you specify the
formal parameters , and assign them types if required. The parameters must occur in a fixed
sequence - first the importing parameters, then the importing/exporting parameters. Within the
subroutine, you address the data that you passed to it using the formal parameters.

n You can declare local data in a subroutine.

n After any local data declarations, you program the statements that are executed as part of the
subroutine.

You define the way in which the data from the main program (actual parameters do1, do2, do3, and
do4) are passed to the data objects in the subroutine (formal parameters p1, p2, p3, p4) in the
interface . There are three possibilities:

n Call by reference (p1, p3)
The dereferenced address of the actual parameter is passed to the subroutine.
The USING and CHANGING additions both have the same effect (in technical terms). However,
USING leads to a warning in the program check.

n Call by value (p2)
A local "read only" copy of the actual parameter is passed to the subroutine. Do this using the form
USING value(<formal parameter>).

n Call by value and result (p4)
A local changeable copy of the actual parameter is passed to the subroutine. Do this using the form
CHANGING value(<formal parameter>).
You should use this method when you want to be sure that the value of the actual parameter is not
changed if the subroutine terminates early.

n When you use internal tables as parameters, you should use call by reference to ensure that the
system does not have to copy what could be a large internal table.

The data objects that you pass to a subroutine can have any data type . In terms of specifying data
types, there are various rules:

n You may specify the type for elementary types.
If you do, the syntax check returns an error message if you try to pass an actual parameter with a
different type to the formal parameter. Not specifying a type is the equivalent of writing TYPE ANY.
In this case, the formal parameter "inherits" its type from the actual parameter at runtime. If the
statements in the subroutine are not compatible with this inherited data type, a runtime error occurs.
Data types I, F, D, and T are already fully-specified. If, on the other hand, you use P, N, C, or X, the
missing attributes are made up from the actual parameter. If you want to specify the type fully, you
must define a type yourself (although a user-defined type may itself be generic). When you use
STRING or XSTRING, the full specification is not made until runtime.

n You must specify the type of structures and references.

n You must specify the type of an internal table, but you can use a generic type, that is, program the
subroutine so that the statements are valid for different types of internal table, and then specify the
type:
• Using the corresponding interface specification:
 TYPE [ANY|INDEX|STANDARD|SORTED|HASHED] TABLE,
 (TYPE TABLE is the short form of TYPE STANDARD TABLE)
• Using a user-defined generic table type.

When you call a subroutine, the parameters are passed in the sequence in which they are listed.

The type of the parameters and the way in which they are passed is determined in the interface
definition. When you call the subroutine, you must list the actual parameters after USING and
CHANGING in the same way. There must be the same number of parameters in the call as in the
interface definition.

The best thing to do is to define the subroutine and then use the Pattern function in the ABAP Editor to
generate the call. This ensures that you cannot make mistakes with the interface. The only thing you
have to do is replace the formal parameters with the appropriate actual parameters.

If you pass an internal table with a header line, the name is interpreted as the header line . To pass the
body of an internal table with header line, use the form <itab>[]. In the subroutine, the internal table
will not have a header line.

Example
DATA it_spfli TYPE TABLE OF spfli WITH HEADER LINE.
...
PERFORM demosub CHANGING it_spfli[].
...
FORM demosub CHANGING p_spfli LIKE it_spfli[].
 DATA wa_p_spfli LIKE LINE OF p_spfli.
 ...
ENDFORM.

Formal parameters and local data objects that you define in a subroutine are only visible while the
subroutine is active. This means that the relevant memory space is not allocated until the subroutine
is called, and is released at the end of the routine. The data can only be addressed during this time.
The general rules are as follows:

n You can address global data objects from within the subroutine. However, you should avoid this
wherever possible, since in doing so you bypass the interface, and errors can creep into your coding.

n You can only address formal parameters and local data objects from within the subroutine itself.

n If you have a formal paramete r or local data object with the same name as a global data object, we
say that the global object is locally obscured by the local object. This means that if you address an
object with the shared name in the subroutine , the system will use the local object, if you use the
same name outside the subroutine , the system will use the global object.

Summary

n Address global data objects in the main program and, if you want to use them in the subroutine, pass
them using the interface.

n In the subroutine, address only formal parameters and local data objects.

n Avoid assigning identical names to global and local objects. For example, use a prefix such as p_
for a parameter and l_ for local data.

This example calls the subroutine demosub. It contains a local data object with a starting value, and
alters the four formal parameters.

The system allocates two memory areas p2 and p4 for the two call by value parameters d2 and d4,
and fills them with the respective values. It also allocates memory for the local data object l_do, and
fills it with the starting value.

There is no VALUE addition for p1 or p3, This means that changes at runtime affect the actual
parameters directly, and you can address do1 directly via p1.

Here, the change to p1 directly affects the contents of do1.

The formal parameter p2 is declared as a local copy with read access. This means that any changes will
not affect the actual parameter do2 at all.

The same applies to p3 as to p1. If you do not use the VALUE addition, USING and CHANGING have
the same effect.

The contents of do3 are affected directly by the changes to p3.

As for p2, we have created a local copy for p4. Consequently, the changes to the formal parameter do
not affect the actual parameter while the subroutine is running.

The changes are not written back to the actual parameters until the ENDFORM statement.

If demosub is interrupted for any reason, do4 would have the same value afterwards as it had before
the call.

Now that demosub has finished running, the memory occupied by its local data objects is released.
You now cannot address these data objects any more.

Note that do2 still has its old value, even though p2 was changed in the subroutine.

In the example here, the subroutine should work out the number of free seats on a plane based on the
aircraft type and the number of seats already occupied.

The parameters p_planetype and p_seatsocc are passed by reference to the subroutine
get_free_seats. In the interface, USING indicates that you can only access them to read them.
The result p_seatsfree, on the other hand, is returned by copying its value.

For simplicity, the main program has been restricted to a selection screen on which the user can enter
values, the subroutine call itself, and the list display.

It is technically possible to call subroutines from other main programs. However, this technique is
obsolete, and you should use function modules instead. Function modules provide considerable
advantages, and are important components in the ABAP Workbench. For further information, refer to
the unit Function Groups and Function Modules.

Another typical use of subroutines is recursive calls. Although all other modularization units can, in
principle, be called recursively, the runtime required is often excessive for small easily-programmed
recursions.

This example uses a recursive solution to find a connection between two cities. To find a connection
between A and Z, the program looks for a flight from A to B, and then from B to Z. The subroutine
find_conn calls itself.

n If there is no direct connection, the program uses the current city (p_pos) to compile a list of all
cities that can be reached (l_poss_list), that are not yet in the route list (p_step_list). The
route list is defined as a standard table so that the sequence of the cities on the route is retained.

 For simplicity, the system removes duplicate entries from the list of cities. This means that the
subroutine ends up with only one possible connection.
However, it would also be possible to suppress this, and examine all of the possible connections, for
example, for the number of stopovers, total distance, and so on.

n If it is not possible to reach any cities other than those already visited on the same journey, the
current city on the route is marked as a "dead end".

n Otherwise, the cities to which it is possible to travel are processed in a loop. Each city is included in
the route list, so that the program can continue searching from here. However, before that, the
program has to check whether the city has already been marked as a dead end in a previous search.

n Once the destination is reached, we can terminate the processing. Any further search from this point
would be unsuccessful anyway. The city is marked in the route list, and the search carries on with the
next reachable city.

n The processing logic for this subroutine is contained in the function group
LBC402_SURD_RECURSION, include program LBC402_SURD_RECURSIONF01. The
subroutine is called from function module BC402_SURD_TRAVEL_LIST, which is itself called
from the executable program SAPBC402_SURD_RECURSION. This program lists all of the
possible flights in the flight data mode, and in particular those with stopovers.

Unit: Subroutines
Topic: Interface, functions, and call

At the conclusion of these exercises, you will be able to:

• Implement subroutines

• Call subroutines

You are a programmer for an airline consortium, and it is your job to
write analysis programs for several airlines.

1. Extend your program from section 2 of the previous exercises:
Use a subroutine to encapsulate the code you use to display the flights on the list. Pass the
relevant internal table by reference to the subroutine.
is your two-digit group number.
Model solution:
SAPBC402_SURS_FLIGHTLIST3

1-1 Copy your solution to exercise 2 from the last unit (or the model solution) to the
new program Z##_BC402_FLIGHTLIST3.

1-2 At the end of the processing logic, define the subroutine display_flights.
Declare a parameter for the internal table so that it is passed by reference. Specify
an appropriate type for it.

1-3 Remove the field symbol <fs_flight> from the main program and declare it as
a local data object in the subroutine.

1-4 Remove the statements used to create the list from the main program and insert
them (appropriately modified) in the subroutine.

1-5 From the main program, call the subroutine display_flights (use the Pattern
function).

Unit: Subroutines
Topic: Interface, functions, and calling

1 Model solution SAPBC402_SURS_FLIGHTLIST3

&---
*& Report SAPBC402_SURS_FLIGHTLIST3 *
*& *
&---
*& solution of exercise subroutines *
*& *
&---

REPORT sapbc402_surs_flightlist3.

TYPES:

 BEGIN OF t_flight,
 carrid TYPE spfli-carrid,
 connid TYPE spfli-connid,
 fldate TYPE sflight-fldate,
 cityfrom TYPE spfli-cityfrom,
 cityto TYPE spfli-cityto,
 seatsocc TYPE sflight-seatsocc,
 paymentsum TYPE sflight-paymentsum,
 currency TYPE sflight-currency,
 it_planes TYPE bc402_typs_planetab,
 END OF t_flight,

 t_flighttab TYPE SORTED TABLE OF t_flight
 WITH UNIQUE KEY carrid connid fldate.

DATA:
 wa_flight TYPE t_flight,
 it_flights TYPE t_flighttab.

SELECT-OPTIONS so_carr FOR wa_flight-carrid.

* for authority-check:

DATA:
 allowed_carriers TYPE RANGE OF t_flight-carrid,
 wa_allowed_carr LIKE LINE OF allowed_carriers.

START-OF-SELECTION.

* fill a range table with the allowed carriers:

 SELECT carrid
 FROM scarr
 INTO wa_allowed_carr-low
 WHERE carrid IN so_carr.

 AUTHORITY-CHECK OBJECT 'S_CARRID'
 ID 'CARRID' FIELD wa_allowed_carr-low
 ID 'ACTVT' FIELD '03'. " display
 IF sy-subrc <> 0.
 CLEAR wa_allowed_carr.
 ELSE.
 wa_allowed_carr-sign = 'I'.
 wa_allowed_carr-option = 'EQ'.
 APPEND wa_allowed_carr TO allowed_carriers.
 ENDIF.

 ENDSELECT.

* fill an internal table with connection and flight data
* for the allowed carriers:

 SELECT carrid connid fldate cityfrom cityto
 seatsocc paymentsum currency
 FROM bc402_flights
 INTO (wa_flight-carrid, wa_flight-connid,
 wa_flight-fldate,
 wa_flight-cityfrom, wa_flight-cityto,
 wa_flight-seatsocc,
 wa_flight-paymentsum, wa_flight-currency)
 WHERE carrid IN allowed_carriers.

 INSERT wa_flight INTO TABLE it_flights.

 ENDSELECT.

 PERFORM display_flights CHANGING it_flights.

--
* FORM display_flights
--
* --> p_it_flights
--
FORM display_flights CHANGING p_it_flights TYPE t_flighttab.

 FIELD-SYMBOLS <l_fs_flight> TYPE t_flight.

 LOOP AT p_it_flights ASSIGNING <l_fs_flight>
 WHERE seatsocc > 0.
 WRITE: / <l_fs_flight>-carrid,
 <l_fs_flight>-connid,
 <l_fs_flight>-fldate,
 <l_fs_flight>-cityfrom,
 <l_fs_flight>-cityto,
 <l_fs_flight>-seatsocc,
 <l_fs_flight>-paymentsum
 CURRENCY <l_fs_flight>-currency,
 <l_fs_flight>-currency.
 SKIP.
 ENDLOOP.

ENDFORM.

 SAP AG 1999

l Defining the interface

l Function modules in function groups

l Calling a function module

l Runtime behavior

Contents:

Function Groups and Function Modules

Function modules are more comfortable to use than subroutines, and have a wider range of uses. The
following list, without claiming to be complete, details the essential role that function modules play
in the ABAP Workbench:

Function modules ...

n Are actively integrated in the ABAP Workbench. You create and manage them using the Function
Builder.

n Can have optional importing and changing parameters, to which you can assign default values.

n Can trigger exceptions through which the return code field sy-subrc is filled.

n Can be remote-enabled.

n Can be executed asynchronously, allowing you to run parallel processes.

n Can be enabled for updates.

n Play an important role in the SAP enhancement concept.

As an example, we are going to calculate the number of free seats on an aircraft. The following slides
illustrate the individual steps involved in creating a function module.

In the Attributes of a function module, you specify its general adminstrative data and the processing
type :

n Remote-enabled function modules can be called asynchronously in the same system, and can also
be called from other systems (not just R/3 Systems). To call a function module in another system,
there must be a valid system connection. For further information, refer to the course BC415
(Communications Interfaces in ABAP).

n Update function modules contain additional functions for bundling database changes. For further
information, refer to the course BC414 (Programming Database Updates) and the online
documentation.

The online documentation also details the interface restrictions that apply to remote-enabled and update
function modules.

When you exchange data with function modules, you can distinguish clearly between three kinds of
parameters:

n Importing parameters, which are received by the function module

n Exporting parameters, which are returned by the function module

n Changing parameters, which are both received and returned.

By default, all parameters are passed by reference. To avoid unwanted side effects, you can only
change exporting and changing parameters in the function module. If you want to pass parameters by
value , you must select the relevant option when you define the interface.

You can also declare importing and changing parameters as optional. You do not have to pass values
to these parameters when you call the function module. Where possible, you should use this option
when you add new parameters to function modules that are already in use. You can assign a default
value to an optional parameter. If you do not pass a value of your own when you call the function
module, the system then uses the default value instead. Export parameters are always optional.

You may specify the type of an elementary parameter. You must specify the type of a structured or
table parameter. You can use either ABAP Dictionary types, ABAP Dictionary objects, predefined
ABAP types (I, F, P, N, C, STRING, X, XSTRING, D, T) or user-defined types. Any
type conflicts show up in the extended program check.

Tables parameters are obsolete for normal function modules, but have been retained to ensure
compatibility for function modules with other execution modes.

When you save the interface, the system generates the statement framework together with the comment
block that lists the interface parameters:

FUNCTION <name>.
*"--------------
*" ...
*"--------------

...

ENDFUNCTION.

The comment block is updated automatically if you make changes to the function module later on. It
means that you can always see the interface definition when you are coding the function module.

You program the statements exactly as you would in any other ABAP program in the ABAP Editor.

In the function module, you can create your own local types and data objects, and call subroutines or
other function modules.

You can make a function module trigger exceptions .

To do this, you must first declare the exceptions in the interface definition, that is, assign each one a
different name .

In the source code of your function module, you program the statements that trigger an exception under
the required condition. At runtime, the function module is terminated when an exception is triggered.
The changes to exporting and changing parameters are the same as in subroutines. There are two
statements that you can use to trigger an exception. In the forms given below, <exception> stands for
the name of an exception that you declared in the interface. The system reacts differently according
to whether or not the exception was listed in the function module call:

n RAISE <exception>.
If the exception is listed in the calling program, the system returns control to it directly. If the
exception is not listed, a runtime error occurs.

n MESSAGE <kind><num>(<id>) RAISING <exception>.
If the exception is listed in the calling program, the statement has the same effect as RAISE
<exception>. If it is not listed, the system sends message <num> from message class <id> with type
<kind>, and no runtime error occurs.

Function modules differ from subroutines in that you must assume that they will be used by other
programmers. For this reason, you should ensure that you complete the steps listed here.

n Documentation (can be translated)
You should document both your parameters and exceptions with short texts (and long texts if
necessary) and your entire function module. The system provides a text editor for you to do this,
containing predefined sections for Functionality, Example Call, Hints , and Further Information.

n Work list
When you change an active function module, it acquires the status active (revised). When you save
it, another version is created with the status inactive . When you are working on a function module,
you can switch between the inactive version and the last version that you activated. When you
activate the inactive version, the previous active version is overwritten.

n Function test
Once you have activated your function module, you can test it using the built-in test environment in
the Function Builder. If an exception is triggered, the test environment displays it, along with any
message that you may have specified for it. You can also switch into the Debugger and the Runtime
Analysis tool. You can save test data and compare sets of results.

When you insert a function module call in your program, you should use the Pattern function. Then,
you only need to enter the name of the function module (input help is available). The system then
inserts the call and the exception handling (MESSAGE statement) into your program.

You assign parameters by name. The formal parameters are always on the left-hand side of the
expressions:

n Exporting parameters are passed by the program. If a parameter is optional, you do not need to pass
it. Default values are displayed if they exist.

n Importing parameters are received by the program. All importing parameters are optional.

n Changing parameters are both passed and received. You do not have to list optional parameters.
Default values are displayed if they exist.

The system assigns a value to each exception, beginning at one, and continuing to number them
sequentially in the order they are declared in the function module definition. You can assign a value
to all other exceptions that you have not specifically listed using the special exception OTHERS.

If you list the exceptions and one is triggered in the function module, the corresponding value is placed
in the return code field sy-subrc. If you did not list the exception in the function call, a runtime
error or a message occurs, depending on the statement you used in the function module to trigger
the exception.

When you create a function module, you must assign it to a function group. The function group is the
main program in which a function module is embedded.

A function group is a program with type F, and is not executable . The entire function group is loaded
in a program the first time that you call a function module that belongs to it.

The system also triggers the LOAD-OF-PROGRAM event for the function group.

The function group remains active in the background until the end of the calling program. It is therefore
a suitable means of retaining data objects for the entire duration of a program. All of the function
modules in a group can access the group's global data.

The same applies to screens. If you want to call one screen from several different programs, you must
create it in a function group. You then create the ABAP data objects with the same names as the screen
fields in the function group. The screen and data transport can now be controlled using the function
modules in the group.
Examples: Function groups SPO1 to SPO6.
For further information about this technique, refer to course BC410 (Programming User Dialogs).

Let us return to our waiting list example from the Operations on Internal Tables unit. Maintaining a
waiting list using subroutines would be subject to errors, since the list would be a global object and
could be changed within the main program.

Furthermore, waiting lists are a common application, and it is likely that if you write a solution, it can
be used by other developers. You should therefore make it available centrally in the ABAP
Workbench so that other programmers do not have to do the same work over again. If, for example,
they know that a function module wait_get_first will return the name of the customer at the
top of the waiting list, they only need to worry about the required parameters and possible
exceptions.

In the example, the waiting list is implemented as an internal table in the global data declarations of the
function group. This means that it cannot be changed using any means other than the function
modules in that group. You can call these from any program.

The implementation of the individual function modules is similar to the examples in the Internal Table
Operations unit. To save space, we have only listed the ABAP coding that is relevant for the actual
functions.

The types of the parameters and global data objects have been specified by referring to appropriate
types in the ABAP Dictionary.

Screen 100 belongs to the function group. It is a container screen for list processing that is processed
invisibly. It allows the user to display the current contents of the waiting list in a modal dialog box.

For simplicity, we have not used a table control in the example. Had we done so, it would have been
possible to encapsulate the entire navigation in the function group. For further information about using
screen objects such as table controls, refer to course BC410 (Programming User Dialogs).

To move an entry in the waiting list, we first delete the existing entry. Then, we enter a new one at
position ip_new_pos.

This is only possible if the new index is positive, and not greater than the total number of lines in the
list (last_pos). We determine the value of last_pos using the DESCRIBE TABLE … LINES
statement. If you specify an index that is too large, the entry is appended to the internal table.

As described in the ABAP Runtime Environment unit, the ABAP Workbench helps you to structure
your source code when you work with function groups and function modules.

Forward navigation ensures that you always enter the correct object. Include programs are named
automatically, and the relevant call statements are inserted automatically in the correct positions.

You only have to observe the naming convention for function groups: {Y|Z}<rem_name>.

The system then creates a type F program called SAPL{Y|Z}<rem_name>. This contains
automatically-generated INCLUDE statements. The include programs are also named automatically:
L{Y|Z}<rem_name><abbreviation><number>. The abbreviation <abbreviation> is
assigned according to the same principle as described on the Program Organization page.

The include program L{Y|Z}<rem_name>UXX is also inserted. This contains an include statement
for each function module in the form L{Y|Z}<rem_name>U<number>.

s

Unit: Function Groups and Function Modules
Topic: Creating and calling function groups and function
modules

At the conclusion of these exercises, you will be able to:

• Create and implement function groups

• Write function modules

• Call function modules

You are a programmer for an airline consortium, and it is your job to
write analysis programs for several airlines.

1. You will create an internal table in a function group that buffers all of the aircraft type
available to each airline. For simplicity, this will have a flat structure, not a nested one.
is your two-digit group number.
Model solution:
BC402_FMDS_FLIGHT

1-1 Create a function group Z##_BC402_FLIGHT.

1-2 Assign the message class BC402 to it.

The program ID is in the TOP include (LBC402_FLIGHTTOP).

1-3 Document your function group.

2. You are going to write a function module to fill internal tables for aircraft types. It should
only write a replacement aircraft type into the table for a particular airline if the aircraft
type has enough seats.
It should also calculate the average revenue per seat, based on the total revenue that you
will pass to it. Your function module should then sort the list of aircraft by this value in
descending order before returning it to the calling program.
is your two-digit group number.
Model solutions:
BC402_FMDS_FLIGHT
BC402_FMDS_CREATE_PLANELIST

2-1 Create the function module Z_##_BC402_CREATE_PLANELIST in your
function group Z##_BC402_FLIGHT.

2-2 Declare the line type t_carr_plane as a global data type in your function
group. It should have the following structure:

Component Type
carrid scarplan-carrid
planetype scarplan-planetype
seatsmax saplane-seatsmax

 You will use this for the airline↔ aircraft type assignment.

2-3 Declare the internal table it_carr_planes as a global data object in your
function group. It should have the line type t_carr_plane . It should be a
sorted table with the unique key carrid and planetype.

2-4 Fill the internal table it_carr_planes using the “array fetch” method with the
view BC402_CARPLAN.

Choose a suitable event. Remember that function groups cannot be
executed directly.
Implement the event block in a suitable include program. Observe
the naming convention for include programs in function groups.

2-5 Declare the following import parameters for your function module. They should be
passed by value.
ip_seatsocc (optional, with default value 0), ip_carrid,
ip_paymentsum, ip_currency.

2-6 Declare the export parameter ep_planelist. It should be passed by value.
Specify its type by referring to your global table type Z##_BC402_PLANETAB.

2-7 Declare and document the exception no_planes.

2-8 In the fuction module, create the local structure l_wa_carr_plane with type
t_carr_plane.

2-9 From the global internal table, read the aircraft types that are available to the airline
that you have passed to the function module, and that have enough seats to
accommodate the number of passengers booked on the flight.
In this loop, calculate the average revenue per seat for each aircraft type. Declare
another work area – l_wa_plane – as a local data object within the function
module. Specify its type by referring to your global structure
Z##_BC402_PLANE.
Once you have filled the structure fully, pass it to the internal table that you are
going to export.

2-10 Before you export the table, sort it by the average revenue per seat.

2-11 If there are no suitable aircraft types, trigger the exception. When you raise the
exception, use error message 067. You need to pass the airline to the message.

2-12 Document your function module.

2-13 Test your function module.

3. Extend your program from task 1 of the previous exercises:
You should now fill the inner internal table for the aircraft types for each flight, using the
function module you created in the last exercise.
Model solution:
SAPBC402_FMDS_FLIGHTLIST4

3-1 Copy your solution from the last exercise, or the model solution.
New name: Z##_BC402_FLIGHTLIST4.

3-2 Fill the inner internal table in its own step before the list display.
For each flight on which at least one seat is booked, call your function module
Z_##_BC402_CREATE_PLANELIST (use the Pattern function).
The current line should only be updated if no exception is triggered by the function
module.

3-3 Extend the subroutine in which you display the list:
If (and only if) there is at least one replacement aircraft for a flight, display all of
the aircraft types, their maximum number of seats, and their average revenues
(along with the appropriate currency) on the list.
To do this, use an appropriately-typed field symbol.
If there is no replacement aircraft for a particular flight, display an appropriate text.

Unit: Function Groups and Function Modules
Topic: Creating and calling function groups and
function modules

1-1, 2-4 Model solution SAPLBC402_FMDS_FLIGHT

**
* System-defined Include-files.
*
**
 INCLUDE lbc402_fmds_flighttop. " Global Data
 INCLUDE lbc402_fmds_flightuxx. " Function Modules

**
* User-defined Include-files (if necessary).
*
**
* INCLUDE LBC402_FMDS_FLIGHTF... " Subprograms
* INCLUDE LBC402_FMDS_FLIGHTO... " PBO-Modules
* INCLUDE LBC402_FMDS_FLIGHTI... " PAI-Modules

 INCLUDE lbc402_fmds_flighte01. " Events

1-2, 2-2, 2-3 Model solution LBC402_FMDS_FLIGHTTOP

FUNCTION-POOL bc402_fmds_flight MESSAGE-ID bc402.

TYPES:
 BEGIN OF t_carr_plane,
 carrid TYPE scarplan-carrid,
 planetype TYPE scarplan-planetype,
 seatsmax TYPE saplane-seatsmax,
 END OF t_carr_plane.

DATA:
 it_carr_planes TYPE SORTED TABLE OF t_carr_plane
 WITH UNIQUE KEY carrid planetype.

2-4 Model solution LBC402_FMDS_FLIGHTE01

--
* INCLUDE LBC402_FMDS_FLIGHTE01 *
--

 LOAD-OF-PROGRAM.

 SELECT carrid planetype seatsmax
 FROM bc402_carplan
 INTO CORRESPONDING FIELDS OF TABLE it_carr_planes.

2-1, 2-5 – 2-11 Model solution BC402_FMDS_CREATE_PLANELIST

FUNCTION BC402_FMDS_CREATE_PLANELIST.
*"--
""Local interface:
*" IMPORTING
*" VALUE(IP_SEATSOCC) TYPE SFLIGHT-SEATSOCC DEFAULT 0
*" VALUE(IP_CARRID) TYPE SPFLI-CARRID
*" VALUE(IP_PAYMENTSUM) TYPE SFLIGHT-PAYMENTSUM
*" VALUE(IP_CURRENCY) TYPE SFLIGHT-CURRENCY
*" EXPORTING
*" VALUE(EP_PLANELIST) TYPE BC402_TYPS_PLANETAB
*" EXCEPTIONS
*" NO_PLANES
*"--

 DATA:
 l_wa_carr_plane TYPE t_carr_plane,
 l_wa_plane TYPE bc402_typs_plane.

 LOOP AT it_carr_planes INTO l_wa_carr_plane
 WHERE carrid EQ ip_carrid
 AND seatsmax GE ip_seatsocc.
 l_wa_plane-planetype = l_wa_carr_plane-planetype.
 l_wa_plane-seatsmax = l_wa_carr_plane-seatsmax.
 l_wa_plane-avg_price =
 ip_paymentsum / l_wa_carr_plane-seatsmax.
 l_wa_plane-currency = ip_currency.
 APPEND l_wa_plane TO ep_planelist.
 ENDLOOP.

 IF sy-subrc NE 0.
 MESSAGE e067 RAISING no_planes WITH ip_carrid.
 ELSE.
 SORT ep_planelist BY avg_price DESCENDING.
 ENDIF.

ENDFUNCTION.

3 Model solution SAPBC402_FMDS_FLIGHTLIST4

&---
*& Report SAPBC402_FMDS_FLIGHTLIST4 *
*& *
&---
*& solution of exercise 3 function groups *
*& and function modules *
&---

REPORT sapbc402_fmds_flightlist4.

TYPES:
 BEGIN OF t_flight,
 carrid TYPE sflight-carrid,
 connid TYPE sflight-connid,
 fldate TYPE sflight-fldate,
 cityfrom TYPE spfli-cityfrom,
 cityto TYPE spfli-cityto,
 seatsocc TYPE sflight-seatsocc,
 paymentsum TYPE sflight-paymentsum,
 currency TYPE sflight-currency,
 it_planes TYPE bc402_typs_planetab,
 END OF t_flight,

 t_flighttab TYPE SORTED TABLE OF t_flight
 WITH UNIQUE KEY carrid connid fldate.

DATA:
 wa_flight TYPE t_flight,
 it_flights TYPE t_flighttab.

SELECT-OPTIONS so_carr FOR wa_flight-carrid.

* for authority-check:

DATA:
 allowed_carriers TYPE RANGE OF t_flight-carrid,
 wa_allowed_carr LIKE LINE OF allowed_carriers.

AT SELECTION-SCREEN.
...

* fill a range table with the allowed carriers:

...
...

START-OF-SELECTION.

* fill an internal table with connection and flight data
* for the allowed carriers:

...
...

* fill all the inner internal tables with alternate planetypes:

 LOOP AT it_flights INTO wa_flight WHERE seatsocc > 0.

 CALL FUNCTION 'BC402_FMDS_CREATE_PLANELIST'
 EXPORTING
 ip_seatsocc = wa_flight-seatsocc
 ip_carrid = wa_flight-carrid
 ip_paymentsum = wa_flight-paymentsum
 ip_currency = wa_flight-currency
 IMPORTING
 ep_planelist = wa_flight-it_planes
 EXCEPTIONS
 no_planes = 1
 OTHERS = 2.
 IF sy-subrc = 0.
 MODIFY TABLE it_flights FROM wa_flight
 TRANSPORTING it_planes.
 ENDIF.

 ENDLOOP.

 PERFORM display_flights CHANGING it_flights.

--
* FORM display_flights
--
* --> p_it_flights
--
FORM display_flights CHANGING p_it_flights TYPE t_flighttab.

 FIELD-SYMBOLS:
 <l_fs_flight> TYPE t_flight,
 <l_fs_plane> TYPE bc402_typs_plane.

 LOOP AT p_it_flights ASSIGNING <l_fs_flight>
 WHERE seatsocc > 0.
 WRITE: / <l_fs_flight>-carrid,
 <l_fs_flight>-connid,
 <l_fs_flight>-fldate,
 <l_fs_flight>-cityfrom,
 <l_fs_flight>-cityto,
 <l_fs_flight>-seatsocc,
 <l_fs_flight>-paymentsum
 CURRENCY <l_fs_flight>-currency,
 <l_fs_flight>-currency.

* * display filled inner internal tables only:
**
 IF <l_fs_flight>-it_planes IS INITIAL.
 WRITE: /29 'no alternate planes available'(npa).
 ELSE.
 LOOP AT <l_fs_flight>-it_planes ASSIGNING <l_fs_plane>.
 WRITE: /29 <l_fs_plane>-planetype,
 <l_fs_plane>-seatsmax,
 <l_fs_plane>-avg_price
 CURRENCY l_fs_plane>-currency,
 <l_fs_plane>-currency.
 ENDLOOP.
 ENDIF.

 SKIP.
 ENDLOOP.

ENDFORM.

 SAP AG 1999

l Techniques for calling programs

l Memory model

l Techniques for passing data

l Uses

Contents:

Calling Programs and Passing Data

There are two ways of starting an ABAP program from another ABAP program that is already running:

n By interrupting the current program to run the new one - the called program is executed, and
afterwards, processing returns to the program that called it.

n By terminating the current program and then running the new one.

Complete ABAP programs within a single user session can only run sequentially. We refer to this
technique as using synchronous calls.

If you want to run functions in parallel, you must use function modules. For further information about
this technique, refer to course BC415 (Communication Interfaces in ABAP), and the
documentation for the CALL FUNCTION … STARTING NEW TASK… statement.

The way in which main memory is organized from the program's point of view can be represented
easily in the above model. There is a distinction between internal and external sessions:

n Generally, an external session corresponds to an R/3 window. You create new external sessions by
choosing System → Create session or entering /o<tcode> in the command field. You can have up
to six external sessions open simultaneously in one terminal session.

n External sessions are subdivided into internal sessions . Each program that you run occupies its own
internal session. Each external session can contain up to nine internal sessions.

The data in a program is only visible within that internal session, so it is only visible to the program.

The following pages illustrate how the stack inside an external session changes with various program
calls.

When you insert a program, the system creates a new internal session, which contains the new program
context.

The new session is placed on the stack The program context of the calling program also remains on the
stack.

When the called program finishes, its internal session (the top one in the stack) is deleted.

Processing is resumed in the next-highest internal session in the stack.

When you end a program and start a new one, there is a difference between calling an executable
program and calling a transaction.

If you start an executable program using its program name , the internal session of the program you
are ending (the top one) is removed.

The system creates a new internal session, which contains the program context of the called program.

The new session is placed on the stack. Any program contexts that already existed are retained. The
topmost internal session on the stack is replaced.

If you start a program using its transaction code (if one is assigned), all of the existing internal sessions
are removed from the stack.

The system creates a new internal session, which contains the program context of the called program.

After the call, the ABAP memory is reset.

When you call a function module, the ABAP runtime system checks whether you have already called a
function module from the same function group in the current program.

n If this is not the case, the system loads the relevant function group into the internal session of the
calling program. Its global data is initialized and the LOAD-OF-PROGRAM event is triggered.

n If your program had already used a function module from the same function group before the call,
the function group is already resident in the internal session, and the new call can access the same
global data. We say that the function group remains active until the end of the program that
called it.

The data is only visible in the corresponding program - each program can only address its own data,
even if there are identically-named objects in both programs. The same applies when the stack is
extended. If a program is added to the stack that calls a function module from a function group
already called by another program, the function group is loaded again into the new internal session.
The system creates new copies of its data objects, initializes them, and, as before, they are only
visible within the function group, and only in the internal session in which the function group was
loaded.

The graphic shows the first call to a function module in a particular function group.

To start an executable (type 1) program, use the SUBMIT statement.

If you use the VIA SELECTION-SCREEN addition, the system displays the standard selection screen
of the program (if one has been defined).

If you use the AND RETURN addition, the system resumes processing with the first statement after the
SUBMIT statement once the called program has finished.

For further information, refer to the documentation for the SUBMIT statement.

When you use the LEAVE TO TRANSACTION '<T_CODE>' statement, the system terminates the
current program and starts the transaction with transaction code <T_CODE>. The statement is the
equivalent of entering /n<T_CODE> in the command field.

CALL TRANSACTION '<T_CODE>' allows you to insert an ABAP program with a transaction
code into the call chain.

To terminate an ABAP program, use the LEAVE PROGRAM statement. If the statement occurs in a
program that you called using CALL TRANSACTION '<T_CODE>' or SUBMIT <prog_name>
AND RETURN, the system resumes processing at the next statement after the call in the calling
program. In all other cases, the user returns to the application menu from which he or she started the
program.

If you use the …AND SKIP FIRST SCREEN addition, the system does not display the screen
contents of the first screen in the transaction. However, it does process the flow logic.

If you started a transaction using CALL TRANSACTION that uses update techniques, you can use the
UPDATE… addition to specify the update technique (asynchronous (default), synchronous, or local) that
the program should use. For further information, refer to course BC414 (Programming Database
Updates) and the online documentation.

There are various ways of passing data to programs running in separate internal sessions:

You can use

� The interface of the called program (usually a standard selection screen)

� ABAP memory

� SAP memory

� Database tables

� Local files on your presentation server

The following pages illustrate methods �, � and �.

For further information about passinig data using database tables or the shared buffer, refer to the
documentation for the EXPORT and IMPORT statements.

For further information about transferring data between an ABAP program and your presentation
server, refer to the documentation of function modules WS_UPLOAD and WS_DOWNLOAD.

Function modules have an interface that the calling program and the function module use to exchange
data. Subroutines also use a similar technique. Certain restrictions apply to the interfaces of remote-
enabled function modules.

When you call ABAP programs that have a standard selection screen, you can pass data for the input
fields in the call. There are two ways to do this:

n By specifying a variant for the selection screen when you call the program.

n By specifying values for the input fields when you call the program.

The WITH addition in the SUBMIT statement allows you to assign values to the fields on a standard
selection screen. The abbreviations "EQ, NE, … , I, E" have the same meanings as with select-
options.
If you want to pass several selections to a selection option, you can use the RANGES statement instead
of individual WITH additions. The RANGES statement creates a selection table , which you can fill as
though it were a selection option. You then pass the whole table to the executable program.

If you want to display the standard selection screen when you call the program, use the
VIA SELECTION-SCREEN addition.

When you use the SUBMIT statement, use the Pattern function in the ABAP Editor to insert an
appropriate statement pattern for the program you want to call. It automatically suppplies the names of
the parameters and selection options that are available on the standard selection screen.

The example shown above is an extract from transaction BC402_CALD_CONN. When the user
requests the coordinates of a city, the executable program SAPBC402_TABD_HASHED is called.
The parameters are filled with the city and country code from the transaction. The standard selection
screen does not appear.

For further information about working with variants and about other syntax variants of the WITH
addition, refer to the documentation for the SUBMIT statement.

To pass data between programs, you can use either the SAP memory or the ABAP memory.

n SAP memory is a user-specific memory area that you can use to store field values. It is only of
limited value for passing data between internal sessions. Values in SAP memory are retained for the
duration of the user's terminal session. The memory can be used between sessions in the same
terminal session. You can use the contents of SAP memory as default values for screen fields. All
external sessions can use the SAP memory.

n ABAP memory is also user-specific. There is a local ABAP memory for each external session. You
can use it to exchange any ABAP variables (fields, structures, internal tables, complex objects)
between the internal sessions in any one external session.
When the user exits an external session (/i in the command field), the corresponding ABAP
memory is automatically initialized or released.

Use the EXPORT … TO MEMORY statement to copy any number of ABAP variables with their current
values (data cluster) to ABAP memory. The ID… addition (maximum 32 characters long) enables you
to identify different clusters.
If you use a new EXPORT TO MEMORY statement for an existing data cluster, the new one will
overwrite the old.

The IMPORT… FROM MEMORY ID… statement allows you to copy data from ABAP memory into
the corresponding fields of your ABAP program. In the IMPORT statement, you can also restrict the
selection to a part of the data cluster.

The variables into which you want to read data from the cluster in ABAP memory must have the same
types in both the exporting and the importing programs.

To release a data cluster, use the FREE MEMORY ID… statement.

Remember when you call programs using transaction codes that you can only use the ABAP memory to
pass data to the transaction.

You can define memory areas (parameters) in the SAP memory in various ways:

n By creating input/output fields with reference to the ABAP Dictionary. These take the parameter
name of the data element to which they refer.
Alternatively, you can enter a name in the attributes of the input/output fields. Then, you can also
choose whether the entries from the field should be transferred to the parameter (SET), or whether
the input field should be filled with the value from the parameter (GET).
To find out about the names of the parameters assigned to input fields, display the field help for the
field (F1), then choose Technical info.

n You can also fill a memory area directly using the statement
 SET PARAMETER ID '<PAR_ID>' FIELD <var>.
and read it using the statement
 GET PARAMETER ID '<PAR_ID>' FIELD <var>.

n You can also define parameters using the Object Navigator and fill them with values.

The example shown here is an extract from transaction BC402_CALD_CONN. When the user maintains
the flight times, the program calls transaction BC402_TABD_SORT. The name of the airline is
passed using parameter CAR (using a statement). The flight number is passed using parameter CON
(SET option selected for the field in the Screen Painter).

When you call a transaction using the statement CALL TRANSACTION '<T_CODE>' USING
<bi_itab>… you can run the transaction <T_CODE> using the values from <bi_itab> in the
screen fields. The internal table must have the structure bdcdata.

The MODE addition allows you to specify whether the screen contents should all be displayed ('A' -
the default setting), only when an error occurs ('E'), or not at all ('N'). You can use the MESSAGE
INTO <mess_itab> to specify an internal table into which any system messages should be
written. The internal table must have the structure bdcmsgcoll.

You can find out if the transaction was executed successfully from the system field
sy-subrc.

You might use this technique if

n You are processing in the foreground, but the input fields have not been filled using GET
parameters,

n You want to process the transaction invisibly. In this case, you normally have to pass the function
codes in the table as well.

This technique is also one of the possible ways of transferring data from non-SAP systems. When you
do this, the internal table with the structure bdcdata must be filled completely.

Filling the internal table in batch input format:

n Each screen that you want to process automatically in the transaction must be identified by a line in
which only the fields program, dynpro, and dynbegin are filled.

n After the record that identifies the screen, use a new bdcdata record for each field you want to fill.
These records use the fields fnam and fval. You can fill the following fields:
• Input/output fields (with data)
• The command field bdc_okcode, (with a function code)
• The cursor positioning field, bdc_cursor (with a field name)

For information about how to use this technique for data transfer, refer to course BC420 (Data
Transfer) or the online documentation.

The above example refers to transaction BC402_FMDD_FG. When the user creates a new customer
entry, the program calls transaction BC402_CALD_CRE_CUST. This transaction has not implemented
import from ABAP memory, and its input fields are not set as GET parameters. The customer data is
therefore passed using an internal table and processed invisibly.
If the operation is successful, the new customer record can be entered in the waiting list.

The filled internal table in bdcdata format is illustrated above. At runtime , <current_name>
stands for the customer name from the input field, <current_city> stands for the city.

You use the field BDC_OKCODE to address the command field, into which you enter the function code
that would have been triggered by the user choosing a function key, pushbutton, or menu entry in dialog
mode (or by entering a code directly in the command field).

Unit: Calling Programs and Passing Data:
Topic: Calling an executable program

At the conclusion of these exercises, you will be able to:

• call an executable program from another program

• Preassign values to its selection options

You are a programmer for an airline consortium, and it is your job to
write analysis programs for several airlines.

1. Extend your program from task 3 of the previous exercises:
The user should be able to display a list of all sales counters of the airlines entered on the
selection screen, as long as he or she is authorized to see the data.
is your two-digit group number.
Model solution:
SAPBC402_CALS_FLIGHTLIST5

1-1 Copy your solution from the last exercise, or the model solution.
New name: Z##_BC402_FLIGHTLIST5.

1-2 For simplicity, the function should be triggered when the user double-clicks a line
or single-clicks it and presses <F2>. Add an appropriate event block to your
program.

1-3 Program a call to your executable program Z##_BC402_COUNTLIST2 or the
model solution SAPBC402_TABS_COUNTLIST2 (use the Pattern function).
Ensure that the standard selection screen of the called program is not displayed.
Once the program has finished running, the user should be able to return to the
original program.

Unit: Calling Programs and Passing Data:
Topic: Calling an executable program

1 Model solution SAPBC402_CALS_FLIGHTLIST5

&---
*& Report SAPBC402_CALS_FLIGHTLIST5 *
*& *
&---
*& solution of exercise 1 *
*& calling programs and transmitting data *
&---

REPORT sapbc402_cals_flightlist5.
...
...

* for authority-check:

DATA:
 allowed_carriers TYPE RANGE OF t_flight-carrid,
 wa_allowed_carr LIKE LINE OF allowed_carriers.

START-OF-SELECTION.

* fill a range table with the allowed carriers:

 ...

 ...

* fill an internal table with connection and flight data
* for the allowed carriers:

 ...
 ...

* fill all the inner internal tables with alternate planetypes:

 ...
 ...

 PERFORM display_flights CHANGING it_flights.

AT LINE-SELECTION.

* display list of counters for all allowed carriers:
**
 SUBMIT sapbc402_tabs_counterlist2
 WITH so_carr IN allowed_carriers AND RETURN.

--
* FORM display_flights
--
* --> p_it_flights
--
FORM display_flights CHANGING p_it_flights TYPE t_flighttab.

...

ENDFORM.

