B TABC41 ABAP Development Workbench
Basics 2/2

TABCA41 2/2

R/3 System
Release 46B
17.06.2000

TABC41 ABAP Development WOrkbeNCh BaSICS 2/2..........cuciccirsiceeeeee s ssssssss s ssssssssssssssssesens 01

(0 o)/ o o) 50T 02
SECLION OVEIVIBW ...ttt ettt bbbt bbb bbbttt 0-4
Section: M anaging ABAP Development Projects........cccovveneee.

Content: Managing ABAP Development Projects

ABAP Devel OpmENtPrOjECLS @NA ASAP........ccicieere et es bbb 2-1
ABAP Development ProjECES @NG ..ottt sese s es s sssenans 2-2
AS A COMPONENT OF.....eeeteeteecrreee et 2-3
INCIUTES. .. .t b bRt 2-4
ABAP Development ProjECES IN ASAP ...ttt 2-5
TOOISANG ASAP.....ce e bbb 2-6
01017 R 2-7

(0 =Tt A = o OO T TR 31
L (0 =ox A = TR 32
Position 0N the ASAP ROGIMEPccuveierieiriririeisiresieesesesestsssesssssssssssssssessssessssesssssssssssssssssssssesssssnssssessssssssesssnssnsess 33
Rolesin Customer Devel OPMENt PrOJECES (1) ..vovvvveererereerririssesieesissssesessstsssesessssssesssssssssssssssssssssssssessssssssesssssssess 34
Rolesin Customer Devel OPMENt PrOJECES (2)ouvvreeererereerrirersesesesessssssesessssesssesessssssessssssssessssssssssssssssssssssssssssssssess 35
Rolesin Customer DevelOpmeNt ProjECES (3B) ...t ssse s sssessssees 36
Rolesin Customer DevelOpMENt PrOJECES (4)coirerireeireieineieisiese s sssessesssaens 37
Rolesin Customer DevelOpmENt PrOJECLS (5) ...t sesssssssesssess s sssessessssens 38

SOFTWEAIE LOGISLICS. ... euureereeeerersesessee sttt bbb 41
SOFIWEAIE LOGISLICS.evuveeereaereee ettt bbb 4-2
Position 0N the ASAP ROGOMEPcccciiiiiiiieesc s ss s sssssssnsssnsssnns 4-3
Planning the System Landscape for DeVEIOPIMENTccviieenerce et s s sens 4-4
Setting UP the SyStEM LanNUSCAPE..........ccvviecieiriceteeeeste st ss bbb st b a et s s s s s st s s 4-5
Maintaining the SYStEM LanNUSCAPE........ccc et sssssesssss s sessssssste s sssesssssssssssssssssesessssssssessssssssesssnssssens 4-6
Change & TranNSPOrt OFQANIZENcvveeueurerresieeresssssesresssssessesesssssssssssssssssssssssessssssssessssssssessssssssessssssssssesssssssssssssssesesens 4-7
Differences DEtWeen WBO @Nd CO ... sessssssssssessessessessessessesssssssssssssessessessessessessesseses 4-8
Central and National DEVEIOPIMENTcccvrrirerererreresesireses s sesss st ssessssssssesssssessssesssssesssssssssesesssssesens 4-9
Workbench Organizer and the TranSPOrt SYSLEM........occrrcrrcrereees e 4-10

CRENGE LEVELS ...ttt R b bbbttt 51
CRENGE LEVEIS ...ttt 52
CRENGE LEVEIS ...ttt bR 53
BUSINESS ENGINEESceiieeiiicetieetieees ettt et p s 54
PEISONAITZBLIION......oocvieiietei et 55
ABAP WOIKDENCN........coittttiei ettt 56
et teee et RR AR AR R A RR LA EA AR AR AL £ 4R AR AL £ R LR 1oL E LR £ RS E R LR 4R R 1R R AR SRR LR SRR LR R R LR R R R bbb 58
ABAP WOrkbench Change LEVEIS ...ttt sttt s st s s 59
Classifying and Implementing Devel Opment PrOjECES.........ccocvrerereceesresssisesessss st sssssssssssssssssssssssesenns 510

MOAIfYING VS, COPYIMNG....titiiiereeireieeteiresesietiesesssesesssssessesssssessssesssssssssssssssssssssssessssssssessssssssessssssssessssssssesssssssessssssssess 511

Modification: Critical REPOSItOry ODJECE TYPES.ccuieeeiieiirresrseersese e ssse s sesssssssssens 514
R U000 7= ST 515
SEANAAITIZBEION ...ttt e R R bRttt 6-1
SEANAAITIZBEION ...ttt e 6-2
Position 0N the ASAP ROGOMEPcccciiiiirieesees s ss s sssssssasssssssns 6-3
SEANUAITIZBLTON A TEBSceuereeeeeesetseeees sttt b bbb s R bbb 6-4
Naming Conventions for REPOSITOrY ODJECES.........ccceiciiicsetsee e s et ss st s s sesens 6-5
Application Hierarchy and DevelOPMENE CIASSES ..ot sssessssssssssssssssssssssssssssssssssssssesssssans 6-6
INEEITACE SEYIE GUITE ...ttt sttt s e s e et s e snansns e nns 6-7
DOCUMENEALT ON.....vevveeareererser s s s see s s ses s er s es s s R R R s s R R b s n e nnnr s 6-8
[N1TNE DOCUMENTALIONcvvvveeeeeeeieaee e 6-9
Critical Factors for SUCCESSfUl MOifiCaLION (L)......cciurerrreerreeerreeererseses e 6-10
Critical Factors for SUccessful MOdifiCation (2)..........ouureerreerrieenernnesereenees e ssse s 6-11
Inline Modification DOCUMENTALTON.........couerieerierirerrerei et 6-12
MOdifiCatiON LOGIIOOK.........c.ciieiiieiiiee e e 6-13
SUMIMEBIY ..ottt E R
Section: ABAP Dictionary
Content: ABAP Dictionary
INEFOTUCTION....ooeeceet e
Function of the ABAP DICLioNaryccccceveveeeneneveeseseseennnns
Database Objectsin the ABAP DIiCLIONAYcccoiiieerrecietririssstsisesssesessss e ssessssssssssssssssssssssssssssssssssessssssssessssssssens
Type Definitions in the ABAP DIiCHIONAIYccviiieiririeersesisssessssesssssssesesssssssessssssssssssssessssssssessssssssssssssssesens 84
Services Of the ABAP DICHIONAIYcccueuiiicieireeeirisesests s tsasesssssesessssssssessssssssssssssssssssssssssssesssssesssnsssssssenssssesens 85
Linking to the Development and RUNtIME ENVIFONMENEocieeirrerriereeree e ssese s sssesseaens 86
UNIT SUMIMIBEY .ottt Rttt 87
Tables N the ABAP DICHIONGYcovueeireeerricrrecreesreses s ses st sese s s st b e n s 91
TADIES AN FIEIAS. ... e bbbt 9-2
Basic Objects Of the ABAP DICHONAIYcccvieiieriiritiresineiesieesese et sssse s ssessssns 93
Two-Level Domain CoNCEPL: EXAMPIEc.cvueieieieieieieieieie ettt ssss st ess sttt se st ss st b s st besssetesesesssesesnsns 94
Transparent Tabl@S aNd SLIUCLUIESc.cvuccueniecete et s et ae st b s a s s st s 95
INCIUTE SEFUCLUIES........coiteettee ittt 9-6
QLIC=o 0 Ttz S g O 97
DIBLA ClBSS... v eveeeeeeeeser s s s s s s ses s eese e s s s s bR AR R R R R R 9-8
S Y O 1= [0 Y O 99
0T T 1 oo T 9-10
UNIT SUMIMIBEY oot ses e bbbt bbb 911
EXEICISE DAL ... ceesceiseerestieee ettt AR 912
Exercises: Tablesinthe ABAP DiCHONAYccverecriieeiiemiesr st sssse s ssssssssssssens 913
Solutions: Tablesin the ABAP DICHONGIYcocciereiiretireeieeeee e sssssssssssssssseens 9-16
Performance during TaDI@ ACCESS.......ccrecirei et e 10-1

ACCESS WITN INUEXES. ...ttt sttt sttt st a e be st et s b et s ae st e be s b et s b e st e bt s b st s b e st ebesb et sbeseene st et sbe st entane 10-3

Data ACCESS USING tNE BUFFENc.cvieeieirctsere ettt b 10-4
TADIE BUFFEITNG co..veevieiret ettt e bbbt 10-5
FUIT BUFFEITNG ...ttt et b e 10-6
GENENIC BUFFEITNG ...ttt e e s s 10-7
ST ae LR e oo o I = U (= T [10-8
BUFfEr SYNCAIONIZALION L........cuoiececeeeccte st ettt a ettt sntee 10-9
BUFfEr SYNCAIONIZALION 2........coeeeeeece ettt n st 10-10
BUFfer SYNCRrONIZAION 3.ttt s st 10-11
BUFfer SYNCHIONIZELION ...ttt st a et ea s n st e 10-12
BUFfer SYNCRIONIZALION 5.ttt ea st 10-13
BUFfer SYNCRIONIZALION B........c.cuveeeeirccie sttt s sttt et e 10-14
UNIT SUMIMIBEY .ottt ees et b bbb 10-15
Exercises: Performance during Tal@ ACCESS ..ottt seans 10-16
Solutions: Performance during TabI€ ACCESS. ...t sssees 10-18

Consistency through INPUE CHECKS........c.ueiicee e e 11-1
Fixed Values

VaueTable...........

Inserting a Data Record
Violation of the Foreign Key ChecKcccvvevvcnvecccnesennen,
Foreign Key Fields/ Check Fields........cccovvinvennececresccecnnn,
Data Consistency through FOr@ign KEYS........crcicenrissisisess s ssessssss st sssssssssssssssssessssssssnss
Foreign Key Definitionsin the CheCK FIEld ...t nses 11-8
Check Table not EQUEl 10 VAlUE TADIE ..ottt ssassssssssesssssesnns 11-9
SEMANTIC ATIITDULES.......ceeee e e 11-10
ISR 1= o = OO TT 11-11
0 0100101072 TS 11-12
Exercises: Consistency through INPUL ChECKS...........ceriiiceeee e seens 11-13
Solutions: Consistency through INPUE CRECKS...........ociericereene e seeees 11-15
Dependencies of ABAP DiCtionary ODJECLSc.cvciiicieiiniceieeeetssss sttt sss et sesesssasesesssasasesas 12-1
ACHVE BNA INACHIVE VEISIONScuvrreireeererserseeses st s st ses s ss s bbb b bbb bbbt 12-2
RUNEIME ODJECES ...ttt a bbbt b e Rt e s bt s e st s e snt et s e nntee 12-3
Handling of DePendENnt OBJECES........co et a et s st es s nten 12-4
WWHEIE-USEA LISES .. cruirereeeeeieeeesee e e e 12-5
The Repository Information System ABAP DICIONAYcccvvireiririsersesisisesesessesssssssssssssssssssssssssssssssesenns 12-6
UNIT SUMMIBIY <oovoceceeeeeeeeeieesessseeesesssssesessssss e sessssssessssssssesssssnsssesssssessssssesessssssnsessssssesesassssnsessssssssessssssssesesnssssessssssssess 12-7
Exercises: Dependencies of ABAP DicCtionary ODJECESccvrerrecrieeneenesssisesisesse e sese s ssessssesssseens 12-8
Solutions: Dependencies of ABAP Dictionary ODJECES.........cvirrnnincneeneee e seseeseees 12-10
Changes t0 DalaDase TADIES.........cvvcrieerietieti et b s 13-1
ChanNGES O TADIES ...t e s 13-2
HOW iSThe SLrUCIUrE AQJUSIEA. ..ottt 13-3

(O00] 1Vt £ o] g I o (011 S 13-5

CONVEISION PIOCESS 3.....ocutieteeeiessssesseses st sese b sss e bbb bbb 13-6
CONVEISION PIrOCESS 4.......cuvriereesesessessesesseessese sttt ses e ses e bbb b 13-7
CONVEISION PIOCESS 5.....oocurietei ettt s s e e b s 13-8
Possible Problems during CONVEISIONS..........cceiecmiemieesieesrssse e sess s sssesssssss s ssse s sssssssesssssens 13-9
Resuming TerminNaled CONVEISIONS........cccueiiiiieieieieeieieies ettt ss e st s st sess s e bssssesesesesatesesnsesesesasaseseses 13-10
APPENA SITUCLUIES ...ttt a et a ettt s a et e s s bt es ettt es s ae s s s st tn s 13-11
APPENA SETUCLUIES 2.ttt se sttt s s asa et s et b s st e e s an bt es et b s s s ae s s s st tn s 13-12
APPENA SETUCLUIES ...ttt s et s s s et s b s s At ee s e st es et b et s s anses s s s ts s 13-13
SUMIMIBIY .ttt sttt sttt E et ettt 13-14
Exercises: Changesto Database TaIES.........ccccvicrrrecicrrssesssess st ssssss s sssss st sss s sssssssssssssesnes 13-15
Solutions: Changes to Database TaDIES........cccrrririerreseees s sssssessessssssssessssssssesesssssssssssssssssssssnses 13-17
BT L= T TP 14-1
WHY 00 YOU NEEU VIBWS?......oeeeiieeieieiti et et 14-2
Structure of aView - SEarting SITUBLION ..o s 14-3
Structure of aView - JOIN CONTITION ...t e 14-4
Structure of aView - Field Selection (ProjECLION)........ccu e
Structure of aView - Selection Conditionc..coccveernerennen.
How are Tables Linked to VIeWsS?........cccccneneneneeneeneencenenn.

Structure of the View..........c.......
Data Selection with Views
DAIANESE VIBWS......eeeeeeererre et
INCIUAES IN DALADESE VIBWSoueerrriceieressessees s s s
MAINEENANCE VIBWS......ooeeeetrerer et
[NNEY N OULEE JOINS......couieiriueeierisriseseireee e ses bbb s e s bbbt
UNIT SUMIMIBEY oottt b bbb
EXEICISES. VIBWWS.....ceeateeetieicteeei ettt s bbbt
SOIULIONS. VIBWS......ouieruieeraereesereses ettt s e es s s bbbt
SEANCIN HEIPS ...t e bR R R 15-1
R/3 Standard FUNCLION: INPUL HEID ...ttt sttt s s 15-2
Requirements of the INPUL HEIP ...ttt p s a et ntee 15-3
ABAP Dictionary ObJECt SEarCh HEIPccuiiicceeccerere sttt a s 15-4
Selection Method Of @ SEAICH HEIP ...t 15-5
Description Of the DialOg BENAVIONccviirieireieeiresesie s sesssesssessssssesss e ssssssssssssssssssssssssssessssssssssssssssessssssssnss 15-6
INtErface Of @ SEAICH HEIP ...cvviceceece ettt a et es s s s 15-7
HOW dO YOU USE SEAICH HEIPS?....eeecerie sttt se st ssnessnsnsnssesssnen 15-8
Search Help Attachment in the ABAP DICHIONAIY ...t ssssessessssssssssens 15-9
Overview: Mechanisms for the INPUE HEID ...t 15-10
Performance of the INPUL HEIP ... 15-11
AIErNaLiVe SEAICH PALNS ... 15-12

Collective Search Helps and Elementary Search HEIPS........cooevncnecnicccs s 15-13

UNIT SUMIMIBEY .ottt b bbb 15-15

EXEICISES: SEAICN HEIPS ...ttt 15-16
SOIULTONS: SEAICH HEIPS......oeececteeec s 15-20
Section: ABAP Programming TECHNIGUESccuirieereeeserseses s sess s sesssssssssssssesns 16-1
Content: ABAP Programming TECANIQUES..........cuuuruirreirreereereee e ssssssss s ssse s sssssssesssseens 16-2
The ABAP RUNLIME ENVIFONIMENTcuouiiieitetiericieieesesisisesesis e s s sessss e s bbb se st se bt es b b s s snaes 17-1
Components Of AN ABAP PrOQraM ...ttt ss s s st ssssss e sss st sesssasssssssssssesnns 17-2
SETUCKEUNE OF @ PTOGIAIM.....c.cucteecctetriece ettt b b a e a et s e s bbbt es et et en et beas 17-3
Program Organi ZaLION...........ccoceirirrereiessie sttt s st s s st s e st ss s s st e s e s se st s e sn b b ss s e s et es s anses s s snsee 17-4
The Three-Tier Client/Server Architecture Of the RIS SYStEM......ccvcevicccrsererree s 17-5
SEIUCLUIE OF BWWOIK PIOCESSceviuiierieisieisee sttt seae s bbb bbb bbbt
General ABAP Program EXECULION...........cuieereeeriresesieisesessseesesssssssesessssssssesssssssssssssssssesssssessssssssessssssssssssssssesesns
Dial0g TranSaCtionN EXECULION..........c.cuiureeurieereeereseerteeesseesi st sess s es e s ssanns
REPOIt TranSaCtioN EXECULION.......c.cueueuieeereersieireeestieesiess ettt
LISt PrOCESSING EVENTS.......cuciieeiiecrereier et e res bbbt
NON-EXECULADIE PIOGIEIMScevieiiteiereetreet ettt

The ABAP Runtime EnvironmentUnit Summary
ABAP Runtime Environment: EXErCiSeS......cccoveevereeereennan.
ABAP Runtime Environment: Solutions.........cccceeueeieereeeenene.

Data Types and Data ObjECES........cccevveeecrrirenceiesesee e

DataTypes and Data ObJECES.......ccccvvereeeereresiesereeeseseseeseens

ABAP Dala TYPES: OVEIVIEW.......cueveireeereeeresesieisesssssesssssssssssssssssesssssssssssssssssessssssssesssssssssssssssssessssssssssesssssessssssssesesns
CONSLIUCHING DALA TYPES ...erveereerreerreresseetstsesssssssesssssssesssstessssssssesssssssssssssssssesessssssssesssssssssssssssssessssssssessssssssesssssssesesns
Predefined ABAP DiCLIONGIY TYPES....cocevirireereriseeeresesseeesssessssssssesssssssssssssessssssssessssssssssssssssesssssssssssssssssessssssssess
Data Elements and Structuresin the ABAP DiCLIONANYccoeureerneeneeneenesesssesi e sssse s sssssssessssenns 18-6
Attributes of INterNal TADIE (TYPES)......cieeerrreirrecrreeeireser s e res s 18-7
ALCCESS TYPES: OVEINVIBWoueireesiese et sese s s s et 18-8
Table Typesin the ABAP DICLONAY ..ottt sese s snssssnes 18-9
Predefined ABAP TYPES ..ottt es bbbt 18-10
Defining Elementary TYPESIiN @PrOgraM.... ..ottt sttt sssssssesesssesesssssssesssesaseseses 18-11
Defining Structured TYPES N @ PrOGraM.........cccvuiceirerecietsise st sssssesssss s sessssssssesessssssssesssassesesssnnes 18-12
Defining Table TYPES IN @ PrOQIaM ..ottt a e s st s st n st s aes 18-13
Declaring FieldS and SLIUCLUIES........c.ccccueiiicicrecse sttt asss st s ettt es st ns s 18-14
DeClaring INErNaAl TADIES.....cc ettt ettt ea st e 18-15
Input Fields on Selection Screens and SeleCtion TabIES........covvreeeerrrece e seees 18-16
CONSLANES NG LITEIAIS ... e e es s en s 18-17
TEXE SYIMDOIS ...ttt bbb 18-18
Passing Data TO @Nd FIrOM SCIEENS......c.occuiirieireee et sese s ses s bbb 18-19
Passing Data To and From Logical Datalase Programs...........cereeerreenernenssnessenesssesessssesssessssssssssssessesesseans 18-20
Predefined Dala ODJECES.......coucuirerrerer st es bbbt 18-21
FHEIA SYMDIOIS ..o 18-22

Example of DYNamIC TYPE CASLINGucvvuereerreerreieereieeseieessi st ssese s sessssessssss st ssssssesssssssssessssssssssssessnaes 18-24

Declaring Data Objects Dynamically: EXAMPIE ..ot seans 18-25
ALLrIDULES OF DAtA ODJECLS.......couiereereriecireecrree ettt s s 18-26
Data Types and Data ObjeCtS:UNIt SUMIMEYcccvieeiermiineereeeee s ssssssssssssessssesseens 18-27
Data Types and Data Obj€CLS: EXEICISES.......cvirrrririetieeeie e seans 18-28
Data Types and Data ObjeCtS: SOIULIONS........cccuicieiririeieieinseissee ettt as e s st b s st seses 18-32
SEBEEIMIENES ...ttt b b bbb bR 19-1
INItiAliZING DAt ODJECES......cuiviieereeeee ettt a e s st b s as s s s e s b b s s st et s s s ae s s s antetasanas 19-2
ASSIONING VAIUBS.......cuevieecteteiiecie ettt s s st s s s st ee s ae bt se et s s et et e s e ae b e s e e et es e e aeses s et s snns 19-3
(©folnal o7z 1] o1 114 VA= 100 N @X0] 01V7= £ o o ISR 19-4
Conversion RUIES fOr EIEMENLAIY TYPES......cocvuirrrrerieeieiresesseessssesssssesesssessssessssssssssssssssssssssessssssssessssssssesssssssesssns 19-5
Conversion RUIES fOr SETUCIUNEA TYPES.......cvrirrereririerieireressssesesessssesesesssessssessssssssesssssssesssssessssssssesssssssssssasssssesesns 19-6
OVEIVIEW: SEHTNG PrOCESSING ... cevuereeiereersesessesesstseseisesss st sesesssse s s st b s ae b ees bbb b 19-7
SEAMCHING 1M @ SEITNG ottt s bbb b 19-8
CRANGING SEITNQS ...ttt a bR bbb 19-9
Splitting @nd JOINING SEFTNGScveerierriee et 19-10
Accessing Parts of Fields
Calculations: Syntax.................
Calculations: Integers and Packed Numbersccccoceureenae

Calculations: Floating Point Numbers and Runtime Errors
Calculations: Date Fields
L OQICAl EXPIESSIONS......cocuiiiiiereeiriestessiesstetsesesssstsssessssssesesssessssesssssesssssssssssssssssessssssssnsassssssessssssssesesssnssnsassnssessssnnes
COMPAITNG SEIMNQS cururvetiirreeieireseesresesestesressssssssasssssessesssssessssesssesessssssessssesssesessesssssessssssssessssssssessssssssesessssnsessssesnsases
CoNditioNal BranCRiNG........cccrurireerirereeisirisssseeesesesesesesssssessesessssssssesssssssesssssessesssssesssssssssssssssessssssssessssssssssssssssseses

Overview: Leaving ProCeSSING BIOCKS ..ottt sesesssses
CaChiNG RUNLIME EITOIS.......cuctictieeereieiseieescieesi s es s ses s s e eien
Example; Catching RUNLIME EITOIS ...t sess s ses st sssssens
EXAMPIE: SOIULTON = PAIT L ...ttt e
EXaMP 1€ SOIULION = PArt 2......cvcvcieieicieiece ettt ettt ettt bbb bbbttt bbbt s nnee
LG] Lo LU o R == T A PP
EXaMPIE: SOIULION = P 4 ...ttt et s bbbttt n st s s
StAEMENLS. UNIT SUMIMAIY ...o.vcececieiicicteressstetsss sttt ss s s s st s s st et es s s s s s sssssesssssssssesssnssssssssssnses
INtErNal TallE OPEIraliONS.......cccuveeeerereeeie st esesse s ss st s ss s se st s s et s e s seses e e se b s ss e sns et nannansesasnnnsesnas
ACCESSING DAL RECOIUS.......cucveiieiicieiriisie st as st s st a s s et s e sn s et ee e sn s et s s e s et es s snsesnasnsnsesnns 20-2
Appending, Inserting, and Reading With INdeX Tabl€S.........ccccvrrrnerersrcssessseses s 20-3
Changing, Deleting and Looping in INAEX TabIES ... ssesss s 20-4
L S 120 1= =T 20-5
Inserting and Reading USING KEY ACCESS........cvuururrirrreeereeeneieentiesssse s sssss s ssssessssesssssssssssesessesaees 20-6
Changing, Deleting, and Loop Processing With K&y ACCESS..........ccuvrrcneinienessesses s ssessssessesenns 20-7
Example: Declaring Standard TabIES..........ccecees s 20-8

EXAMPIE; SOMEA TAHIE ...ttt 20-10

Example: Declaring Hashed TaIES ...t 20-11
Example: Hashed Tahle OPerations..........cocciriesieesiese s ssessssesssssssesssssssssssessssssssessssesssssssesnsans 20-12
Internal Table With HEEOEN LiNE ...t es s 20-13
Internal Table With CUMUIBEIVE VAIUES ...t 20-14
ACCESSUSING FIElAd SYMDOIS ...ttt 20-15
Example | - Declaring NeSted TabIES ...ttt n s 20-16
Examplell - Loop Access USiNg Field SYMDBOIS ...ttt 20-17
Examplelll - Loop Access Using Field SYMDOIS ...ttt ssssss s ees 20-18
Internal Table OPEratioNS: SUMMEAIYcccccvriierrerrersesnesessssesessssssssessssssssesssssessssssssessssssssessssssssssesssssssesssssesessen 20-19
Internal Tables: UNIt SUMIMEIYc.ccoceieiereiesecisiessess st sses s sessessssse s s s sesssssssssssssssssssesssssssssssssssesesnen 20-20
Internal Table OPeratioNS: EXEITISESccovvviiirirrieessessstssessssssesessssssesesssssessessssssssassssssssssesssssessssssssessssssesesen 20-21
Internal Table OPerations.; SOIULIONS.........ccirerrrieriecrree et 20-24
SUDFOULINES......ooceveeteee st sees ettt ses e s s8R e e b st 21-1
SEIUCEUIE OF 8 SUDIOULINE......c.cveerereereesiree ettt seae s e es e 21-2
WAYS OF PASSING DBEA. ..ottt et 21-3

Typing Interface Parameters

Calling a Subroutine....................

Visibility of Global and Local Data Objects
Runtime Behavior |ccc.....

Runtime Behavior Il....................

Runtime Behavior 111
Runtime Behavior 1V
RUNEIME BENAVION V ..ottt s s s bbb
RUNEIME BENAVIOE V1 ...ttt ettt e
RUNEIME BENAVIOT VT ...ttt st st nn st ne e
Example: Local Modularization iN PrOGraMScoueeeeerireernesernesersesessessssessessssesssessssessssssessssssssessssssssssssesssans
EXAMPI € RECUISIVE Call | ...ttt
EXaMPl el RECUISIVE CaIIS ..ottt
EXampPle: RECUISIVE CalIS Tocuoviieieieieciesie ettt ettt bttt bbbt b st benee
SUBFOULINES. UNIT SUMMIY ...ttt ss b se st s s es st b s s s s s sesesnnnantas
SUDFOULINES: EXEICISES......uctreuetremeieasireaeesessereiseeasessisessbsessbsess b eessbsese s sese e b se s bbb bbbttt aes e ben
SUDFOULINES: SOIULTONS.......cveutiaetiaeireietseieereiee et seas e s ess s ses bbbttt s s

Function Groups and FUNCLION MOGUIEScerrerrecesie st sssssssssssssssesssssssssssssssssessssssssesnns

FUNCLiON MOTUIES VS SUDTOULINESceeeiciieieeeceeieis ettt 22-2
ATIFIOULES. ...ttt bbbttt 22-3
1 = o= PP 22-4
PrOCESSING LOGIC......eeuterestirescireee s ses ettt 22-5
EXCEOPTIONS..... ettt AR 22-6
Documenting, ACtivating, 8N TESHING ...t sr s 2-7
CalliNg @FUNCLION MOGUIE ...ttt e s 22-8

APPHEA EXBMPIE ...ttt 22-10

Applied Example: Implementing the FUNCLIONS | ..o sesesseses 22-11
Applied Example: Implementing the FUNCLIONS []...........ccieeeee e 22-12
Applied Example: Implementing the FUNCEIONS T ... 22-13
Organization Of & FUNCLION GIOUP.......ciruieemiereieeessrsess s ese s s sessese st sssessssesnssnes 22-14
Function Groups and Function Modules: UNit SUMMEIYcccccereinimenninnssess s ssesssssssssssssesssssssessses 22-15
Function Groups and FUNCLioN MOUIES: EXEICISES........cccimiieieireneeesesssstessssssssesssssssessssssssesssssssssssssssssesssssnses 22-16
Function Groups and FUNction ModUleS: SOIULIONS..........ccvicereecesece ettt es 22-20
Calling Programs and PasSing Data...........cccceeuriirecienesessesess st ssssssssessssssssessssssssesssssssssssssssssssessssssessssns 23-1
SYNCHIONOUS PrOGram CallS ..ottt ettt st anses s snsesens 23-2
(ol [Tor= Y/ = 0101 VA 1Y/ o T L= R 23-3
TS =T I 1 (0= o T R TTT 23-4
INSEITING @ PTOGIAIM 1] ..ot 23-5
Terminating the INSErTEA PrOGraM ..ot st 23-6
Starting a New Executable (TYPe 1) Program | ... sssse s sssssssesssseens 23-7
Starting a New Executable (Type L) Program ... sssessessssessesenns 23-8
SEArting A TIANSACTION |vueeiieiieeeeie e e b

Starting A Transaction Il

Calling Function Modules|

Calling Function Modules |11
Starting an Executable (Type 1) Program..........cccceveveeeecininnnns
(0= T 0T 1= T I =115 o o] TR
Passing Data BEtWeen Programs: OVEIVIEW..........cccurureeceeiriresssssesessssssssesssssessssssssssssssssssssssssssessssssssssesssssssssssnses
Passing Data Using the Program INLEIrfaCE. ... ssssss e sessssssssssssssesesnes
Passing Values fOr INPUL FIEIOS.........cucrece et
ABAP MEMOrY aNd SAP MEMOTYceviireiirieineieinese st ses et ssss s ess e ses et s s ssssessssesssen
Passing Data USiNg the ABAP MEMOTY ...t ses st ssssssnsans
Passing Parameters USiNg SAP MEMOTY ...t sss st ssse s sssens
Preview: Passing DataUsing an INternal TabIe ..o e
Fieldsin the Global TYPe BDCDATA ..ottt sttt sttt bbbttt ae bbbttt bttt seses
Example: Passing DataUsing an Internal Table ...ttt
Calling Programs and Passing Data: UNit SUMMAIYccccceiriieerneneseesesssssesssssssessssssssesssssssssssssssssssssssssseses
Calling Programs and Passing Data: EXEICISES.cccucceiiiieinineisesesese st ssessssssssssssessssssssssssssssssssssssssnses

Calling Programs and Passing Data: SOIULIONS..........ccccvireinninnsenenesssssessssssssessssssssessssssssssssssssssssssssssssssssnses

-.‘ '.‘

T@BC41 /2

ABAP Development
Workbench Basics

Part 2 oifi2

m R/3 System

= May 2000
M number 50039583

Copyright 2000 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may

be copied or reproduced in any form or by any means,

or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

a4 SAPAG 1999

Trademarks:

Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®,
Multimedia Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ®
are registered trademarks of Microsoft Corporation.

Lotus ScreenCam ® is aregistered trademark of Lotus Development Corporation.

Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.

ARIS Toolset ® isaregistered Trademark of IDS Prof. Scheer GmbH, Saarbriicken
Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.

TouchSend Index ® is aregistered trademark of TouchSend Corporation.

Viso ® isaregistered trademark of Visio Corporation.

IBM ®, OS2 ®, DB2/6000 ® and AIX ® are aregistered trademark of IBM Corporation.
Indeo ® is aregistered trademark of Intel Corporation.

Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.

OSF/Matif ® is aregigtered trademark of Open Software Foundation.

ORACLE ® isaregistered trademark of ORACLE Corporation, California, USA.
INFORMIX ®-OnLine for SAP is aregistered trademark of Informix Software Incorporated.
UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.
ADABAS® isaregistered trademark of Software AG

m Thefollowing are trademarks or registered trademarks of SAP AG; ABAP/4, InterSAP, RIVA, R/2,
R/3, R/3 Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript,
SAPtime, SAPtronic, SAP-EDI, SAP EarlyWatch, SAP ArchivelLink, SAP Business Workflow, and
ALE/WEB. The SAP logo and dl other SAP products, services, logos, or brand names included
herein are also trademarks or registered trademarks of SAP AG.

m Other products, services, logos, or brand names included herein are trademarks or registered
trademarks of their respective owners.

Section Overview !’
DA

Section Basis Technology Overview

Section ABAP Workbench Concepts and Tools
Section Managing ABAP Development Projects
Section ABAP Dictionary

Section ABAP Programming Techniques

Section Techniques for List Creation and SAP Query
Section Transaction Programming

Section Programming Database Updates

Section Enhancements and Modifications

Section Data Transfer

a4 SAPAG 1999

Section: Managing ABAP Development Projects

8 SAP AG 1999

Content: Managing ABAP Development Projects Hr

Unit ABAP Development Projects with ASAP
Unit Project Team

Unit Software Logistics

Unit Change Levels

Unit Project Standards

a4 SAPAG 1999

BP Development
Projects and ASAP

o

7
ABAP Development Projects and

Contents:

® ASAP

® Planning the Various Tasks in ABAP Development Projects

Objectives:

At the conclusion of this unit, you will be able to:

® Describe which individual tasks the ASAP Roadmap provides
for ABAP development projects

:-:H'

4 SAP AG

ACA+ as a Component of W

"'.-::-n\-w- L P S—

Processes:
AcceleratedSAP

< #ASAP Roadmap

@ % # Quality Assurance

6 o #"RI3 Business Engineer
) \{}\ # Support, Consulting &

QQ) N Education Services

Products

:-:H'

TeamSAP isthe coordinated network of people, processes & productsfrom SAP & partnersthat
deliversfast, integrated and assured solutions over time.

4 SAP AG

There are three key components. People, Processes, and Products.

The people component represents SAP and its partners. Any R/3 implementation team is usually
composed of multiple organizations which bring different skills to the table. Our objective with
TeamSAP isto ensure that the right vendor skills are coordinated, at the right time, with appropriate
quantities and management.

The product, SAP s Business Framework, isavita piece of TeamSAP because it’s the platform on
which SAP and non-SAP applications work together. 1t also provides the flexibility to change over
time and includes R/3 business components, integration technologies, and open interfaces that alow
R/3 and complementary partner software to operate together. Third party software and hardware
products are certified by SAP within this infrastructure. Certification programs for TeamSAP
partners that are part of the Business Framework include Joint Devel opment Partners, Certified
Interface Partners, and Technology Partners.

The processes represent SAP an its partners working together to synthesize the knowledge gained in
over 11,000 completed R/3 installations. Three key areas that reflect this experience: the ASAP
Roadmap and accelerators, Business Engineer, and Services, Support and Training.

: Includes....
"

for aicnt 17 implarmmotion

® The ASAP Roadmap

m a step-by-step Implementation Guide complete with
recommendations

® Tools

m the ASAP Implementation Assistant as a navigation

tool for the Roadmap, questionnaires, project forms,
check lists

m R/3 Business Engineer tools for creating a business
blueprint and for use in configuration

® Service & Support

m all services including consulting, training, hotline,
EarlyWatch, Going Live Check, OSS

® Training

m information database, training strategies for project
teams and users

J:la'
4 SAP AG

AcceleratedSAP (ASAP) is SAP s total process-oriented solution for accelerated implementation and
continuous optimization of R/3. ASAP was devel oped and enhanced with the knowledge of ateam
of international consultants. It consists of the ASAP Roadmap, tools, service & support and training.

The ASAPRoadmap is an implementation plan that includes detailed descriptions of why, when, how,
and by whom certain jobs should be completed. The ASAP Implementation Assistant isthe ASAP
Roadmap browser. The ASAP Roadmap contains technical information and numerous acceler ators

(questionnaires, project forms, and check lists), with which you can start your implementation
project.

The Business Engineer makes up the backbone of ASAP within the R/3 system.

Additional ASAP toolsinclude the Project Estimator, with which project costs and time can be

analyzed in cooperation with your consultant, and the Q& A database for creating a business
blueprint.

]
ABAP Development Projects in ASAP

/

N\on\tof\
Process design -Development <Tuning
. ; iogn! eTesting ange
Technical des'd jon -Ch
Tec ,Doct—m-xentatlo management
«Training .Upgrade o
«Integration \}N‘\aw
- testing
andscap «Mass testing

.Data transfer

— —

Project N 3 / 4 @ sous

P ti ——iae s Final
pereen ¥ 7 Preparation gg Live &
& Business Realization A Support
Blueprint
L)
4 SAPAG ;
ASAP Phase General Concerns ABAP Development Project
Proj ect project organization and standards ABAP development project team
Preparationlevel 1 training of the project team standardization of program
system landscape planning documentation, naming conventions
Business compilation of desired business processes interface topology
Blueprint leve 2 training process and technical design

development system installation
management review of the business blueprint

Realization baseline customizing (100% of the substructure, programming, developer testing,

80% of the daily business processes) transports, functiona testing,
final configuration documentation, training
Final Go Live planning, stress testing, integration testing, stress testing,

Pr epar ationdocumentation, training, customer help desk, data transfer
datatransfer, cutover

GoLive& measurement of product’s business fit monitoring, tuning, re-engineering,
Support with customer requirements and business goals change management

Tools and ASAP

% :
T g

« Templates ™~ . i
* Data Modeler » ABAP Dict. . %
« Screen Painte + ABAP Editor -gest r\]/\//ork-"“' ol
* Menu Painter . i ench/CATT
gﬂﬂgg?n * Tuning Tools > iiertdace
° . | LSM
* Process design Workbench
» Technical design « Repository

+ Data model objects * Test docu.

E Screens, « Workbench * Live dates * Production

Interfaces requests ﬂ system
d e Manual

e User
Documentation

* Training
material

Business Blueprint Realization Final Preparatiom Go Live
4 SAPAG ;

ABAP Workbench Tools are implemented in the following project phases:

Phase 1: Project Preparation
no ABAP Workbench tools

Phase 2: Business Blueprint

process design template, technical design template, Data Modeler, Screen Painter (Early Prototype
Screens), Menu Painter

Phase 3: Realization
al ABAP Workbench tools

Phase 4: Final Preparation
Test Workbench, tuning tools, LSM Workbench (L egacy System Migration)

Phase 5. Go Liveand Support
tuning tools (in particular workload analysis)

Large reengineering projects are initiated at either phase 1 or phase 2.

Summary

{ ® ASAP supplies an integrated foundation for
Z planning and realization of Customizing and ABAP
development projects.
® The five phases on the ASAP Roadmap are:
Project preparation
Business blueprint

Realization

Final preparation

Go live and support

:-:H'

4 SAP AG

Project Team

o

Project Team !’
A

Contents:

® Roles in customer development projects

Objectives:

At the conclusion of this unit, you will be able to,

® listtheroles in customer development projects

a4 SAPAG 1999

Position on the ASAP Roadmap
/ /

—

; 4 —W
2 3 Finnl @

P ration
3 Business Realization® repg Gs‘:' Live &

Blueprint
L)
& _SAPAG I

Project
Preparation

[
Roles in Customer Development Projects (1)

Steering Committee

Project Management

Development
Project Coordination

Technical Support

:-:H'

Depending on the scope and complexity of your project the roles described below could fall to one and
the same person.

The steering committee consists of those people from the board of directors initiating and sponsoring
the project and the committee has ultimate authority over which direction the project takes.

Quality Assurance

4 SAP AG

Project management is responsible for the R/3 implementation project as awhole. Project
management plans the project (budgets, deadlines, personnd, functions), resolves conflicts and
delivers status reports to the steering committee.

Project coordination is responsible for standardization and marketing the project within the company.
In addition, the responsibility for project logistics belongs to the project coordinators.

Development creates process and technical designs for the project in cooperation with the other areas
and is responsible for actua implementation.

Planning, carrying out and reviewing testing all falls into the area of quality assurance.

Technical support is responsible for clearing away al technical obstacles to implementation (server
downtime, transport problems, database problems, etc.).

Roles in Customer Development Projects (2)

Project Coordination

® Process manager
® Marketing representative

® Standards coordinator

:-:H'

Process manager scome from the department affected and are responsible for logistics within a
subproject. They support development by creating process designs, drawing up integration plans

together with quality assurance, and are responsible for CATT (Computer Aided Test Tool) test case
input.

4 SAP AG

Marketing representatives coordinate al internal (company) activities in the areas of project

marketing, training, and consulting. They are responsible for rollout of the subproject and report to
project management (status reports).

Standar ds coor dinator s deal with more than one subproject and are responsible for establishing
standards for project documentation and communication company wide. They are also responsible
for customizing and devel opment activities documentation (templates for process and technical
design, naming conventions, programming guides, graphical user interface style guides).

]
Roles in Customer Development Projects (3)

Development

Development manager

Concept developer

Data modeler and Dictionary developer
ABAP developer

Interface developer

SAPscript developer

Information developer

ABAP Workbench consultant

:-:H'

Development manager scoordinate devel opment activities within a subproject. His or her
responsibilities include creating development standards for the subproject as a whole, determining
the feasibility of process and technical designs, and writing status reports.

4 SAP AG

Concept developer s analyze both process designs and technical designs using the templates created by
standards coordinators.

Data modeler ssupport the creation of data models within the project’stechnical design using SERM
(Structured Entity Relationship Method) and the Data Modeler. Dictionary developer s reproduce
these data models in the ABAP Dictionary (tables, data elements, domains, foreign key
dependencies, search help, etc.).

ABAP developer s implement the process model described in the technical design using the tools
provided by the ABAP Workbench. They aso create the user interfaces and print lists foreseen in
both the process and technical designs.

I nterface developer s implement necessary online and offline interfaces (outside of ABAP if
necessary).

SAPscript developer s use SAPscript to create the forms foreseen in both the process and technical
designs.

Information developer swrite the documentation for what the other developers have created.

]
Roles in Customer Development Projects (4)

Quality Assurance

® Quality coordinator
® Test coordinator
® Tester
®

Quality Assurance consultant

:-:H'

Quality coordinatorscoordinate al quality assurance activities. This includes writing reviews of
quality assurance activities and generating status reports for project management.

4 SAP AG

Test coordinatorscreate test catalogs for subprojects documenting the individual test case. They
coordinate test case input and work together with process managers during test case creation and
user test organization.

The actud tester scome from the user departments where these new functions are going to be used.
They complete function tests by manually going through test cases and CATT procedures.

Quality assurance consultants deliver technical support for al of these quality assurance activities.
Their responsibilities include writing reviews and measuring performance using Workload Analysis,
SQL Trace, ABAP Trace and other tools.

]
Roles in Customer Development Projects (5)

Technical Support

® Transport coordinator
® System administrator
® Authorization administrator

® Technical consultant

:-:H'

Transport coordinator sare responsible for setting up and maintaining correction and transport
mechanisms. They determine in conjunction with the subproject management when and how
transports should take place and are responsible for conducting them. Transport coordinators solve
transport problems using CTS (Changeand Transport System).

System administrator s guarantee the availability of the system landscape for development and quality
assurance. This includes administering operating systems, database systems, networks and R/3
systems. In addition, system administrators are responsible for regularly backing up data and for
creating a recovery strategy.

4 SAP AG

Authorization administrator s provide individua employees with authorizations for various R/3

systems depending on the roll they play (for database management systems and operating systems
too, if necessary).

Software Logistics

o

Software Logistics !’
DA

Contents:

® Planning the system landscape

Objectives:

At the conclusion of this unit, you will be able to,

® Describe what you should take into account when planning a system
landscape for ABAP development objects.

a4 SAPAG 1999

7
Position on the ASAP Roadmap

/

‘;r[n\azcae
ﬁ ﬁ

Or Q

€

Project
Preparation

D % Final

Realization®

& Business
Blueprint
L)

4 SAP AG

—
5

Prepuruﬁon Go Live &
Q Support

—1

/

M/

C

[
Planning the System Landscape for Development

® Define the R/3 system landscape

Caution: Repository objects are client independent.

® Define a construction strategy for the R/3 system landscape

® Define a maintenance strategy for the R/3 system landscape

4 SAP AG

An R/3 system landscapeis made up of al of a customer's R/3 systems taken as awhole. Each
individua role (development, testing, test systems, quality assurance, training, production) must be
mapped onto a client within the R/3 system.

Repository objects areclient independent. Thus all changes to Repository objects are immediately
visblein al clients. For example: if M1 and M2 are clients in an R/3 system and a program is saved
in M1, any changes made to the program will immediately influence M2's runtime environment.

SAP recommends defining Customizing and application table structures asclient specific (see
Realization unit).

SAP recommends conducting development, quality assurance, and production in three different
clientsin threedifferent R/3 systems. For greater needs (for example, system landscapes where
central development is conducted in one country and additional development in other countries)
complex system landscapes with more than three systems can be planned. Many customers with
fewer needs work with atwo system landscape with one central maintenance site for devel opment

and Customizing. Other clients for sand-box, training or master data may be deployed over the
systems.

System landscapes can be constructed using the tools client copy, transport client and copy database.

After landscape construction, the maintenance phase begins. From here on out changes to Customizing
settings and Repository objects can only be copied o transported using requests.

Development system

1
v

Client
Copy

Client
Copy

Client-indep:
Customizjng

Repository

Workbench

objects

4 SAPAG

Setting up the System Landscape

QA system

Productive system

QTST ’

Client

Copy
MAST

Client

Copy
TRAI

Client-indep.
Customizing
Repository
objects

Client
Transport

Client-indep.
Customizing

Repository

objects I

Workbench

For the setup of the system landscape, Customizing is copied and transported using client copy (within

R/3) and client transport (cross-system).

Repository Objects are not transported by client copy or client transport but instead are transported by
releasing and importing Workbench requests.

Maintaining the System Landscape

Development system QA system Productive system

Copy I

| py
request V' request

Co

Copy Py
request + * reguest

Client-indep. Client-in_d_ep. Client-in_d_ep.
Customizing Customizing Customizing

Repository workbench Repository MERLCUGISIHL Repository

R request BT request Objects I
4 SAPAG

Once in production, the system landscape is in the state of maintenance

All changes to Customizing or Repository Objects are recorded in change requests and are transported
using the transport system and the function copy request

]
Change & Transport Organizer

Customizing Organizer

Waorkbench Organizer

Workbench Customizing
Requests Requests

:-:H'

The Change & Transport Organizer consists of the tools Workbench Organizer and Customizing
Organizer.

4 SAPAG

In the Workbench Organizer you can only see Workbench requests. In the Customizing Organizer,
Customizing and Workbench requests are visible.

]
Differences between WBO and CO

0
0

DEEEE
bl
DEn
BED
iy
(mi]

=]
oooo
dru
DREE

CLL (ﬂ\iz e
D) &
[® | ([Gogrdnates | Tugtamizing
Hifarts
m ([Complete ned Jrﬂifr;a)
documentation (ofl changes
m || TeamMWorK
® | [Connected (o [thel Gliend
ol Doply| gnd | Tnanispart Sy gten

Changes to customizing and Repository objects are recorded in change requests. There are two types of
change requests:

Client dependent customizing is recorded in Customizing requests.

Client independent customizing and Repository Objects are recorded in Workbench requests.
Repository objects are:

Assigned to development classes.

Haveversons

L ocked for access of non-team members as long as the Workbench request is not released.

4=

Central and National Development

4

Integration Consolidation Delivery
USA USA USA

Integration Consolidation Integration Consolidation Delivery
Global Global Europe Europe Europe

Integration Consolidation Delivery

Asia Asia Asia I
4 SAPAG

This system landscape combines central international development with nationa development in
subsidiaries.

The Workbench Organizer alows the user to develop software in an organized manner.
The transport system provides for transport execution and registration.

Repository objects are connected to the transport system by their development class and change request
assignments. After areguest has been released in a development system, it is then transported along
pre-determined routes into a quality assurance system or a production system.

Change Levels

o

]
Change Levels

Contents:

e Change Levels

® Development Project Evaluation

Objectives:
At the conclusion of this unit, you will be able to:
® Explain which levels you can change the SAP standard

® Evaluate change levels

:-:H'

4 SAP AG

7
Change Levels

R/3 Business
Applications Customer
(SAP standard) Programs

Customizing Personalization Modification . Enhancement Customer

Development
o BUSI_ness
: Engineer

ABAP
Workbench

4 SAP AG

m You can tailor the R/3 system to your needs in the following ways.

* Customizing: Setting business processes and functions according to an implementation guide.
Possible changes are anticipated and thus organized in advance.

» Personalization: Changes to the global display characteristics of fields (pre-determing some
input values, removing other input fields from certain screens), user specific menu sequences.

* Moadification: Customer changes to SAP Repository objects. When such changes are made by
SAP, customer versions must be adjusted to conform to the new SAP version. Up to Release 4.0B
these technical adjustments are made manually using upgrade utilities. From Release 4.5A the
M odification Assistant will greatly automate this process.

* Enhancement: Creation of customer-defined Repository objects that are referentially included in
SAP Repository objects.

* Customer Development: Creation of customer-defined Repository objects using customer name
spaces.

m Customer development, enhancement, and modification are undertaken using ABAP Wor kbench
tools, Customizing and most Personalization are done with BusinessEngineer tools. Thusthe
course M BC40 deals mainly with managing projects that are, from a technical standpoint, based on
the ABAP Workbench (development projects).

]
Business Engineer

Procedure Model

Implementation Guide

Session Manager

A | IR T T — 1]
a ﬂﬂ LI} = | &— .- ."J .
- i r—
=Ter i . EEs
OO =Rl g | e
L B B | =

Business Process Scen. Application Components

Business Objects

e = Purchase|__sy Schedule
order iter lines

Purchase order |
. omatons. Lager. consignment *Timeé
uuuuuuuuu e
—_— Purchase order
returnable packaging
Purchase order
third party deliver

Object-oriented
Data Model

Process Model

+ &
e

Workflow and Organization

- -

%

. 13
PN | :-!:la' I

m The Business Engineer contains all of SAP simplementation tools, specificaly:

* Reference Models
All Remodels that describe R/3 (process models, data models, organization models)

* Implementation Guide
A list of al Customizing activities

4 SAPAG

Personalization

o o, Simplifying and Personalizing an application
!pﬂ! is often possible outside of the ABAP
Workbench.

® Global Field Display Characteristics
m SET/GET Parameters

Global Values

Variant Transactions

Parameter Transactions

Systemwide Table Control Settings
® Enterprise Specific Menus

m Area Menus

m Session Manager

m Shortcuts on the Desktop '
m Report Trees -

4 SAP AG

The god of Personalization isto speed up and simplify the business transactions that are going to be
processed within the R/3 System. Each individual application’s transactions are adjusted to the
business needs of the company as awhole or of various user groups. All unnecessary information
and functions are disabled.

The input values of fields on certain screens can be pre-deter mined using global display
characteristics. Within transactions, individual fields and individua columns of table controls or
even complete screens can be hidden.

Using area menus, the Session Manager (installed on afront end or transaction SESS) enables
customized shortcuts, reporting trees and menu sequences to meet specific needs of different user
groups within the company.

e
ABAP Workbench

EGREEN
FAINGES

“‘\V\GAT v), 7

4 SAPAG

ABAP Workbench includes al tools necessary for developing client/server applications. Using highly
developed tools, ABAP Workbench supports productive program development on the basis of early
prototyping. All development objects created using the ABAP Workbench are called Repository
objectsand are stored in a specid part of the SAP system'’s centra database called the R/3

Repository.
The ABAP Workbench tools listed below alow you to edit the following Repository objects:
Data Modeler enterprise data models according to SAP-SERM
ABAP Dictionary data descriptions and their relationships to one another
ABAP Editor ABAP source code
ABAP Query Reports (no knowledge of the ABAP language necessary)
Function Builder Function modules (centrally stored program modul es)
ClassBuilder Centrally stored OO objects (classes, methods)

Menu Painter Title settings, menu bar settings, standard toolbar and application
toolbar settings

Screen Painter Screens

Wor kbench Or ganizerChange requests (ensure organized object development
and transport in conjunction with the transport system)

-]
ABAP Programming is Designed for:

Business Tasks — jJ . !

Client/Server Architecture

Platform Independence

Developing User Dialogs
Database Access
Openness

International Use

Team Development

4 SAP AG

ABAP stands for Advanced Business Application Programming and is the programming language
developed by SAP for use in application development.

ABAP is designed to support the application development of business tasks (mass data processing,
currency specific display, multilingual capability, etc.).

ABAP is aso designed for developing user dialogsin adistributed R/3 system. Devel opers need not
concern themselves with communication and distribution aspects of the system.

ABAP programs in conjunction with the SAP Basis are platform independent.
ABAP contains a specia set of commands for database access called ABAP Open SQL.

ABAP application devel opment can be done in project teamswhich is organized by using the
Workbench Organizer.

]
ABAP Workbench Change Levels

R/3 Business

S Customer
Applications Programs
(SAP standard)
Customer
Modification Enhancement
. ® Customer m With SAP
® Assisted Enhancement objects
Modification .
. m Program Exit m Without SAP
® Unassisted m Menu Exit objects
Modification m Screen Exit
® Universal
m Field Exit

m Table Append
m Text Enhancement

® User Exit I
a4 _SAP AG

SAP Repository objects can be called from within a customer’ s own program. For example, a customer
can develop his or her own program that calls an SAP function module.

With enhancements this works the other way around: here SAP programs call Repository objects that
the customer has either created or dter himsalf. For example, a customer can create a program exit
that an SAP program calls. Enhancements can take place in the following places:

in an ABAP program (program exits)

in the graphical user interface (menu exits)

on screens

by inserting a subscreen in an area pre-determined by SAP (screen exits)

by executing code written by a customer related to a particular screen field (field exits)

in ABAP Dictionary tables or Dictionary structures (table appends)

as text enhancements (replacing SAP fied or keyword documentation).

M odifications are changes to SAP objects made within the customer system. They are:
driven by user exits (subroutines reserved for customers in objects in the SAP namespace)
assisted or hard at any point desired in SAP Repository objects.

[
Classifying and Implementing Development Projects

o
c
s Is there a standard function that can
g be tailored to meet the customer’s needs using ’ Customizing
17 Customizing/Personalization? Personalization
o Yes

No ‘

Can a similar function be found in Cust Development
SAP standard? CSP Solution
No

ves
Does the SAP

application allow you to add the function _
desired by using enhancement? Enhancement / User Exit

Yes
No ’ ‘ No

Cust. Development with

SAP Prog. as Model RRication I
4 SAPAG

m |f your requirements cannot be met using Customizing or Personalization either start a development
project or use aCSP solution (Complementary Software Product).

2
@
ot
o
S
>
a
=i
C
o)
S
a
o
2
)
(a]

m A development project allows for customer development if no similar function is available within
the SAP standard. Otherwise, you can try to meet the customer’s needs by adding enhancements,
user exits, modifications, or copies of SAP programs to SAP standard objects.

m Modifications can be problematic because all new SAP versions must be adjusted and reconciled
with the customer’s modified version after each upgrade. Up to Release 4.0B these technical
adjustments are made manually using upgrade utilities. From Release 4.5A the M odification
Assistant will largely automate this process.

m You should only make modifications if
* Customizing and Persondlization cannot fulfill your requirements
* enhancements and user exits are not foreseen
* copying an SAP object into the customer namespace is not useful (see following dide).

M odifying has the advantage that your active Repository objects do not lose their connection to the
SAP standard. Copying, on the other hand, has the advantage that no modification adjustments must

be made to active Repository objects after an upgrade.
Choose copying instead of modifying if
you have to change numerous parts of the SAP program
your reguirements are not going to be met by future R/3 release standards.

Pay attention to the dependent objects when copying. For example, the choice between modifying and
copying must also be made for al of the includes attached to your base program. The same applies
within function groups respectively function modules.

ABAP development projects can be evaluated according to the following criteria:

How costly is implementation, measured in man hours (creating, implementing, and testing the
concept)?

How does the ABAP development project affect
performance

the amount of work at upgrade?

By cdling SAP aobjects in your Repository object, you can greatly reduce the amount of work required
to implement it. Repository object changes made by SAP can also make for additional work during

an upgrade. For example, SAP might change the interface of a screen for which you have written a
batch input program.

The following Repository objects are normally only changed by SAP in an upwardly compatible
manner and therefore, can be regarded safe for use in customer programs:

function modules that have been released

objects that are public in the ABAP Class Builder

BAPIs (Business Application Programming I nterface)
user exit includes

customer exits

SAP guarantees BAPI stability for two functiona releases.

Customer developed programs that call SAP objects, as well as al objects displayed in the upgrade
utility SPAU, must betested for functionality and performance after an upgrade. The same holds
true for those Repository objects automatically upgraded by the Modification Assistant (from
Release 4.5A).

For the adjustment of programs you need knowledge of the process logic of your individual
application.

Modifications are especialy critical when

they influence numerous other Repository objects (Dictionary objects, function modules)

adjustments are difficult (menu, pushbuttons, graphical user interfaces (GUIs) before 4.5A) or not
supported by tools (transaction codes, messages, logical databases).

Without the help of the Modification Assistant (before 4.5A) modifying GUI statuses and GUI titles
and assigning customer function modules to SAP function groups are considered critical.

Standardization

o

e
Standardization

Contents:

® Naming conventions
® Repository object documentation

® Incorporating modifications

Objectives:

At the conclusion of this unit, you will be able to:
® Create naming conventions for your project
e Document Repository objects

® List which standards SAP recommends for incorporating

modifications
=Ji H'

4 SAP AG

Position on the ASAP Roadmap
/ /

ﬁ/ M/

— =

C

O
Preparation 2 —— 3 Final
a Business Realization® : £ ration Go Live &
[Blueprint i Support
]

4 _SAPAG ;

Project

]
Standardization Areas
General Standardization ABAP-specific Standards
® Project planning ® Development project
: : . luati
® Project implementation evaluation
: . [i
® Project communication Process design
® Notification management Technical design
° . :
® Project documentation Namm_g conve_nt|ons for
Repository objects
m Shared folders .
® |[nterface Style Guide
m Contents
e Quality Assurance ® Program documentation
Teamwork building ® Modification handling
° [Sy_st_em landscape,
Original language

In the general project environment, project planning, implementation, communication, notification
management, project documentation, quality assurance procedures, teamwork building, and other
aress are standardized.

The following areas are standardized specifically in ABAP development projects:
Evaluation of development projects (see Change Levels)

Process design (see Process Design and Technical Design)

Technical design (see Process Design and Technical Design)

Naming conventions for Repository objects
Naming conflicts between customer Repository objects and Repository objects from SAP and SAP
partners can be avoided by using standard naming conventions.

Interface Style Guide
SAP delivers a Style Guide that standardizes your interface according to ergonomic principles.

Program documentation
Repository objects can be documented in various different ways.

M odification Handling
Installation rules and logbook of al modifications made to a customer’s system

Naming Conventions for Repository Objects
d Offi Applicati
Head Office . ppAur:salon

Branch Office .

Customer Namespace
(according to OSS note 16466)

Namespace Reservation
by the Workbench Organizer

Namespace Reservation

Complementary by SAP OSS

Software
5 _SAPAG ;

By instituting naming conventions, you avoid naming conflicts and give your Repository objects
meaningful names.

SAP Standard
Software

The following naming conflicts can occur:

The names of an SAP Repository object and a customer Repository object conflict
Naming conventions delineate between SAP Repository objects and customer Repository objects.
Tip 16466 delivers an overview of al of the current naming convention for Repository objects
(normally aY or Z at the beginning of the name).

The names of two or mor e customer Repository objects conflict
In decentralized development scenarios with more than one development system, naming conflicts
between customer Repository objects can occur. Customers can prevent this situation from occurring
by reserving namespaces for development areas within the customer namespace. The Workbench
Organizer usesthe entriesin view V_TRESN to ensure that namespaces remain intact.

The names of Complementary Softwar e and a customer Repository object conflict
Naming conflicts that occur when loading Complementary Software from SAP partners can only be
solved by reserving namespacesin SAP OSS. To do this, the SAP partner can from Release 4.0
apply for aname prefix in SAP OSS that is then added to al of that partner’ s Repository objects
(OSS notes 84282 and 91032, White Paper Devel opment Namespaces in R/3, purchase order
number E:50021723 or D:50021751).

e
Application Hierarchy and Development Classes

ANEEEAN Repository Objects Function Modules
MM ‘ ‘ HR ‘ ‘ WM
9 o ' Programs
SD ' ? -
. - . gann LS Z . :Lv Tables
] - ;.I"‘ Rt -f.
[(]) A %

Application Hierarchy '

Development Class

SAP Application Hierarchy
L = Accounting U100

= G L Accounting U101

(= Basic Functions

Fi nanci al Accounti ng FBAS
Ext ernal Interfaces FYTA
Banking Institutions FBI
Bank Custom zi ng FBI C

EPH‘

4 SAP AG

The application hierarchy and development classes serve to group Repository objectsin alogica
manner. The SAP application hierarchy subdivides the Repository according to applications and
their functional parts. Each node in the SAP application hierarchy can be assigned to a development
class.

Each Repository object must be assigned to a development class, which in turn must be assigned to an
application hierarchy node.

Often Repository objects are made up of subobjects that are also Repository objects.

The Repository Information System allows you to search for Repository objects according to various
criteria

[
Interface Style Guide

SAP delivers a Style Guide that standardizes
your interface according to ergonomic principles.

® SAP Style Guide

® Ergonomics Examples

:-:H'

SAP delivers a Style Guide that standardizes your interface according to ergonomic principles (in the
online documentation see: BC-Basis > BC ABAP Workbench - BC SAP Syle Guide).

Ergonomics examples can be found in the Repository Browser under Environment - Ergonomics
examples.

4 SAP AG

Documentation

Project documentation

Business .
Technical

design

Blueprint

-

Process
design

® Internally
m SAPOffice folder structure

® Externally

End user documentation

®|nternally

mData element
documentation

mProgram documentation

mindependent SAPscript text

®Externally

®Internally

mlnline documentation

Technical documentation of a single repository object

mRepository object (function module, ...)

4 SAP AG

SAP recommends to store documentation as follows:

Project documentation

internally in a SAPoffice folder structure

externaly (e.g. on a document server).

End user documentation
Documentation at the repository object

data element (appears when you hit F1 on ascreen field)

program (appears when you select Help - Extended help on a selection screen)

Independent SAPScript text called by an application

Technical documentation of a single repository object

documentation at a repository object (e.g. function modules, ...)

Inline documentation (comments in source code)
Select acentral storagefor your project documentation that is available and known to al project

members.

—

Inline Documentation

PROGRAM ykdeno.
* Link to external docunentation

* Programtask

* Program i nput and out put

* Basic programfl ow

* Description of LUM and | ocks

* Version history: type, author, date, request

Object Head

FORM subrouti ne USI NG sum g

* Modul ari zation unit tasks Z

* Modul ari zation unit input and out put 2

* Func. nethod for the follow ng stretch of code e
CLEAR sum ES
LOOP AT itab. 26
sum = sum + it ab-sal es. _§§
ENDL OOP. £

ENDFORM &
4 SAPAG ;

ABAP source code (in programs, screen flow logic, function modules, methods) can be documented at
the following levels:

object heads
modularization unit heads
functional methods for stretches of code

Customer generated source code should be encapsulated in modularization units instead of distributed
throughout SAP source code (for example when calling customer function modules in program
source code or calling customer subscreens for additional screen fields).

Keep the interfaces with those parts of the program written by the customer (encapsules) compact.
Define acompany-wide standard for online documentation (see the following dides).
Keep alist of al modifications (a modification logbook, see the following dides).

All repairs and all requests that contain repairs must be confirmed and released before an upgradeis
run.

SAP recommends labeling hard modifications to source code as described above:

Preliminary Correction
OSS notes, repair numbers, changed by, change date, note valid until

Customer Functionality I nsertions
areas, repair numbers, changed by, change date, INSERTION

Customer Functionality Replacements
areas, repair numbers, changed by, change date, REPLACEMENT
Unnecessary SAP functionality is not deleted, but excluded using asterisks.

Areas are specified within the process design (for example area SD_001 = pricing).

SAP recommends keeping alist of all modifications (of al changes made to Repository objectsin the
SAP namespace).

Such alist normally contains the following columns:
object type (programs, screens, GUI status, ...)
object name

routine (if necessary)

area according to process design or technical design
repair number

change date

changed by

preliminary correction (yes/no)

OSS note number, valid until Release x.y

estimated expense to reinstall the modification during adjustment (measured in hours).

Section: ABAP Dictionary

8 SAP AG 1999

Content: ABAP Dictionary

Unit
Unit

Unit

Unit

Introduction

Tables in the ABAP
Dictionary

Performance in Table
Access

Consistency through
Input Check

Unit

Unit
Unit
Unit

Dependencies of ABAP
Dictionary Objects

Changes to Tables
Views

Search Helps

a4 SAPAG 1999

Introduction

® Function of the ABAP Dictionary in the R/3 System
e Definition of database objects

® User-defined types

® Services in the ABAP Dictionary

® Linking to the development and runtime
environments

8 SAP AG 1999

Function of the ABAP Dictionary

Type definitions DB objects

— (T 1]

I Structure Table
ﬁL \ v

|

Data elements Table type

DB table

Services

Poss. values
Screen

]

i.

a4 SAPAG 1999

m The ABAP Dictionary permits a central management of all the data definitions used in the R/3
System.

m Inthe ABAP Dictionary you can create user-defined types (data e ements, structures and table types)
for use in ABAP programs or in interfaces of function modules. Database objects such as tables and
database views can aso be defined in the ABAP Dictionary and created with this definition in the
database.

m The ABAP Dictionary aso provides a number of services that support program development. For
example, setting and releasing locks, defining an input help (F4 help) and attaching a field help (F1
help) to a screen field are supported.

Database Objects in the ABAP Dictionary

Objects are automatically
created in the DB and
adjusted to changes

Table 1 Table 2

ABAP Dictionary

Database

8 SAP AG 1999

m Tables and database views can be defined in the ABAP Dictionary.

m These objects are created in the underlying database with this definition. Changes in the definition of
atable or database view are aso automatically made in the database.

m |ndexes can be defined in the ABAP Dictionary to speed up access to data in atable. These indexes
are also created in the database.

Type Definitions in the ABAP Dictionary

Employee

’ Name | Address [Telephone

v
First name| Last name | Town | Address Numbers

ZIP | Town name‘ Street [House no|

a4 SAPAG 1999

m There are three different type categories in the ABAP Dictionary:

» Dataelements: Describe an elementary type by defining the data type, length and possibly
decimal places.

» Structures: Consist of components that can have any type.
» Tabletypes: Describe the structure of an interna table.
m Any complex user-defined type can be built from these basic types.

m Example: The data of an employee is stored in a structure EMPLOY EE with the components
NAME, ADDRESS and TELEPHONE. Component NAME is a so a structure with components
FIRST NAME and LAST NAME. Both of these components are elementary, i.e. their typeis defined
by a data e ement. The type of component ADDRESS is aso defined by a structure whose
components are also structures. Component TELEPHONE is defined by a table type (since an
employee can have more than one telephone number).

m Types are used for example in ABAP programs or to define the types of interface parameters of
function modules.

Services of the ABAP Dictionary H'
>

Carrier LH
No | Depart. city Arrival city
0400 | Frankfurt New York

0402

Frankfurt New York

Frankfurt Berlin

Code of the flight connection

Code defining a flight connection
between two cities, e.g. 0400
Frankfurt - New York.

8 SAP AG 1999

m The ABAP Dictionary supports program development with a number of services:

Input helps (F4 helps) for screen fields can be defined with search helps.

Screen fields can easily be assigned afield help (F1 help) by creating documentation for the data
element.

An input check that ensures that the values entered are consistent can easily be defined for screen
fields using foreign keys.

The ABAP Dictionary provides support when you set and release locks. To do so, you must create
lock objectsin the ABAP Dictionary. Function modules for setting and releasing locks are
automatically generated from these lock objects; these can then be linked into the application
program.

The performance when accessing this data can be improved for database objects (tables, views)
with buffering settings.

By logging, you can switch on the automatic recording of changes to the table entries.

Linking to the Development and Runtime

Environment

Development
environment

Runtime environment

Reads structure of
database objects

| ABAP

Dictionary

Read type
definitions

8 SAP AG 1999

m The ABAP Dictionary is actively integrated in the development and runtime environments. Each
change takes immediate effect in the relevant ABAP programs and screens.

m Examples:

* When a program or screen is generated, the ABAP interpreter and the screen interpreter access the
type definitions stored in the ABAP Dictionary.

* The ABAP tools and the Screen Painter use the information stored in the ABAP Dictionary to
support you during program development. An example of this is the Get from Dictionary function
in the Screen Painter, with which you can place fields of atable or structure defined in the ABAP
Dictionary in a screen.

¢ The database interface uses the information about tables or database views stored in the ABAP
Dictionary to access the data of these objects.

a4 SAPAG 1999

The ABAP Dictionary manages data definitions.

User-defined types can be created in the ABAP Dictionary.
They can be used for example in ABAP programs.

Tables and database views are defined in the ABAP
Dictionary and automatically created with this definition in
the underlying database.

The ABAP Dictionary provides a number of services that
support program development.

The ABAP Dictionary is actively integrated in the
development and runtime environments.

Tables in the ABAP Dictionary

8 SAP AG 1999

Two-level domain concept
Mapped in the relational database system
Include structures
Technical settings
m Data class
m Size category
m Buffering

® Logging

Tables and Fields !’
DAF

Table

Row

/4

Key Function fields
a8 SAP AG 1999

The structure of the objects of application development are mapped in tables on the underlying
relational database.

The attributes of these objects correspond to fields of the table.

A table consists of columns (fields) and rows (entries). It has a name and different attributes, such as
delivery class and maintenance authorization.

A fidd has a unique name and attributes; for example it can be akey field.
A table has one or more key fields, caled the primary key.
The values of these key fidds uniquely identify atable entry.

You must specify areference table for fields containing a currency (data type CURR) or quantity
(data type QUAN). It must contain afield (referencefield) with the format for currency keys (data
type CUKY) or the format for units (data type UNIT). Thefield is only assigned to the reference
field at program runtime.

Basic Objects of the ABAP Dictionary

Table

Table
field

Data element

Domain

a4 SAPAG 1999

The basic objects for defining datain the ABAP Dictionary are tables, data elements and domains.
The domain is used for the technical definition of atable field (for example field type and length)
and the data element is used for the semantic definition (for example short description).

A domain describes the value range of afield. It is defined by its data type and length. The value
range can be limited by specifying fixed values.

A data element describes the meaning of a domain in a certain business context. It contains
primarily the field help (F1 documentation) and the field labels in the screen.

A fidd is not an independent object. It is table-dependent and can only be maintained within atable.

Y ou can enter the data type and number of places directly for afield. No dataelement isrequired in
this case. Instead the data type and number of placesis defined by specifying adirect type.

The data type attributes of a data element can also be defined by specifying abuilt-in type, where
the data type and number of placesis entered directly.

Two-Level Domain Concept: Example

Table SPFLI
MANDT | CARRID | CONNID| .- [AIRPFROM | --- | AIRPTO

Data element S_FROMAIRP Data element S_TOAIRP

Domain S_AIRPID

a4 SAPAG 1999

m Theflight schedule is stored in table SPFLI. Table fields AIRPFROM (departure airport) and
AIRPTO (arriva airport) have the same domain S_AIRPID. Both fields use the same domain
because both fields contain airport IDs and therefore have the same technical attributes. They have a
different semantic meaning, however, and use different data e ements to document this. Field
AIRPFROM uses data element S FROMAIRP and field AIRPTO uses data element S TOAIRP.

Transparent Tables and Structures

Physical definition of the table

8 SAP AG 1999

m A transparent table is automatically created on the database when it is activated in the ABAP
Dictionary. At this time the database-independent description of the table in the ABAP Dictionary is
trandated into the language of the database system used.

m The database table has the same name as the table in the ABAP Dictionary. The fields aso have the
same name in both the database and the ABAP Dictionary. The data typesin the ABAP Dictionary
are converted to the corresponding data types of the database system.

m The order of the fieldsin the ABAP Dictionary can differ from the order of the fields on the
database. This permits you to insert new fields without having to convert the table. When a new field
is added, the adjustment is made by changing the database catalog (ALTER TABLE). The new field
is added to the database table, whatever the position of the new field in the ABAP Dictionary.

m ABAP programs can access a transparent table in two ways. One way is to access the data contained
in the table with OPEN SQL (or EXEC SQL). With the other method, the table defines a structured
type that is accessed when variables (or more complex types) are defined.

m You can aso create a structured type in the ABAP Dictionary for which there is no corresponding
object in the database. Such types are called structures. Structures can also be used to define the
types of variables.

Include Structures w
A

Table 1 Table 2

Field 1 | Field 2 Field A | Field B Field 3 Field A | Field B| Field 4

Eield A | Field B Include structure

«.__ Database >

Field 2| Field A| Field B Field 3 | Field A| Field B Field 4

8 SAP AG 1999

Structures can be included in tables or other structures to avoid redundant structure definitions.
A table may only be included as an entire table.

A chain of includes may only contain one database table. The table in which you are including
belongs to the include chain. This means that you may not include a transparent table in a transparent
table.

Includes may contain further includes.

Foreign key definitions are generally imparted from the include to the including table. The attributes
of the foreign key definition are passed from the include to the including table so that the foreign key
depends on the definition in the include.

Technical Settings !’
DA

In which physical
area of the database Data class

should the table :
be stored? Size category

How many récor
will the table
probably contain?

Buffering ‘

R/3

Should the records

of the table be
buffered?

Should changes to
the data records be
logged?

8 SAP AG 1999

m You must maintain the technical settings when you define a transparent table in the ABAP
Dictionary.

m The technical settings are used to individually optimize the storage requirements and accessing
behavior of database tables.

m Thetechnical settings can be used to define how the table should be handled when it is created on the
database, whether the table should be buffered and whether changes to entries should be logged.

m Thetableisautomatically created on the database when it is activated in the ABAP Dictionary. The
storage area to be selected (tablespace) and space allocation settings are determined from the settings
for the data class and size category.

m The settings for buffering define whether and how the table should be buffered.
m You can define whether changes to the table entries should be logged.

Data Class !’
YA

Tables in the ABAP Dictionary

Master data |Organizational data | Transaction data | System data

| Table 1
Table 3 Table 2 Table 5 Table 7
Table 4 Table 6 Table 9 Table 8

Database

Tablespace | |Tablespace Tablespace = Tablespace

Master data Org. data Trans.data @ System data
Table 1
Table 3 | Table 2 | Tables Table 7

Table 4 Table 6 Table 9 Table 8

a4 SAPAG 1999

m Thedataclasslogically defines the physical area of the database (for ORACLE the tablespace) in
which your table should be stored. If you choose the data class correctly, the table will automatically
be created in the appropriate area on the database when it is activated in the ABAP Dictionary.

m The most important data classes are master data, transaction data, or ganizational data and
system data.

m Madter datais datathat is rarely modified. An example of master datais the data of an addressfile,
for example the name, address and tel ephone number.

m Transaction datais data that is frequently modified. An example is the material stock of a warehouse,
which can change after each purchase order.

m Organizational datais data that is defined during customizing when the system isinstalled and that is
rarely modified thereafter. The country keys are an example.

m System datais data that the R/3 System itself needs. The program sources are an example.

m Further data classes, called customer data classes (USR, USR1), are provided for customers. These
should be used for customer developments. Specia storage areas must be alocated in the database.

Size Category "
A

Technical Settings

Initial First Second
Extent Extent Extent

Database

TABA I
TABE N
-y |

S —

8 SAP AG 1999

m The size category describes the expected storage requirements for the table on the database.

m Aninitia extent isreserved when atableis created on the database. The size of the initial extent is
identical for all size categories. If the table needs more space for data at alater time, extents are
added. These additional extents have afixed size that is determined by the size category specified in
the ABAP Dictionary.

m Y ou can choose a size category from O to 4. A fixed extent size, which depends on the database
system used, is assigned to each category.

m Correctly assigning a size category therefore ensures that you do not create alarge number of small
extents. It aso prevents storage space from being wasted when creating extents that are too large.

Modifications to the entries of a table can be recorded and stored using logging.

To activate logging, the corresponding field must be selected in the technical settings. Logging,
however, only will take place if the R/3 System was started with a profile containing parameter
‘rec/client’. Only sdecting the flag in the ABAP Dictionary is not sufficient to trigger logging.

Parameter ‘rec/client' can have the following settings:
rec/client= ALL All clients should be logged.
rec/client = 000]...] Only the specified clients should be logged.
rec/client = OFFLogging is not enabled on this system.

The data modifications are logged independently of the update. The logs can be displayed with the
Transaction Table History (SCU3).

L ogging creates a 'bottleneck’ in the system:
 Additional write access for each modification to tables being logged.

* This can result in lock situations although the users are accessing different application tables!

Explanation of the Symbolsin the Exercises and Solutions

b8 Exercises
=l Solutions
G Course Objectives

Business Scenario

;‘}'@”; Tips & Tricks

Ly Warning or Caution

Datain the Exercises

Type of data Datain thetraining system
Data model BC_TRAVEL yes
All objectsin development class yes

BC_DATAMODEL

All objects in development class BC430 yes

When creating ABAP Dictionary objects in this course, you
should adhere to the following conventions:

Your object names for tables, data elements and domains
should begin with Z and end with your two-digit group number
(xx).

Use both your own data elements or domains
(Z<Objectname>xx) and standard SAP objects for the table
fields.

All objects should be created as local objects (development
class $tmp).

The appendix contains information about the flight data model used
in the training courses.

Unit: Tablesin the ABAP Dictionary

*e e

At the conclusion of these exercises you will be able to:
Create tables and use the two-level domain concept
Define the technical settings sensibly

Document fields
Create and use include structures

In these exercises the tables of the flight model will be enhanced with
employee management. This employee management will enable the
p.) airlines to enter and evaluate data about their employees (e.g. name,

2-1

personnel number, salary, department, etc.) ard about assignments within
the organization (airline departments).

In this exercise, two tables will be created for the employee data and the
airline departments.

These tableswill be enhanced step by step in the following exercises.

Create two transparent tables ZEMPLOY xx and ZDEPMENTxx and define their key
fields. Define the technical settings when you activate the tables.

Note the following:

Data is maintained for three airlines. An airline has 20,000 employees and between 10
and 30 departments. Do not buffer or log the data. Buffering will be discussed in the
exercises for the next unit.

2-1-1 Create table ZEMPLOY xx. The data for the employees is maintained here. The
names and addresses of the employees and their salaries is stored here.

2-3

Table ZEMPLOY xx

Field name Dataelement | Domain Type, Length
Client S MANDT MANDT
Carrier S CARR_ID S CARR_ID
Personnel number | own own NUMC, 10
First name S FNAME S FNAME
Last name S LNAME S LNAME
Department code | own own CHAR, 4
Area own own CHAR, 1
Salary own own CURR, 10

2 decimal places
Currency S CURRCODE |S CURR

2-1-2 Create table ZDEPMENTXx. This table contains the departments of the
airline. Each department can be reached with a telephone and fax number.

Table ZDEPMENT xx

Field name Dataelement | Domain Type, Length
Client S MANDT MANDT

Carrier S CARR_ID S CARR_ID

Department code | own own CHAR, 4
Telephone own S PHONE CHAR, 30

Fax own S _PHONE CHAR, 30

Document fields Personnel number and Department code.

Changes to tables ZEMPLOY xx and ZDEPMENTXxx are critical and therefore must
be recorded. The maintenance transaction must note who last changed a table entry.
This can be done by appending fields for the personnel number of the last person to
change the entry and the date of the last entry to tables ZEMPLOY xx and
ZDEPMENTxx. Make sure that the same fields are available in both tables for
recording the changes by adding these fields to both tables with a substructure
ZCHANGEXxx. Create a new data element for field Lastchangedby, but use an
existing domain. Use S CHDATE as data element for the date of the last change.

What actions are executed on activation in the database?

Note: In a'real’ application, the above enhancement would always cause the
standard table maintenance for the two tables to be deactivated. Y our own

mai ntenance transactions would instead be created for the table in which the fields
for change logging would be filled internally by the program and not directly by the

Creation of such transactions goes beyond the scope of this course. In this course
we will therefore assume that all users themselves (correctly) fill these fields in the
standard table maintenance routine.

<\ /_ Start Program BC430_CHECK in Transaction SE38. This program
- checks whether your solutions are correct and fills the new tables
ZEMPLOY xx and ZDEPMENTxx with sample data needed for later
EXercises.

—
- ~

2-1

The path

/ Unit: Tablesin the ABAP Dictionary

Tools > ABAP Workbench - Development - Dictionary or Transaction SE11
takes you to the overview screen of the ABAP Dictionary.

2-1-1 To createtable ZEMPLQOY xx:

1

2)
3)
4)
5)

6)

7)

8)

9)

10)
11)
12)

13)

Mark Database table and enter table name ZEMPLOY xx in the
corresponding input field.

Choose Create.
Enter a short text in the maintenance screen for the table.
Choose ddlivery class A and mark Table maintenance allowed.

Now click on tab page Fields to go to the maintenance screen for the
field definitions. Enter the field names there (they need not lie in the
customer namespace).

Use the given data elements for fields Client, Carrier, First name,
Last nameand Currency by entering the names of the data elements
in column Field type. Save your entries.

Create your own data elements for fields Personnel number,
Department code, Area and Salary. Enter a name (Z<object>xx) for
the data element in column Field type. Double-click on the name of
the data el ement. The data e ement definition appears.

Enter a short text (component of the F1 help). Now click on tab page
Field label and store the texts for the field labels there.

Y ou aso have to assign the data element a technical description
(domain). Click on tab page Definition and enter a name
(Z<object>xx) for your domain there. If the domain is predefined,
activate the data element and return to the maintenance screen for
the table fields (F3 or <).. Otherwise double-click on the domain
name. The domain definition appears.

Define the short description, data type (for example NUMC) and
number of characters (for example 10) there. Activate the domain.

Navigate back one screen (F3 or <) to the data element definition
and activate your data element.

Navigate back one more screen to the field definition. Start again
there with 7) until all the table fields are defined. Save your table.

Define the reference table and reference field for the salary field.
Double-click on the field name and enter the following in the next
dialog box:

Reference table: ZEMPLOY xx

14)

15)

Reference field:
Currency

Define the key fields for table ZEMPLOY xx. Fields Client, Carrier
and Personnel number uniquely identify an entry. They must
therefore be marked as key fields. Y ou can do this by marking the
Key column following the field name. The key fields must be at the
beginning of the field list in this order.

Activate the table. The maintenance screen for the technical settings
appears automatically:

Since the contents of table ZEMPLOY xx do not change frequently,
you must choose data class APPLO (master data). The expected
number of records in table ZEMPLOY xx is 60,000, so you must
choose size category 2. The table should not be either buffered or
logged.

ZEMPLOY xx

Dataclass

APPLO (master data)

Size category

2

Buffering

Not allowed

Logging

No logging

Save the technical settings. Go back to the maintenance screen of the table
(F3 or €). Thetableis activated.

2-1-2 To create table ZDEPMENTXX:
1) to 12) see Solution 2-1-1

13)

14)

Define the key fields for table ZDEPMENTxx. Fields Client,
Carrier and Department code uniquely identify an entry. They must
therefore be marked as key fields. Y ou can do this by marking the
Key column following the field name.
Activate your table and define the technical settings:
Since the contents of table ZDEPMENTXxx do not change frequently,
you must choose data class APPLO (master data). The expected
number of records in table ZDEPMENTXxX is defined to be at most
90 entries, so you must choose size category 0. The table should not
be either buffered or logged.

ZDEPMENTxx

Dataclass APPLO (master data)

Size category 0

Buffering Not allowed

Logging No logging

2-3

To document fields Personnel number and Department code:

1) Double-click to go to the data element in the data element definition. With
Display <-> Change switch to change mode. Press Documentation or
choose Goto - Documentation.

2) Enter atext for the fields and save your entries.
Create structure ZCHANGEXxx as follows:

1) In theinitial screen of the ABAP Dictionary, mark Data type and enter
ZCHANGEXx in the corresponding field. Choose Create.

2) Mark Structure in the next dialog box.

3) Enter the field names in column Component and the corresponding data
elements in column Component type. Create one field for the personnel
number and another one for the date of change. Use data el ement
S CHDATE for the second field. Create your own data element for the first

field, asin Exercise 2-1. Use the domain you created for the personnel
number in table ZEMPLOY xx.

4) Activate structure ZCHANGEXX.

Now insert ZCHANGEXX as an include in tables ZEMPLOY xx and
ZDEPMENTXX as follows:

1) Go to the maintenance screen for table ZEMPLOY xx.

2) Choose New rows and position the cursor on the first new field.

3) Choose Edit = Include - Insert.

4) In the next dialog box, enter the name ZCHANGExx and choose Continue.
5) Activate the table.

6) Y ou can display the actions that were performed in the database with
Utilities? Activation log.

7) Start with step 1) to insert substructure ZCHANGEXx in table
ZDEPMENTXX.

Performance during Table Access

® Indexes
®m Primary index and secondary index
m Structure of an index
m Data access using an index
® Table buffering
m Advantages of buffering
m Local table buffers
m Buffering types
m Buffer synchronization
® Which tables should be buffered?

8 SAP AG 1999

m Anindex can be used to speed up the selection of data records from atable.

m Anindex can be considered to be a copy of a database table reduced to certain fields. The datais
stored in sorted form in this copy. This sorting permits fast access to the records of the table (for
example using a binary search). Not al of the fields of the table are contained in the index. The index
aso contains a pointer from the index entry to the corresponding table entry to permit all the field
contents to be read.

m When creating indexes, please note that:

* Anindex can only be used up to the last specified field in the selection! The fields which are
specified in the WHERE clause for alarge number of selections should be in the first position.

* Only those fields whose values significantly restrict the amount of data are meaningful in an
index.

* When you change a data record of atable, you must adjust the index sorting. Tables whose
contents are frequently changed therefore should not have too many indexes.

* Make sure that the indexes on atable are as digunct as possible.

The database optimizer decides which index on the table should be used by the database to access
data records.

Y ou must distinguish between the primary index and secondary indexes of atable. The primary

index contains the key fields of the table. The primary index is automatically created in the database
when the tableis activated. If alarge table is frequently accessed such that it is not possible to apply
primary index sorting, you should create secondary indexes for the table.

The indexes on a table have a three character index ID. '0' is reserved for the primary index.
Customers can create their own indexes on SAP tables; their IDs must begin with Y or Z.

If the index fields have key function, i.e. they aready uniquely identify each record of the table, an
index can be called a unique index. This ensures that there are no duplicate index fields in the
database.

When you define a secondary index in the ABAP Dictionary, you can specify whether it should be
created on the database when it is activated. Some indexes only result in again in performance for
certain database systems. Y ou can therefore specify alist of database systems when you define an
index. Theindex isthen only created on the specified database systems when activated.

Table buffering increases the performance when the records of the table are read.

The records of a buffered table are read directly from the local buffer of the application server on
which the accessing transaction is running when the table is accessed. This eliminates time-
consuming database accesses. The access improves by afactor of 10 to 100. The increase in speed
depends on the structure of the table and on the exact system configuration. Buffering therefore can
greatly increase the system performance.

If the storage requirements in the buffer increase due to further data, the data that has not been
accessed for the longest time is displaced. This displacement takes place asynchronoudly at certain
times which are defined dynamically based on the buffer accesses. Datais only displaced if the free
space in the buffer is less than a predefined value or the quality of the accessis not satisfactory at
thistime.

Entering $TAB in the command field resets the table buffers on the corresponding application server.
Only use this command if there are inconsistencies in the buffer. In large systems, it can take several
hours to fill the buffers. The performance is considerably reduced during this time.

The R/3 System manages and synchronizes the buffers on the individual application servers. If an
application program accesses data of a table, the database interfaces determines whether this data lies
in the buffer of the application server. If thisis the case, the datais read directly from the buffer. If
the datais not in the buffer of the application server, it is read from the database and loaded into the
buffer. The buffer can therefore satisfy the next access to this data.

The buffering type determines which records of the table are loaded into the buffer of the application
server when arecord of the table is accessed. There are three different buffering types.

With full buffering, all the table records are loaded into the buffer when one record of the tableis
accessed.

With generic buffering, al the records whose | eft-justified part of the key is the same are loaded
into the buffer when atable record is accessed.

With single-record buffering, only the record that was accessed is loaded into the buffer.

With full buffering, the table is either completely or not at al in the buffer. When arecord of the
table is accessed, dl the records of the table are loaded into the buffer.

When you decide whether a table should be fully buffered, you must take the table size, the number
of read accesses and the number of write accesses into consideration. The smaller the tableis, the
more frequently it is read and the less frequently it is written, the better it is to fully buffer the table.

Full buffering is also advisable for tables having frequent accesses to records that do not exist. Since
all the records of the table reside in the buffer, it is dready clear in the buffer whether or not a record
exists.

The data records are stored in the buffer sorted by table key. When you access the data with
SELECT, only fields up to the last specified key field can be used for the access. The left-justified
part of the key should therefore be as large as possible for such accesses. For example, if the first key
field is not defined, the entire table is scanned in the buffer. Under these circumstances, a direct
access to the database could be more efficient if there is a suitable secondary index there.

With generic buffering, al the records whose generic key fields agree with this record are loaded

into the buffer when one record of the table is accessed. The generickey isaleft-justified part of the
primary key of the table that must be defined when the buffering type is selected. The generic key
should be selected so that the generic areas are not too small, which would result in too many generic
aress. If there are only afew records for each generic area, full buffering is usualy preferable for the
table. If you choose too large a generic key, too much data will be invalidated if there are changes to
table entries, which would have a negative effect on the performance.

A table should be genericaly buffered if only certain generic areas of the table are usualy needed for
processing.

Client-dependent, fully buffered tables are automatically generically buffered. The client field isthe
generic key. It is assumed that not al of the clients are being processed at the same time on one
application server. Language-dependent tables are a further example of generic buffering. The
generic key includes all the key fidlds up to and including the language field.

The generic areas are managed in the buffer as independent objects. The generic areas are managed
analogoudly to fully buffered tables. Y ou should therefore aso read the information about full
buffering.

Only those records that are actually accessed are loaded into the buffer. Single-record buffering
saves storage space in the buffer compared to generic and full buffering. The overhead for buffer
administration, however, is higher than for generic or full buffering. Considerably more database
accesses are necessary to load the records than for the other buffering types.

Single-record buffering is recommended particularly for large tables in which only afew records are
accessed repeatedly with SELECT SINGLE. All the accesses to the table that do not use SELECT
SINGLE bypass the buffer and directly access the database.

If you access arecord that was not yet buffered using SELECT SINGLE, there is a database access
to load the record. If the table does not contain a record with the specified key, thisrecord is
recorded in the buffer as non-existent. This prevents a further database access if you make another
access with the same key.

Y ou only need one database access to load a table with full buffering, but you need several database
accesses with single-record buffering. Full buffering is therefore generally preferable for small tables
that are frequently accessed.

Since the buffers reside locally on the application servers, they must be synchronized after data has
been modified in a buffered table. Synchronization takes place at fixed time intervals that can be set
in the system profile. The corresponding parameter is rdisp/bufreftime and defines the length of the
interval in seconds. The value must lie between 60 and 3600. A value between 60 and 240 is
recommended.

The following example shows how the local buffers of the system are synchronized. A system with
two application servers is assumed.

Starting situation: Neither server has yet accessed records of the table TAB to be fully buffered.
The table therefore does not yet reside in the local buffers of the two servers.

Timepoint 1: Server 1 reads records from table TAB on the database.

Timepoint 2: Table TAB isfully loaded into the local buffer of server 1. Accesses from server 1 to
the data of table TAB now use the local buffer of this server.

m Timepoint 3: Server 2 accesses records of the table. Since the table does not yet reside in the local
buffer of server 2, the records are read directly from the database.

m Timepoint 4: Table TAB isloaded into the local buffer of server 2. Server 2 therefore also usesiits
local buffer to access data of TAB the next time it reads.

m Timepoint 5 Server 1 deletes records from table TAB and updates the database.
m Timepoint 6: Server 1 writes an entry in the synchronization table.
m Timepoint 7: Server 1 updatesitsloca buffer.

m Timepoint 8: Server 2 accesses the deleted data records. Since table TAB residesinitslocal buffer,
the access uses this local buffer.

m Server 2 therefore finds the records although they no longer exist in the database table.

m |f the same access were made from an application program to Server 1, this program would
recognize that the records no longer exist. At this time the behavior of an application program
therefore depends on the server on which it is running.

m Timepoint 9: The moment of synchronization has arrived. Both servers look in the synchronization
table to see if another server has maodified one of the tablesinitsloca buffer in the meantime.

m Timepoint 10: Server 2 finds that table TAB has been modified by Server 1 in the meantime. Server
2 therefore invalidates the table in its local buffer. The next access from Server 2 to data of table
TAB therefore uses the database. Server 1 does not have to invaidate the table in its buffer since it
itself is the only one to modify table TAB. Server 1 therefore uses its local buffer again the next time
to access records of table TAB.

Timepoint 11: Server 2 again accesses records of table TAB. Since TAB isinvdidated in the loca
buffer of Server 2, the access uses the database.

Timepoint 12: The table is again loaded into the local buffer of Server 2. The information about
table TAB is now consistent again in both servers and the database.

Advantages and disadvantages of this method of buffer synchronization:

» Advantage: Theload on the network is kept to aminimum. If the buffers were to be synchronized
immediately after each modification, each server would have to inform all other servers about each
modification to a buffered table via the network. This would have a negative effect on the
performance.

» Disadvantage: Theloca buffers of the application servers can contain obsolete data between the
moments of synchronization.

This means that:

* Only those tables which are written very infrequently (read mostly) or for which such temporary
inconsistencies are of No importance may be buffered.

* Tables whose entries change frequently should not be buffered. Otherwise there would be a
constant invalidation and reload, which would have a negative effect on the performance.

Unit: Performance during Table Access

At the conclusion of these exercises you will be able to:

*e e

Create indexes

Maintain the buffering attributes of atable

L2 s

Intheir daily work, airline employees need fast access to the datain the employee
administration tables. In this exercise, accessto the datain these tables should be
speeded up.

3-1

3-2

3-3

The combination of first and last names are often used to access the personnel data
of an employee. The last name is more often known (i.e. specified in the access)
than the first name.

Create an index that supports this access. Make sure that the index is created in the
database.

To set up aflight crew, you have to assign employees (pilots and stewards) to
flights. Create a table in which the employees involved and their functions can be
entered for each flight.

A table with the corresponding structure already exists in the system. Copy this
table SFLCREW to table ZFL CREWxX. Replace the existing data element for the
employee number with your own data el ement.

Do not forget to activate table ZFL CREWXX.

Reconsider the settings you made for buffering tables ZDEPMENTxx and
ZFLCREWXxx. Keep the following information for using these tables in mind:

The carriers have between 10 and 30 departments. Only a few carriers (maximum
3) are administered in the tables. The data about the crews of completed flights are
rolled out to an archive file every three months. Table ZFL CREWxx therefore has
relatively few entries (at most 5,000 per carrier).

Tables ZDEPMENTxx and ZFLCREWXx are accessed very frequently. Data
records are read repeatedly from these tables.

Administrative employees of only one airline work on one application server. The
data about the flight crew is only of interest within the airline. Administrative
employees of an airline, however, often have to access departmental data of other
airlines, since the airlines share some services.

34

Start Program BC430_CHECK in Transaction SE38. This program
checks whether your solutions are correct and fills the new table
ZFLCREWNxx with sample data needed for later exercises.

If you do the supplementary exercise, only start the program after compl eting the
supplementary exercise.

Supplementary Exercise: Using an index on the areas might result in again in
performance when accessing the employee data, for example if al pilots are
frequently selected.

In performance measurements on different database systems, however, it was found
thereis only again in performance for the ADABAS and SQL Server database
systems. Create an index and make sure that it is only created on the ADABAS and
SQL Server database systems.

3-1

3-2

3-3

/ Unit: Performance during Table Access

The personnel data of the employees is managed in Table ZEMPLOY xx. Create an
index for this table. It has to contain fields Client, Lastname and Firsthame Since
the last name is usually specified and is much more selective than the first name, it
must be in its index. The order of the fields is then Client, Lastname and then
Firstname

To create the index:

1) In display mode, go to the maintenance screen of table ZEMPLOY xx and
choose Indexes.

2) In the next dialog box, confirm thet you want to create an index.

3) In the following dialog box, enter a three-place index 1D and choose
Continue.

4) The maintenance screen for the index appears. Enter a Short description.

5) Choose Tablefields. A list of al the fields in the table appears. Mark fields
Client, Lastname and Firstname and choose Copy.

6) The fields are copied from the dialog box to the index in that order. If field
Firstnameis before field Lastname, you have to change the order of the
fields. Do this by placing the cursor on the line with field Firstname and
choosing Cut. Now place the cursor on the first free line after field
Lastname and choose Paste.

7) The index is certainly not a unique index since there can be employees with
the same first and last names. There is no reason to create the index only in
certain database systems. Y ou should therefore leave the standard settings
Non-unigue index and Index in all database systems

8) Activate the index. The index is automatically created in the database.

To copy table SFLCREW:

1) In theinitial screen of the ABAP Dictionary, enter SFLCREW in field
Database table. Choose Copy.

2) In the next dialog box, enter the name ZFLCREWxX in field to table and
choose Continue.

3) In change mode, go to the table maintenance screen and replace data
element SEMP_NUM with the data element you created for the employee
number.

4) Activate the table.

Y ou can maintain the buffering settings for the specified tables in their technical
settings. To do so, go to the maintenance screen for the table in display mode and
choose Technical settings. The desired maintenance screen appears and you can
switch to change mode here.

34

Since the contents of table ZDEPMENTXxx are rarely changed but frequently read, it
is not advisable to buffer the table. Mark Buffering switched on. Since there are no
restrictions on the access and the table is small, you should select full buffering.
Mark Fully buffered.

Activate the technical settings of table ZDEPMENTXX.

The data of table ZFL CREWxx are often read repeatedly. Accesses that change the
contents are rare. Y ou should therefore buffer the table. Mark Buffering switched
on. Usually only the data of one airline is needed on an application server. You
should therefore buffer the table generically with the generic key Client and
Carrier. Mark Generic buffering and select 2 as the number of generic key fields.

Activate the technical settings of table ZFL CREWxX.

If you do as specified in 3.1, the system displays the index you created in a dialog
box. In this dialog box choose Create. Include fields Client, Carrier and Area in the
index. Thisis not a unique index either.

To create the index only in the Adabas and SQL Server database systems:
1) Mark For selected database systems

2) Then press the arrow symbol in this line. Select Sdlection list. Using the F4
help, select the identifiers for the Adabas (ADA) and SQL Server (MSS)
database systems in the lit.

3) Choose Continue.
4) Activate the index.

The index is only created in the database if your training system is running on one
of the selected database systems.

Consistency through Input Checks

8 SAP AG 1999

Fixed values

Value table

What is a foreign key?

Field assignment using the check field
Foreign key table / check table
Semantic attributes of the foreign key

Text table

m The domain describes the value range of afield by specifying its data type and field length. If only a
limited set of valuesis alowed, they can be defined as fixed values.

m Specifying fixed values causes the value range of the domain to be restricted by these values. Fixed
values are immediately used as check valuesin screen entries. Thereis also an F4 help.

m Fixed values are only checked in screens. No check is made when data records are inserted in atable
by an ABAP program.

m Fixed vaues can either be listed individually or defined as an interval.

m Thevaue range of afield can aso be defined by specifying a value table in the domain.

m |n contrast to fixed values, however, smply specifying a value table does not cause the input to be
checked. Thereis no F4 help ether.

m |f you enter a vaue table, the system can make a proposal for the foreign key definition.

m A value table only becomes a check table when aforeign key is defined.
If you refer to adomain with avalue table in afield, but no foreign key was defined at field levd,
there is no check.

A customer wants to book a flight with American Airlines (AA). This flight with flight number 0017
isto be on November 22, 1997. The booking should be made at counter 8.

Table SBOOK contains al the flight bookings of the carriers.
Table SCOUNTER contains al the valid counters of the carriers.

If an entry ismade in field COUNTER of table SBOOK, you must make sure that only valid
counters can be entered. This means that the counters must be stored in table SCOUNTER.

Question:
Areyou alowed to insert the above data record in table SBOOK?

The flight cannot be booked because American Airlines (AA) does not have a counter 8.

No datarecord is selected in table SCOUNTER for the entries in the example. The entry for table
SBOOK s regjected.

In the ABAP Dictionary, such relationships between two tables are called foreign keys and they
must be defined explicitly for the fields.

Foreign keys are used to ensure that the data is consistent. Data that has been entered is checked
againgt existing data to ensure that it is consistent.

m EXAMPLE:
In this example, the foreign key table is table SBOOK. The purpose of the foreign key is to ensure
that only valid counters of carriers can be assigned to a booking. Check table SCOUNTER contains
exactly thisinformation. Each counter isidentified with three key fieldsin thistable: MANDT,
CARRID, and COUNTNUM.

m |n order to define the foreign key, these three fields are assigned to fields of the foreign key table
(foreign key fields) with which the input to be checked is entered on the screen. In table SBOOK
these are the fields: MANDT, CARRID, COUNTER. The entry is accepted if it representsavalid
counter; otherwise the system will rgject it.

m Theforeign key is defined for field SBOOK-COUNTER (check field), which means that the entry in
thisfield is checked. Field COUNTER is therefore caled the check field for this foreign key.

A foreign key is defined for field COUNTER, table SBOOK, resulting in the following field

assignment:
Check table Foreign key table
SCOUNTER-MANDT SBOOK-MANDT
SCOUNTER-CARRID SBOOK-CARRID

SCOUNTER-COUNTNUM SBOOK-COUNTER

A combination of fields of atableis called aforeign key if this field combination is the primary key
of another table.

A foreign key links two tables.

The check table is the table whose key fields are checked. This table is also called the referenced
table.

An entry is to be written in the foreign key table. This entry must be consistent with the key fields of
the check table.

Thefield of the foreign key table to be checked is called the check field.

Foreign keys can only be used in screens. Data records can be written to the table without being
checked using an ABAP program.

Example: A new entry isto be written in table SPFLI (flight schedule). There is a check whether the
airline carrier entered is stored in table SCARR (carrier) for field SPFLI-CARRID. Therecord is
only copied to table SPFLI (foreign key table) if thisisthe case. A foreign key is defined for field
SPFLI-CARRID (check field), i.e. the checks are on this field. The corresponding check table is
table SCARR with the primary key fields MANDT and CARRID.

In the ABAP Dictionary, the same domain is required for the check field and referenced key field of
the check table so that you do not compare fields with different data types and field lengths. Domain
equality is essential. Different data elements can be used, but they must refer to the same
domain.

The requirement for domain equality is only valid for the check field. For al other foreign key fields,
it issufficient if the data type and the field length are equal. Y ou nevertheless should strive for
domain equality. In this case the foreign key will remain consistent if the field length is changed
because the corresponding fields are both changed. If the domains are different, the foreign key will
be inconsistent if for example the field length is changed.

If the domain of the check field has a value table, you can have the system make a proposal with the
value table as check table. In this case a proposal is created for the field assignment in the foreign

key.

CAUTIONI!

The congtellation that a domain that itself hastable SAIRPORT asvaluetableis used following
field SAIRPORT-Airport iscorrect !! However, a foreign key isnever defined on thisfield
(avoiding a loop).

m In the above example for the foreign key definition for field SBOOK-AGENCYNUM, the system
proposal is as follows based on the value table in the domain:
Check table: SBUSPART

Field assignment:

Check table Foreign key table
SBUSPART-MANDT SBOOK-MANDT
SBUSPART-BUSPARTNUM SBOOK-AGENCYNUM

m Thisproposal doesnot do what we want it to do:
Table SBUSPART contains al the business partners of airline carriers. However, only agencies are
alowed for field SBOOK-AGENCYNUM. Table SBUSPART therefore contains invaid data for
thisfield. The system proposd is therefore incorrect! The right check table istable STRAVELAG. It
is asubset of table SBUSPART due to its foreign key definition on field AGENCYNUM.
You must overwrite the system proposal with table STRAVELAG. If you do not know the
correct check table, the system can help you by listing dl the tablesin question. Thisincludes
all thetablesthat have a key field with domain S_ BUSPARNUM.

m The cardinality describes the foreign key relationship with regard to how many records of the check
table are assigned to records of the foreign key table. The cardindity is always defined from the
point of view of the check table.

m Thetype of the foreign key field defines whether or not the foreign key field identifies a table entry.
This means that the foreign key fields are either key fields or they are not key fields or they area
specia case, namely the key fields of atext table.

m There are the following kinds of foreign key fields:

not specified: No information about the kind of foreign key field can be given

no key fields/candidates: The foreign key fields are neither primary key fields of the foreign key
table nor do they uniquely identify arecord of the foreign key table (key candidates). The foreign
key fields therefore do not (partialy) identify the foreign key table.

Key fields/candidates: The foreign key fields are either primary key fields of the foreign key
table or they uniquely identify arecord of the foreign key table (key candidates). The foreign key
fields therefore (partially) identify the foreign key table.

Key fidlds of atext table: The foreign key table is atext table of the check table, i.e. the key of
the foreign key table only differs from the key of the check table in an additional language key
field. Thisisaspecia case of the category Key fields/ candidates.

Table SMEAL contains the medls served to the passengers during aflight. The meal names are
maintained in table SMEALT.

Table SMEALT isthetext table for table SMEAL since the key of SMEALT consists of the key of
SMEAL and an additiona language key field (field with datatype LANG).

Table SMEALT can contain explanatory text in severa languages for each key entry of SMEAL.

To link the key entries with the text, the text table SMEALT must be linked with table SMEAL using
aforeign key. Key fields of a text table must be chosen for the type of the foreign key fields.

Theforeign key relationship isdefined from SMEALT to SMEAL.
Only one text table can be created for atable.

Unit: Consistency through Input Checks

At the conclusion of these exercises you will be able to:

: Create fixed values
& Set value tables to the correct context
Define foreign keys
Use the above mechanism to ensure that the data is consistent
When you enter or change the employee master data, only consistent data, i.e. valid
airline carriers, departments, areas, etc., should be allowed. Thiswill beimplemented in
\ . thenext exercise.
o,

4-1 Theemployees of the airlines are divided into administration personnel (A), flight
personnel (F) and service personnel (S). They are assigned to activity areas A, For S
accordingly. Make sure that only valid activity areas can be entered in table
ZEMPLOQOY xx.

4-2 Define suitable foreign keys for tables ZEMPLOY xx and ZDEPMENTxx. Use the
tables of the flight model or tables TOO0O (client) and SCURX (currency code) as well
as your tables to define the foreign keys. Define aforeign key check for each of the
following fields:

ZEMPLOY xx-Client

ZEMPLOQY xx-Carrier

ZEMPLOQOY xx-Department code

ZEMPLOY xx-Currency

and

ZDEPMBENTxx-Client

ZDEPMENTXxx-Carrier
Maintain the data for table ZEMPLOY xx and test the effect of your foreign key
relationships.

4-3 Some employees of carriers work in travel agenciesin order to sl flights for their

companies there. Enhance table ZEMPLOY xx with a field that documents for each
employee the travel agency in which he or she works.

Enhancetable ZEMPLOY xx accordingly and define the foreign key relationship.

\ 1/

N 7/
~ —~
—

~ Thetableof all travel agenciesiscaled STRAVELAG.

Create atext table ZDEPMENT Txx for table ZDEPMENTXx to explain the department
code for the employees of the carriersin all countries.

Create the corresponding table and use data elements SPRAS and S TEXT for the field
definition.
Define the required foreign key relationships.

\ 1/ Start Program BC430_CHECK in Transaction SE38. This program
= ~ checks whether your solutions are correct and fills the new table
- ~ ZDEPMENTTxx with sample data needed for later exercises.

/ Unit: Consistency through Input Checks

Call the domain maintenance screen for field ZEMPLOY xx-Area. Y ou can do this
by navigating from the table maintenance screen to the corresponding data el ement
and from here to the domain (by double-clicking). Click on tab page Value range
and enter the following fixed values:

Fixed» alue | Short description

A Administration personnel
F Flight personnel

S Service personnel

Activate your domain.

To maintain the individual foreign keys, call the maintenance routine for the
particular tables. Click on tab page Fields.

Createforeign key ZEMPLOY xx-Client asfollows:

1) Place the cursor on field ZEMPLOY xx-Client. Press Foreign key or choose
Goto - Foreign key.

2) Since you are using domain MANDT for field ZEMPLQOY-Client, the
system proposes value table TOOO as check table.

3) Have the system make a proposal for the foreign key definition. Check the proposal. The
following fields must be assigned:
Check table CkTabFld For. key table For. key fld
TOOO MANDT ZEMPLOY xx Client
4) Enter a short text and define the semantic attributes as follows:

Type of foreign key fields: key fields/candidates
Cardinality: 1:CN

5) Save your foreign key.
Createforeign key ZEMPLOYxx-Carrier asfollows:

1) Place the cursor on field ZEMPLOY xx-Carrier. Press Foreign key or choose
Goto - Foreign key.

2) Since you are using domain S CARR_ID for field ZEMPLQOY-Carrier, you
can use value table SCARR for the foreign key definition.

3) Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

4)

Check tabl 2 ChkTabll 1d For. key table Foreign key field
SCARR MANDT ZEMPLOY xx Client
SCARR CARRID ZEMPLOY xx Carrier

Enter a short text and define the semantic attributes as follows:

Type of foreign key fields: key fields/candidates
Cardinality: 1:.CN

5)

Save your foreign key.

Createforeign key ZEMPL OY xx-Department code as follows:

1)

2)

3)

4)

5)

To get aproposal for the foreign key definition, you must change the
domain for field ZEMPLOY xx-Department code. Thisis not absolutely
necessary for later foreign key definitions, but makes the definition easier.
Enter value table ZDEPMENTXxx in the domain for this field and activate
the domain.

Place the cursor on field ZEMPLQOY xx-Department code. Press Foreign key
or choose Goto > Foreign key.

Since you are using the domain of field ZDEPMENTxx-Department code
for field ZEMPLOY-Department code, you can use vaue table
ZDEPMENTXxx for the foreign key definition.

Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

Check table ChkTablFId For. key table Foreign key field
ZDEPMENTXxX Client ZEMPLOY xx Client
ZDEPMENT xx Carrier ZEMPLOY xx Carrier
ZDEPMENTXx Department code ZEMPLOY xx Department code

Enter a short text and define the semantic attributes as follows;

Type of foreign key fields: non-key-fiel ds/candidates
Cardinality: 1:CN

6)

Save your foreign key.

Create foreign key ZEMPLOY xx-Currency asfollows:

1)
2)

3)

Place the cursor on field ZEMPLOY xx-Currency. Press Foreign key or
choose Goto - Foreign key.

Since you are using domain S_ CURR for field ZEMPL QY xx-Currency, you
can use value table SCURX for the foreign key definition.

Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

| Charl tahle | ChlTahlEle Enr Lo tahla Enr Lo flAd

4)

SCURX CURRKEY ZEMPLOY xx Currency

Enter a short text and define the semantic attributes as follows:

Type of foreign key fields: non-key-fiel ds/candidates
Cardinality: 1:.CN

5)

Save your foreign key.

Createforeign key ZDEPMENTxx-Client asfollows:
See foreign key ZEMPLOY xx-Client.

Createforeign key ZDEPMENTxx-Carrier asfollows:
See foreign key ZEMPLOY xx-Carrier.

In the maintenance screen for table ZEMPLOY xx choose Utilities 2> Table
contents = Create entries.

Enter data and check whether your foreign key functions correctly using the F4

help.

Create a new field Agency in your table ZEMPLQOY xx as follows:

1

2)

3)

4)

5)

6)

Navigate to the field maintenance screen for table ZEMPLOY xx. Insert a
new field Agency in the field list (press New rows). In the maintenance
screen for table STRAVELAG you can see that the suitable data element is
caled S AGNCYNUM. Assign this data element to your new field
ZEMPLOY xx-Agency.

Position the cursor on the field Agency and have the system make a proposal
for the foreign key definition.

Check the proposal. The check table is SBUSPART. This check table is not
correct since it contains all the business partners of carriers and not only
agencies.

The correct check tableis STRAVELAG. It contains the agencies the
carriers work with.

Y ou can improve understanding by looking at the definition of table
STRAVELAG in asecond session. Field AGENCYNUM has aforeign key
with check table SBUSPART. This means that table STRAVELAG isa
subset of table SBUSPART.

In the foreign key definition for ZEMPLOY xx-Agency, overwrite entry
SBUSBART in the input field Check table with STRAVELAG.

Press Copy. The system recognizes the change in the check table and suggests that it create
aproposal. Accept this offer and check the proposal. The following fields must be assigned:

Check table ChkTablFId For. key table For. key fld

STRAVELAG MANDT ZEMPLOY xx Client

CTNANI/TI Ar ANCTCNIAN/NILINA TZOAADE M\/ s AN ~nArmAn

7)

8)
9)

Enter ashort description. Enter cardinality 1:CN and mark that the foreign
key fields are not key fields/candidates. Choose Copy.

Activate the table.

In the maintenance screen for table ZEMPLQOY xx choose Utilities > Table
contents - Create entries.
Verify your foreign key using the F4 help.

4-4 Create your text table ZDEPMENTTxx as follows:

1
2)

3)

4)

5)

6)

2

Copy table ZDEPMENTXx to table ZDEPMENTTXxX.

Navigate to the field maintenance screen for table ZDEPMENTTxxX. Delete
al the fields that are not key fields. Create the following new fields:

Field name Data element Datatype, Length
Language SPRAS LANG
Description S TEXT CHARA40

Field ZDEPMENTxx-L anguage must be a key field.

The foreign keys for fields ZDEPMENTTxx-Client and ZDEPMENT Txx-
Carrier were aready correctly defined by copying. You still have to define
the foreign keys of fields ZDEPMENT Txx-Department code and
ZDEPMENTTxx-Language.

Place the cursor on field ZDEPMENT Txx-Department code. Press Foreign
key or choose Goto —> Foreign key.

Since you are using the domain of field ZDEPMENTxx-Department code
for field ZDEPMENT Txx-Department code, you can use value table
ZDEPMENTxx for the foreign key definition.

Have the system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

Check table ChkTablFId For. key table For. key fld
ZDEPMENTXX Client ZDEPMENTTxx Client
ZDEPMENTXX Carrier ZDEPMENTTxx Carrier
ZDEPMENTXx Department code ZDEPMENTTxx Department code

Enter a short text and define the semantic attributes as follows;

Tvpoe of foreian kev fields: kev fields of a text table

Cardinadity: 1:.CN

8) Save your foreign keys.

9) Place the cursor on field ZDEPMENTTxx-Language. Press Foreign key or
choose Goto > Foreign key.

10) Sinceyou are using domain SPRAS for field ZDEPMENT Txx-Language,

you can use value table TOO2 for the foreign key definition.

11) Havethe system make a proposal for the foreign key definition. Check the
proposal. The following fields must be assigned:

Check tal le

ChkTablFl¢

For. key table

Foreign key field

TO02

SPRAS

ZDEPMENTTXx

Language

12) Enter ashort text and define the semantic attributes as follows:

Typeof foreign key fields: key fields/candidates

Cardinadlity: 1:.CN

13) Saveyour foreign key.
14) Adctivate the table,

Dependencies of ABAP Dictionary Objects

® Activation of ABAP Dictionary objects
e Handling of dependent objects

® Where-used list and R/3 Repository Information
System as seen by the ABAP Dictionary

8 SAP AG 1999

During development, you sometimes need to change an (active) object already used by the system.
Such changes are supported in the ABAP Dictionary by separating the active and inactive versions.

The active version of an ABAP Dictionary object is the version that the components of the runtime
environment (for example ABAP processor, database interface) access. This version is not initially
changed.

Aninactive version is created when an active object is changed. The inactive version can be saved
without checking. It has no effect on the runtime system.

At the end of the development process, the inactive version can be made the active version. Thisis
doneby activation. The inactive version of the object isfirst checked for consistency. If itis

cons stent, the inactive version replaces the active one. From now on, the runtime system uses the
new active version.

The above example shows how the object status changes. An active structure contains three fields. A
field is added to this structure in the ABAP Dictionary. After this action, there is an active version
with three fields and an inactive version with four fields. During activation, the active version is
overwritten with the inactive version. The inactive version thus becomes the active version. After
this action there is only the active version with four fields.

The information about a structure (or table) is distributed in the ABAP Dictionary in domains, data
elements, and the structure definition. The runtime object (nametab) combines this information into a
structure in aform that is optimized for access from ABAP programs. The runtime object is created
when the structure is activated.

The runtime objects of the structures are buffered so that the ABAP runtime system can quickly
access this information.

The runtime object contains information about the overall structure (e.g. number of fields) and the
individua structure fields (field name, position of the field in the structure, data type, length, number
of decimal places, reference field, reference table, check table, conversion routine, etc.).

The runtime object of atable contains further information needed by the database interface for
accessing the table data (client dependence, buffering, key fields, etc.).

Runtime objects are created for all ABAP Dictionary objects that can be used astypesin ABAP
programs. These are data elements, table types and views, as well as structures and tables.

If an object that is already active is modified, this can affect other objects that use it (directly or
indirectly). These objects using another object are called dependent objects. On the one hand, it
might be necessary to adjust the runtime objects of these dependent objects to the changes. On the
other hand, a change might sometimes make a dependent object inconsi stent.

For this reason, the dependent objects are determined and activated (if necessary) when an active
object is activated. The active versions of the dependent objects are activated again. In particular,
new and inactive versions of objects using the changed object are not changed.

Example: When you change a domain, for example its data type, al the data elements, structures
and tables referring to this domain must be activated again. This activation is automatically triggered
when the domain is activated. This ensures that al affected runtime objects are adjusted to the
changed type information.

If an ABAP Dictionary object has a table as dependent object, its database object as well asits
runtime object might have to be adjusted when the dependent object is activated. The method used
here will be discussed in the next unit.

Changing an ABAP Dictionary object might also affect its dependent objects. Before making a
critical change (such as changing the data type or deleting a field) you should therefore define the set
of objects affected in order to estimate the implications of the planned action.

Thereisawhere-used list for each ABAP Dictionary object with which you can find al the objects
that refer to this object. You can call the where-used list from the maintenance transaction of the
object.

Y ou can find direct and indirect usages of an ABAP Dictionary object with the where-used list. You
also have to define which usage object types should be included in the search (e.g. all structures and
tables using a data element). Y ou can aso search for usages that are not ABAP Dictionary objects
(e.g. dl programs using atable). The search can aso be limited by development class or user
namespace.

If an object is probably used by severa objects, you should perform the search in the background.

m The Repository Information System ABAP Dictionary is part of the general Repository Information
System. It helps you search for ABAP Dictionary objects and their users.

m The where-used list for Repository objects can be caled from the information system. The
information system also enables you to search for objects by their attributes.

m |n addition to the object-specific search criteria (e.g. buffering type for tables), you can search for all
objects by development class, short description or author and date of last change.

m The object lists created by the Repository Information System are entirely integrated in the ABAP
Workbench. They permit you to navigate directly to the maintenance transactions of the objects
found.

Unit: Dependencies of ABAP Dictionary Objects

*e e

At the conclusion of these exercises you will be able to:
Enhance tables and structures with fields

Use the R/3 Repository Information System and the where- used list
for ABAP Dictionary objects

L2 s

Information about the head of the department should be stored in the employee
management system. The change log should also be made more detailed. This exercise
makes the appropriate enhancements to the tables and structures.

51

5-2

5-3

Each department of an airline has ahead of department. The assignment between the department and
the head of the department should be mapped in the flight model. Enhance table ZDEPMENTxx
with field Dephead Define a suitable foreign key for thisfield.

— ~ Usethetwo-step domain concept.

The change log for tables ZEMPLOY xx and ZDEPMENTXx is not precise enough.

In addition to the person who made the last change and the date of this change, you

also want to record the time of the last change. Have a suitable field inserted in both
tables as easily as possible. Use dataelement S TIME.

Make sure that the field is inserted in both tables. Check the activation log of the
tables and structures involved.

\ 17 Start Program BC430 CHECK in Transaction SE38. It checks
- ~ whether your solutions are correct.

~

Create alist of the following ABAP Dictionary objects:

B-2-1 All dnmainc with fived valiiec whnea namee henin with 7

5-4
55

5-3-2 All table fields that use data element S FNAME.

5-3-3 All tables of the flight model (development class BC_DATAMODEL) that
have delivery class A.

Determine all the programs that use table SFLIGHT.
What are the data e ements created by your neighbors called?

/ Unit: Dependencies of ABAP Dictionary Objects

51

5-2

In our model, people are identified by their personnel number. Therefore the new
field to be added to table ZDEPMENTXxx must contain personnel numbers (and not
names). The field should therefore refer to the domain for personnel numbers that
you created in the first exercise. Since the person to be managed in this case has a
specid role, you should create a new data element and not use the one already
created for the personnel number. Y ou can either first create the data element and
then maintain the table, or create the data element from the table maintenance
screen with forward navigation. The second way is described below:

1) Go to change mode in the maintenance screen for table ZDEPMENTXX.
Click on tab page Fields.

2) Choose New rows

3) Enter the new field directly following the existing fields by entering a
suitable field name in the first column and entering a name for the data
element to be created in column Field type.

4) Save the table definition.

5) Double click on the name of the new data element to be created. Confirm
that you want to create a data element.

6) Enter a short text for the data element. Enter the domain name that you
already created for the personnel number in field Domain.

7) Click on tab page Field label and enter the corresponding text there.

8) Activate the data element. Go back to the maintenance screen for table
ZDEPMENTXxx by choosing Back.

9) Create the foreign key for the new field in the usual manner. The check
table is table ZEMPLOY xx. If you stored this table as a value table for the
domain for the personnel number, the system will make this proposal. If not
you have to enter it yourself. Y ou can copy the system proposal in the field
alocation of the foreign key. The cardinality is 1:CN and the foreign key
fields are not foreign key fields/candidates.

10) Adctivate the table,

The fields for the change log can be found in the include structure ZCHANGEXX.
The new field should therefore be inserted in this structure. The field is
automatically inserted in tables ZEMPLOY xx and ZDEPMENTXxx using the
include mechanism. Proceed as follows:

1) In theinitia screen of the ABAP Dictionary, select Data type and enter
ZCHANGEXx in the corresponding field. Choose Change.

2) Click on tab page Components. Enter the name for the new field in the first
free row of the component list and enter S TIME in column Component

type.

5-4

5-5

4) With Utilities® Activation log you can find the activation log of the
structure. Y ou can see here that tables ZEMPLOY xx and ZDEPMENTXxx
are activated as dependent objects and were enhanced with the new field.

5) Go to display mode in the maintenance screen for table ZEMPLOY xx (or
ZDEPMENTXx). Choose Utilities® Table contents® Create entries. You
can see here that the table was really enhanced with the corresponding field.

All the exercises can be solved with the Repository Information System. Y ou can
do this from the initial screen of the ABAP Dictionary with Environment
® Repository Information System. Expand the nodes for the ABAP Dictionary.

1) Expand the node Basic objects Double-click on Domains. In the selection
screen, enter Z* in the first field. Choose All selections In the enhanced
selection screen, mark Only domains with fixed values. Y ou can create the
desired list with Execute.

2) Choose Back twice to return to the initial screen of the Repository
Information System. Expand the Fields node. Double-click on Table fields.
Choose All selectionsand enter S FNAME in field Data element. Y ou can
create the desired list with Execute.

3) Choose Back twice to return to the initial screen of the Repository
Information System. Node Basic objectsis still expanded. Double-click on
Database tables. Enter development class BC_DATAMODEL and (after
choosing All selections) delivery class A in the selection screen. You can
create the desired list with Execute.

Go to the initia screen of the ABAP Dictionary. Choose Database table and enter
SFLIGHT in the corresponding field. Choose Where-used list. The usage in
programs is already marked (alone) in the next dialog box. Y ou can create the
desired list with Execute.

Y ou can create the desired list again in the Repository Information System ABAP
Dictionary. Expand the node Basic objectsand double-click on Data elements You
can define your neighbor's data el ements with either a pattern search for the name
(if your neighbors adhered to the given naming convention) or with Last changed
by (after choosing All selections). If you have two groups of neighbors, you have to
use Multiple selection. Y ou can restrict the selection with the date of the last change
(the last change should be no earlier than the beginning of the course) at least in the
first case (naming convention).

Changes to Database Tables

Changes to database tables

Effect of changes to the table structure
Table conversion

Possible problems during conversions

Append structures

8 SAP AG 1999

m Correct access by ABAP programs to a database table is only possible if the runtime object of the
table is consistent with the structure of the table in the database. Each time the table is changed in the
ABAP Dictionary, you must check if the database structure of the table must be adjusted to the

changed ABAP Dictionary definition of the table when it is activated (when the runtime object is
rewritten).

m The database structure does not have to be atered for certain changesto the ABAP Dictionary. For
example, you do not have to change the database structure when the order of the fieldsin the ABAP
Dictionary is changed (other than for key fields). In this case the changed structure is smply
activated in the ABAP Dictionary and the database structure remains unchanged.

m The database table can be adjusted to the changed definition in the ABAP Dictionary in three
different ways:

* By deleting the database table and creating it again. The table on the database is deleted, the
inactive table is activated in the ABAP Dictionary, and the table is created again on the database.
Data existing in the table is lost.

* By changing the database catalog (ALTER TABLE). The definition of the table on the database is
smply changed. Existing data is retained. However, indexes on the table might have to be built
again.

* By converting the table. Thisis the most time-consuming way to adjust a structure.

m If the table does not contain any data, it is deleted in the database and created again with its new

structure. If data exists in the table, there is an attempt to adjust the structurewith ALTER TABLE.
If the database system used is not able to do o, the structure is adjusted by converting the table.

The following example shows the steps necessary during conversion.

Starting situation: Table TAB was changed in the ABAP Dictionary. The length of field 3 was
reduced from 60 to 30 places.

The ABAP Dictionary therefore has an active (field 3 has alength of 60 places) and an inactive
(field 3 still has 30 places) version of the table.

The active version of the table was created in the database, which means that field 3 currently has 60
places in the database. A secondary index with the ID A11, which was also created in the database, is
defined for the table in the ABAP Dictionary.

The table already contains data.

m Step 1. Thetableislocked against further structure changes. If the conversion terminates due to an
error, the table remains locked. This lock mechanism prevents further structure changes from being
made before the conversion has been completed correctly. Data could be lost in such a case.

m Step 2: Thetable in the database is renamed. All the indexes on the table are deleted. The name of
the new (temporary) table is defined by the prefix QCM and the table name. The name of the
temporary table for table TAB is therefore QCMTAB.

Step 3: The inactive version of the table is activated in the ABAP Dictionary. Thetableis created on
the database with its new structure and with the primary index. The structure of the database table is
the same as the structure in the ABAP Dictinary after this step. The database table, however, does
not contain any data.

The system aso tries to set a database lock for the table being converted. If the lock is s,
application programs cannot write to the table during the conversion.

The conversion is continued, however, even if the database lock cannot be set. In such acase
application programs can write to the table. Since in such a case not all of the data might have been
loaded back into the table, the table data might be inconsi stent.

Y ou should therefore always make sure that no applications access the table being converted
during the conversion process.

Step 4: The datais loaded back from the temporary table (QCM table) to the new table (with
MOV E-CORRESPONDING). The data exists in the database table and in the temporary table after
this step. When you reduce the size of fields, for example, the extra places are truncated when you
reload the data

Since the data exists in both the original table and temporary table during the conversion, the storage
requirements increase during the process. Y ou should therefore verify that sufficient spaceis
available in the corresponding tablespace before converting large tables.

There is a database commit after 16 MB when you copy the data from the QCM table to the origina
table. A conversion process therefore needs 16 MB resources in the rollback segment. The existing
database lock is released with the Commit and then requested again before the next data areato be
converted is edited.

When you reduce the size of keys, only one record can be reloaded if there are several records whose
key cannot be distinguished. It is not possible to say which record this will be. In such a case you
should clean up the data of the table before converting.

Step 5: The secondary indexes defined in the ABAP Dictionary for the table are created again.
Step 6: The temporary table (QCM table) is deleted.

Step 7: The lock set at the beginning of the conversion is deleted.

If the conversion terminates, the table remains locked and arestart log is written.

Caution: The data of atableis not consistent during conversion. Programs therefore should not
access the table during conversion. Otherwise a program could for example use incorrect data when
reading the table since not all the records were copied back from the temporary table. Conversions
therefore should not run during production! You must at least deactivate al the applications that
use tables to be converted.

You must clean up terminated conver sions. Programs that access the table might otherwise run
incorrectly. In this case you must find out why the conversion terminated (for example overflow of
the corresponding tablespace) and correct it. Then continue the terminated conversion.

m Since the data exists in both the original table and temporary table during conversion, the storage
requirements increase during conversion. If the tablespace overflows when you reload the data from
the temporary table, the conversion will terminate. In this case you must extend the tablespace and
start the conversion in the database utility again.

m |f you shorten the key of atable (for example when you remove or shorten the field length of key
fields), you cannot distinguish between the new keys of existing records of the table. When you
reload the data from the temporary table, only one of these records can be loaded back into the table.
It is not possible to say which record thiswill be. If you want to copy certain records, you have to
clean up the table befor e the conversion.

m During a conversion, the data is copied back to the database table from the temporary table with the
ABAP statement MOV E-CORRESPONDING. Therefore only those type changes that can be
executed with MOV E-CORRESPONDING are alowed. All other type changes cause the conversion
to be terminated when the datais loaded back into the origina table. In this case you have to recreate
the old state prior to conversion. Using database tools, you have to delete the table, rename the QCM
table to its old name, reconstruct the runtime object (in the database utility), set the table structure in
the Dictionary back to its old state and then activate the table.

If a conversion terminates, the lock entry for the table set in the first step is retained. The table can
no longer be edited with the maintenance tools of the ABAP Dictionary (Transaction SE11).

A terminated conversion can be analyzed with the database utility (Transaction SE14) and then
resumed. The database utility provides an analysis tool with which you can find the cause of the
error and the current state of all the tables involved in the conversion.

Y ou can usudly find the precise reason for termination in the object log. If the object log does not
provide any information about the cause of the error, you have to analyze the syslog or the short

dumps.
If there is aterminated conversion, two options are displayed as pushbuttons in the database utility:

* After correcting the error, you can resume the conversion where it terminated with the Continue
adjustment option.

* Thereisaso the Unlock table option. This option only deletes the existing lock entry for the table
. You should never choose Unlock table for aterminated conversion if the data only existsin the
temporary table, i.e. if the conversion terminated in steps 3 or 4.

Append structures permit you to append customer fields to a SAP standard table without having to
modify the table definition.

An append structure is a structure which is assigned to exactly one table. There can be severa
append structures for atable.

When atable is activated, al the active append structures for the table are found and their fields are
appended to the table. If an append structure is created or changed, the table to which it isassigned is
also activated and the changes also take effect there when it is activated.

Like al structures, an append structure defines a type that can be used in ABAP programs.

m Customers create append structures in their namespace. The append structures are thus protected
against overwriting during an upgrade.

m The new versions of the standard tables are imported during the upgrade. When the standard tables
are activated, the fields contained in the active append structures are appended to the new standard
tables. When append structures are added to atable, you therefore do not have to manualy adjust the
customer modifications to the new SAP version of the table (Transaction SPDD) during the upgrade.

m The order of the fields in the ABAP Dictionary can differ from the order of the fields in the database.
Y ou therefore do not have to convert the table when you add an append structure or insert fields in
an existing append structure. The new fields are smply appended to the table in the database. Y ou
can aways adjust the structure by adjusting the database catalog (ALTER TABLE).

m The new version of the SAP standard table is activated and the new field is appended to the database
table.

m Please note the following points about append structures:
* No append structures may be created for pooled and cluster tables.

* If along field (datatype LCHR or LRAW) occursin atable, it cannot be extended with append
structures. Thisis because such long fields must ways be in the last position of the fidld ligt, i.e.
they must be the last field of the table.

* If you as a customer add an append structure to an SAP table, the fields in this append structure
should be in the customer namespacefor fields, that is they should begin with YY or ZZ. This
prevents name collisions with new fields inserted in the standard table by SAP.

* If you as a partner have your own reserved namespace for your developments, the fields you select
in gppend structures should aways lie in this namespace.

Unit: Changesto Database Tables

At the conclusion of these exercises you will be able to:

*e e

Make changes to existing objects

Convert tables

Enhance standard tables with append structures without modifying
them

The original design of employee management is no longer appropriate
after some organizational changes at the airlines. It is therefore necessary

} > / to make small changes to objects already created in previous exercises.

6-1

6-2

These changes will be made in this exercise.

The design of table ZFL CREWxx is no longer appropriate. The field for the role of
the employee during the flight is too long. Correct this error by reducing the field
length to 15 places.

Create a new data element ZROL Exx and replace the existing data element with the
new one. When you define data element ZROL Exx, do not use a domain; instead
enter the data type and length directly when you define the data element. Activate
the table.

The employees with management or maintenance functions have their workplace at
an airport. They can be reached at this airport using a telephone number. Also
record where the administrative employees work (office). Include this information
in table ZEMPLOY xx.

Create an append structure for table ZEMPLOY xx containing the following
information:

Field Data element
Airport S AIRPORT
Office S BUREAUNO
Telephone S TELNO

.\ 1/ _ Notethat thefield namesin an append structure must liein the customer
- ~ namespacefor fields. The field names should therefore begin with ZZ or YY.

~

6-3 Create asuitable foreign key for field Airport of the append structure.

N
~

—

\

\

N4

4

e
—
~

\
/1N

Thetable of al airportsis called SAIRPORT.

For a complete definition of the foreign key you must also define a field of the
appending table (ZEMPLOY xx).

Start Program BC430_CHECK with Transaction SE38 after this
exercise. The program checks whether your solutions are correct.

6-1

6-2

/ Unit: Changesto Database Tables

Go to change mode in the maintenance screen for table ZFLCREWxx. Take the

following steps.

1) Overwrite data element SEMP_ROLE in column Field type with the name
of your data element ZROL Exx. Save the change.

2) Double-click on the name ZROLExx. In the next dialog box, confirm that
you want to create the data element.

3) The maintenance screen for data el ements appears. Enter a short text.

4) Click on tab page Definition. Mark Built-in type. You can now enter values
for fields Datatype, Length and Decplaces. Enter CHAR as data type and 15
as length.

5) On tab page Field label, maintain the text for the data element.

6) Activate the data el ement.

7) Y ou go to the activation log. Y ou are reminded that shortening the field
requires a conversion of table ZFL CREWXxx.

8) Go back to the table maintenance screen.

9) Navigate to the database utility with Utilities® Database utility.

10) Choose Activate and adjust database. Confirm the next security query. The

system converts the table.

To define the append structure for table ZEMPLOY xx:

1)
2)
3)

4)
5)
6)

2

Go to display mode in the maintenance screen for table ZEMPLOY xx.
Choose Goto ? Append structure.

In the next dialog box, enter the required name for the append structure. It
must satisfy the usual naming conventions. Choose Continue.

The maintenance screen for the append structure is displayed. Maintenance
of the append structure is analogous to that for a structure.

Enter a short text and insert fields Airport, Office and Telephone with the
specified data elements.

Note that all the fields of an append structure must lie in the customer
namespace. The field names therefore must begin with ZZ or Y.

Activate the append structure. Display the activation log with Goto ?
Activation log.

Table ZEMPLOY xx is automatically adjusted when the append structure is
activated. The new fields are appended to the existing fields in the database.

The foreign key must be defined in the append structure maintenance routine. Y ou
can go there either by entering its name as data type in the initial screen of the

ABAP Dictionary and choosing Change or with Goto ® Append structure inthe
maintenance screen for table ZEMPLOY xx. Take the following steps:

1

2)

3)

4)

5)

6)

Place the cursor on field Airport. Choose the key icon. Copy the system
proposal.

In adiaog box you are informed that the foreign key is not completely
specified. Choose Continue.

The foreign key cannot be fully specified in the append structure since the
key of check table SAIRPORT contains the client field and the field for the
airport code, but the append structure does not contain the client field.

The maintenance screen for the foreign key appears. The check table and the
field assignment are already filled due to the system proposal. Enter a
suitable Short description.

Y ou now have to complete the field assignment. Remove the marking for
generic mapping. Then enter ZEMPLOY xx in column For. key table and
the name of the client field of this table in column For. key field.

Choose Non-key-fields/candidates as the type of foreign key fields (since
the Airport field is not a key field of table ZEMPLQOY xx) and as cardinality
C (since not every employee is assigned to an airport) to CN (since several
employees can be assigned to the same airport).

Choose Copy and activate the append structure.

z-l, :l '-'

Why do you need views?

Creating a view by join, projection and selection
Join conditions and foreign keys

Selection of data with views

Database views

Maintenance views

Inner and outer joins

8 SAP AG 1999

m Datafor an application object is often distributed on several database tables. Database systems
therefore provide you with away of defining application-specific views on data in several tables.
These are called views.

m Data from several tables can be combined in a meaningful way using aview (join). You can aso
hide information that is of no interest to you (projection) or only display those data records that
satisfy certain conditions (selection).

m Thedata of aview can be displayed exactly like the data of atable in the extended table
mai ntenance.

m The structure of aview and selection of the data using this view will be shown with an example.
m Given two tables TABA and TABB. Table TABA contains 2 entries and table TABB 4 entries.

m The tables are first appended to one another. This results in the cross-product of the two tables, in
which each record of TABA is combined with each record of TABB.

m Usually the entire cross-product is not a meaningful selection. Y ou should therefore limit the cross-
product with ajoin condition. The join condition describes how the records of the two tables are
related.

m In our example, Field 3 of TABB identifies Field 1 of TABA. Thejoin condition is then:
TABA - Fild1=TABB - Fiedld 3

m With this join condition, al the records whose entry in Field 1 is not identical to the entry in Field 3
are removed from the cross product. The column for Field 3 in the view is therefore unnecessary.

m Often some of the fields of the tables involved in aview are of no interest. You can explicitly define
the st of fields to be included in the view (projection).

m |nour example, Field 4 is of no interest and can therefore be hidden.

m The set of recordsthat can be displayed with the view can be further restricted with a selection
condition.

m |n our example, only those records with value ‘A’ in Field 4 should be displayed with the view.

m A sdlection condition therefore can also be formulated with afield that is not contained in the view.

m Example: Travel agencies sometimes have to check which customer is booked on which flights. The
corresponding data is distributed on several tables:

SCUSTOM: Customer data, such as the customer number, name and address

SBOOK: Booking data, such asthe carrier, flight number and passenger (customer number)

SPFLI: Flight data, such asthe city of departure and city of arriva
m You haveto create aview on tables SCUSTOM, SBOOK and SPFLI to obtain the booking data.
m In this case the join conditions are:

SBOOK-MANDT = SCUSTOM-MANDT

SBOOK-CUSTOMID = SCUSTOM-ID

SPFLI-MANDT = SBOOK-MANDT

SPFLI-CARRID = SBOOK-CARRID

SPFLI-CONNID = SBOOK-CONNID

Y ou can get the bookings for a particular customer by selecting the corresponding records for keys
MANDT and CUSTOMID in table SBOOK.

Y ou can get the flight data from table SPFLI for each booking in table SBOOK by selecting the
corresponding record for the keys MANDT, CARRID and CONNID from table SPFLI.

Y ou can display only the customer bookings which were not canceled using the view with the
following selection condition:

SBOOK-CANCELED <>'X'

The join conditions can also be derived from the existing foreign key relationships. Copying thejoin
conditions from the existing foreign keys is supported in the maintenance transaction.

The field names of the underlying table fields are normally used as field namesin the view.
However, you can also choose a different field name. This is necessary for instance if two fields with
the same name are to be copied to the view from different tables. In this case you must choose a
different name for one of the two fieldsin the view.

m You would get the same results using nested SELECT statements:
SELECT * FROM SCUSTOM WHERE ID = CUSTOMID.
SELECT * FROM SBOOK WHERE CUSTOMID = SCUSTOM-ID.
SELECT * FROM SPFLI WHERE CARRID = SBOOK-CARRID AND
CONNID = SBOOK-CONNID

WRITE: / *Customer’, SCUSTOM-NAME, ‘booked on’, SPFLI-CARRID, SPFLI-CONNID,
‘from’, SPFLI-CITYFROM, ‘to’, SPFLI-CITYTO, ‘on’, SBOOK-FLDATE.

ENDSELECT.
ENDSELECT.

ENDSELECT.

m Selection with a database view, however, is usualy more efficient than selection with a nested
SELECT statement.

m Asof Release 4.0 you can formulate the join condition directly in OPEN SQL.

m A view hastype character and can be accessed in programs like al other types and can be used to
define data objects.

m A database view is defined in the ABAP Dictionary and automatically created on the database during
activation. Accesses to a database view are passed directly to the database from the database
interface. The database software performs the data selection.

m If the definition of a database view is changed in the ABAP Dictionary, the view created on the
database must be adjusted to this change. Since aview does not contain any data, this adjustment is
made by deleting the old view definition and creating the view again in the ABAP Dictionary with
its new definition.

m The maintenance status defines whether you can only read with the view or whether you can aso
write with it. If a database view was defined with more than one table, this view must be read only.

m The dataread with a database view can be buffered. View datais buffered analogoudly to tables. The
technical settings of a database view control whether the view data may be buffered and how this
should be done. The same settings (buffering types) can be used here as for table buffering. The
buffered view data is invaidated when the data in one of the base tables of the view changes.

Y ou can include entire tables in database views. In this case dl the fields of the included table
become fields of the view (whereby you can explicitly exclude certain fields). If new fields are
included in the table or existing fields are deleted, the view is automatically adjusted to this change.
A new or deleted field is therefore automaticaly included in the view or deleted from it.

If an append structure is added to a table included in a view, the fields added with the append
structure are automatically included in the view.

To include atable in aview, you must enter the character *' in field View field in the view
maintenance, the name of the table to be included in the field Table and the character *' again in the
field Field name.

If you do not want to include afield of the included table in the view, proceed as follows:
* Entera’-'inthefidd View field.

* Enter the name of the included table in the field Table.

* Enter the name of the field in the field Field name.

Data that is distributed on more than one table often forms a logical unit, called an application object.
Y ou should be able to display, change and create the data of such an application object together.
Users usudly are not interested in the technical implementation of the application object, such asthe
distribution of the data on several tables.

Y ou can maintain complex application objects in a simple way using a maintenance view. The data
is automatically distributed on the underlying database tables.

All the tables used in a maintenance view must be linked with aforeign key. This means that the join
conditions are always derived from the foreign key in the maintenance view. Y ou cannot enter the
join conditions directly asin a database view.

A maintenance interface with which the data of the view can be displayed, changed and created must
be generated from the definition of a maintenance view in the ABAP Dictionary.

When the maintenance interface is created, function modules that distribute the data maintained with
the view on the underlying tables are automatically generated.

The maintenance interface is generated with the Transaction Generate Table View (Transaction
SE54) or from the view maintenance screen with Environment -> Tab.maint.gener ator.

The set of datathat can be selected with aview greatly depends on whether the view implements an
inner join or an outer join.

With an inner join, you only get those records which have an entry in al the tables included in the
view. With an outer join, on the other hand, those records that do not have a corresponding entry in
some of the tables included in the view are aso selected.

The hit list found with an inner join can therefore be a subset of the hit list found with an outer join.

Database views implement an inner join. You only get those records which have an entry in al the
tablesincluded in the view.

Maintenance views implement an outer join.

Unit: Views

At the conclusion of these exercises you will be able to:

Create views

*e e

Define join conditions

Define salection conditions
Buffer database views

The data existing for an employee is distributed on several tables (corresponding to the
relational data model). For some exercises, however, acomplete view on thisdatais
\ . needed. In this exercise the corresponding views are implemented by creating views.
o,

7-1 Theflight personnel (al pilots and stewards) must be selected when aflight crew is
st up. Not all the datain table ZEMPLOY xx may be displayed when this data is
accessed. For example, the employee setting up the teams may not see the salary of
the crew members. The telephone number of the employee's department should be
output in case of questions.

7-1-1 Create a suitable database view ZEMPFLY xx that satisfies these
requirements. The following information about an employee should be

displayed:

Client
Carrier
Personnel number
First name
Last name
Telephone number of the department
Department code

7-1-2 Make sure that only flight personnel can be selected with the view.

7-1-3 You probably will have to access the data using the view frequently. The
selected data should therefore be buffered in order to increase performance.
Choose full buffering as buffering type.

7-2 To set up the flight crews, you have to select the existing employee assignments for
flights. Additional information about the flight, such as the city of departure and
city of arrival, is of particular interest.

7-2-1 Create a database view ZCREWSxx to display which employees are
assianed to what fliahts.

The following data should be displayed:
Client
Carrier
Flight connection
Date of flight
Personnel number
First and last names of the employee
Role of the employee on the flight (pilot, copilot, steward)
Type of airplane
City of departure of the flight
City of arrival of the flight

Use the join conditions from the foreign key betweentables ZEMPLOY xx
and ZFLCREWHxx. Create these foreign keys before defining the view.

\ 1/,

AN
-~ —
—

Table SFLIGHT contains the information about the type of airplane. The
cities of departure and arrival can befound in table SPFLI.

~

7-2-2 Enter yourself as an employee of carrier AA (American Airlines) and assign
yourself to aflight as pilot. Then display your cities of departure and arrival
with the view.

7-3 Supplementary Exercise: Write an ABAP program which outputs the crew
assigned to a flight. Select the data with view ZCREWSxx. The following data
should be output:

Carrier

Flight

Date of flight
City of departure
City of arrival
Pilot, copilot
Steward

If you aready attended an ABAP programming course, you can now edit the
output. A clear form for the output would be for example:

<Carrier> <Flight> on <Date_of_flight> from <City_of departure> to
<City_of_arrival>:

Pilot: xx
Copilot: xx

M~V L

XX is here the first name, last name and personnel number of the corresponding
person.

Supplementary Exercise: Create a maintenance view with the name
ZPARTNERXxx, with which you can easily maintain new business partners. The
business partners are entered in table SBUSPART. A business partner can be either
aflight customer or atravel agency. If it is a travel agency, there will be a
corresponding entry in table STRAVELAG.

The view should also permit you to maintain tables SBUSPART and STRAVELAG
at onetime. Include al the necessary fields of the tables in the view.

Generate the maintenance interface. Use the following parameters:
Function group: ZZBC430xx
Authorization group: SUNI
Maintenance type: one-step
Overview screen: 100

Maintain the data of a new travel agency using the enhanced table maintenance
(System® Services ® Table maintenance ® Ext. table maint.).

7-1

/ Unit: Views

The view should permit aview on data in tables ZEMPLOY xx and ZDEPMENTXxX.
To create the view:

1
2)

3)

In theinitial screen of the ABAP Dictionary, mark object type View, enter
the object name ZEMPFLY xx and choose Create.

A dialog box appears in which you should select the view type. Mark
Database view and press Choose.

Enter a short text in the next screen.

The view should display data about employees (from table ZEMPLOY xx) and
departments (from table ZDEPMENTXX).

4)
5)

6)

8)

9)

10)

First enter table ZEMPLOY xx in field Tables

Choose Relationships. All the foreign key relationships of table
ZEMPLOY xx to other tables are listed. Mark the relationship to table
ZDEPMENTxx and choose Copy.

The join conditions are copied from the foreign key. In a different mode,
display the foreign key between the two tables and notice the relationship
between the foreign key and the join conditions.

You now have to copy fields from the tables to the view. Click on tab page
View fields.

Choose Table fields. In the next dialog box, mark table ZEMPLOY xx and
choose Choose.

All the fields of table ZEMPLOY xx are listed. Mark fields Client, Carrier,
Personnel number, First name, and Last name. Choose Copy. The fields are
now inserted in the view.

Again choose Table fields In the dialog box, choose table ZDEPMENTxx
and insert fields Department telephone and Department code in the view as
described above.

Only flight personnel should be selected with the view. Y ou can define this
restriction with a selection condition.

11)
12)

13)

Click on tab page Selection conditions.

The restriction whether an employee belongs to the flight personnel is
contained in field ZEMPLOY xx-Area. Enter it incolumns Table and Field
name.

Flight personndl is identified by the value 'F in field Area. Enter EQ in the
column Operator and 'F (including the apostrophes) in column Compar.
value.

Y ou now have to buffer the view.

7-2

14)

15)
16)

17)

Choose Goto ? Technical settings. The maintenance screen for the technical
settings of the view appears. With the exception of some attributes that are
meaningless for views and which are therefore not displayed, the screen is
analogous to the corresponding maintenance screen for tables.

Mark Buffering switched on and Fully buffered.
Save the technical settings and return to the view maintenance screen.
Activate the view.

The view should permit a common view on data in tables ZFL CREWxX,
ZEMPLOY xx, SFLIGHT and SPFLI. To create the view:

1

2)
3)

4)

First create the foreign key. To do this, go to the maintenance screen for
table ZFLCREWxx. Define aforeign key with check table ZEMPLOY xx
for field EMP_NUM. Use the field assignment proposed by the system. The
cardinality of the relationship is 1:CN and the foreign key fields are key
fields.

Select object type View in the initial screen of the ABAP Dictionary, enter
the object name ZCREWSxx and choose Create.

A dialog box appears in which you should select the view type. Mark
Database view and press Choose.

Enter a short text in the next screen.

The view should display data about the assignment of employees to flights (in table
ZFLCREWXxX), about employee data (in table ZEMPLOY xx) and about flight data

(in table SFLIGHT). The information about the cities of departure and arrival are in
the flight schedule (table SPFLI) and not directly in table SFLIGHT.

5)
6)

8)

9)

10)

First enter table ZFLCREWXX in field Tables.

Now include table ZEMPLOY xx in the view and link it with table
ZFLCREWXX. Y ou can create the join conditions from the foreign key
between the tables.

Position the cursor on ZFLCREWxx and choose Relationships.

A dialog box appears listing all existing foreign key relationships of table
ZFLCREWHXxX to other tables. Mark the relationship to table ZEMPLOY xx
and choose Copy.

Table ZEMPLOY xx is entered in field Tables and the join conditions are
created from the foreign key between the two tables.

Create the following join conditions:

ZEMPLOYxx-Client = ZFLCREWxx-CLIENT
ZEMPLOYxx-Carrier= ZFLCREWxx-CARRID

ZEMPLOY xx-Personnel number = ZFLCREWxx-EMP_NUM

Include table SFLIGHT in the view in the same way. Create the join
conditions from the foreign key between tables ZFL CREWxx and
SFLIGHT. The join condition should have the following form:

SFLIGHT-MANDT = ZFLCREWxx-CLIENT

SFLIGHT-CARRID = ZFLCREWxx-CARRID
SFI IGHT-CONNID = 7FI CRFWxx-C.ONNID

SFLIGHT-FLDATE = ZFLCREWxx-FLDATE

11) Include table SPFLI in the view (as described above). The join conditions
can be created from the foreign key between tables SFLIGHT and SPFLI.
The join condition should have the following form:

SPFLI-MANDT = SFLIGHT-MANDT
SPFLI-CARRID = SFLIGHT-CARRID
SPFLI-CONNID = SFLIGHT-CONNID
12) Now include the following fields in the view (see the solution to Exercise
1):

From table ZFLCREWxx fields MANDT, CARRID, CONNID, FLDATE,
EMP_NUM and ROLE.

From table ZEMPLQOY xx fields Last name and First name.
From table SFLIGHT field PLANETY PE.
From table SPFLI fields CITYFROM and CITYTO.

13) Activate the view.

To enter youself as an employee, call Utilities® Table contents® Create entries
from the maintenance screen of table ZEMPLOY xx. You can maintain the data
record here. Enter yourself in table ZFLCREWxx for aflight in the same way. You
can then search for the information from the maintenance screen for view
ZFLCREWxx with Utilities® Content.

Look at program SVIEW_CREW as a sample solution.
Proceed as follows:

1) In theinitial screen of the ABAP Dictionary, mark object type View, enter
the object name ZPARTNERXxx and choose Create.

2) A dialog box appears in which you should select the view type. Mark
Maintenance view and choose Choose.

3) Enter a short text in the next screen.

Y ou want to maintain the data in tables SBUSPART and STRAVELAG together in
the maintenance view. If you wanted to enter a new partner directly, you would first
have to enter it in table SBUSPART. Only then could you enter the corresponding
datain table STRAVELAG (because of the existing foreign key check between
SBUSPART and STRAVELAG). You therefore first have to include table
SBUSPART in the definition of the maintenance view.

4) Enter table SBUSPART in the field Tables. The key fields of thistable are
automatically included in the view asfields.

5) Place the cursor in field Tables on entry SBUSPART. Choose
Relationships.

6) A dialog box appears listing al existing foreign key relationships of table
SBUSPART to other tables. Mark the foreign key relationship to table
STRAVELAG and choose Copy.

7) The join conditions are created from the foreign key. The join conditions
have the following form:

QRIIRDART_MANNDANT — QTBPAV/EI ACZ_NM ANDT

8)

9)

10)

SBUSPART-BUSPARTNUM = STRAVELAG-AGENCYNUM

Y ou now have to include the fields of both tables in the view. Go to tab
page View fields. Position the cursor on table SBUSPART and choose Table
fields. A list of al the fields of the table appears. Choose Select all and then
press Copy.

Include all the fields of table STRAVELAG with the exception of fields
MANDT and AGENCYNUM in the view in the same way. These fields are
linked to the corresponding fields of table SBUSPART with the join
conditions and therefore should not appear in the view.

Activate the view.

Now generate a maintenance interface for the view.

11)
12)

13)

14)

15)

Choose Utilities® Table maintenance generator.

Enter authorization group SUNI and function group ZZBC430xx in the next
screen.

Mark maintenance type one-step. Select number 0100 as maintenance
screen number of the overview screen.

Choose Create. The development class of the function group and the
generated maintenance objects are prompted. In both cases choose Local
object.

Call the extended table maintenance with the given menu path and enter the
data of a new travel agency. With the Data Browser (in the menu
environment of the initial screen of the ABAP Dictionary), verify that the
data of the new travel agency was written in tables SBUSPART and
STRAVELAG.

Search Helps F'
DA

Input help in the R/3 System

ABAP Dictionary object search help
m Selection method of a search help
m Dialog behavior of a search help

m Interface of a search help

Attaching search helps to fields
Collective search helps and elementary search helps

Append search helps

8 SAP AG 1999

The input help (F4 help) is a standard function of the R/3 System. It permits the user to display alist
of possible values for a screen field. A value can be directly copied to an input field by list selection.

The fields having an input hejp are shown in the R/3 System by the input help key to the right of the
field. This key appears as soon as the cursor is positioned on the corresponding screen field. The help
can be started either by clicking on this screen element or with function key F4.

If the number of possible entries for afield is very large, you can limit the set of displayed values by
entering further restrictions.

The display of the possible entries is enhanced with further useful information about the displayed
values. Thisfeatureis especidly useful if the field requires the entry of aformal key.

Since the input help is a standard function, it should look and behave the same throughout the entire
R/3 System. The development environment therefore provides tools for assigning a standardized
input help to a screen field.

The precise description of the input help for afield is usually defined by its semantics. For this
reason, the input help for afield is normaly defined in the ABAP Dictionary.

A number of requirements must be met for the input help of a screen field (sear ch field):

Information (about the context) known to the system must be taken into consideration in the input
help. This includes entries the user already made in the current input template as well asinformation
obtained in previous dialog steps. Normally the input help uses the context to limit the set of possible
values.

The input help must determine the values that can be offered to the user for selection. The datato be
displayed as supplementary information in the list of possible values must also be determined. When
the possible values are determined, the restrictions resulting from the context and from further search
conditions specified by the user must also be taken into consideration.

The input help must hold a dialog with the user. This dialog always contains the presentation of the
possible values (with supplementary information) in list form and the possibility to select avaue
from thislist. A search template in which the user can define conditions for the values to be
displayed is also sometimes required .

If the user selects avalue, the input help must return it to the search field. The input template often
contains more fields (often only display fields) containing further explanatory information about the
search field. The input help should aso update the contents of these fields in this case.

The ABAP Dictionary object sear ch help is used to describe an input help. The definition of a
search help contains the information the system needs to satisfy the described requirements.

The interface of the search help controls the data transfer from the input template to the F4 help and
back. The interface defines the context data to be used and the data to be returned to the input
template when avalue is selected.

The internal behavior of the search help describes the F4 process itself. This includes the selection

method with which the values to be displayed should be determined as well as the dialog behavior
describing the interaction with the user.

As with afunction module, search helps distinguish between the interface with which it exchanges
data with other software components and the internal behavior (for function modules, the latter is
defined by the source text).

It only makes sense to define a search help if there is a mechanism available with which the search

help can be accessed from a screen. This mechanism is called the sear ch help attachment and will
be described |ater.

Like the editor for function modules, the editor for search helps aso enables you to test an object.
Y ou can thus test the behavior of a search help without assigning it to a screen field.

The possible values displayed for afield by the input help are determined at runtime by a selection
from the database. When a search help is defined, you must define the database object from which
the data should be selected by specifying a table or aview as the selection method.

It makes sense to use aview as selection method if the data about the possible values that is relevant
for the input help is distributed on severa tables. If thisdataisal in one table or in the
corresponding text table, you can use the table as a selection method. The system automatically
ensures that the text of the text table is used in the user's logon language.

If thereis not yet a view that combines the data that is relevant for an input help, you must first
create it in the ABAP Dictionary.

Maintenance views may not be used as the selection method for search helps. Normally a database
view is used. However, you should note that database views (in the R/3 System) are always created
with an inner join. As aresult, only those values having an entry in each of the tablesinvolved are
offered in the input help. Sometimes the values should be determined with an outer join. In this case
you should choose a help view as the selection method. Y ou can find more information about help
views in the appendix.

If the selection method of a search help is client-dependent, the possible values are only selected in
the user's logon client.

The possible values are presented in the dialog box for displaying the hit list and the user can select
values from here. If the possible values are forma keys, further information should also be

displayed.

If the hit list is very large, the user should be able to define further restrictions for the attributes of
the entry. Restricting the set of datain this way both increases the clarity of the list and reduces the
system load. Additional conditions can be entered in a further dialog window, the dialog box for
restricting values.

The dialog type of a search help defines whether the dialog box for restricting values should be
displayed before determining the hit list.

Y ou must define the characteristics to appear on either (or both) of the dialog boxes as parameters
in the search help. You can use dl the fields of the selection method (with the exception of the client
field) and the non-key fields of your text table as parameters.

Y ou define which parameter should appear in which dialog box (in what order) by assigning the
parameters positions in the two dialog boxes. Y ou can thus use different parameters (or different
orders) in the two dialog boxes.

Types must be defined for search help parameters with data elements. These define the display in the
two dialog boxes. If nothing else is defined, a parameter uses the data element of the corresponding
field of the selection method.

When you define a parameter of a search help, you must also define whether it should be used to
copy data to the input help (IMPORT parameter) or whether to return data from the input help
(EXPORT parameter).

The IMPORT and EXPORT parameters of a search help together make up your interface. (Thisis
aso analogous to function modules.)

Y ou can aso define interface parameters that do not appear in either the dialog box for displaying
the hit list or the dialog box for restricting values. Thisis useful for example when screen fields that
do not appear on ether of the two dialog boxes are to be updated when you select avaue.

The location from which the IMPORT parameters of a search help get their values and the screen

fields in which the contents of the EXPORT parameters of the search help are returned are defined in
the search help attachment.

The search field is a specia case. Its contents are only used in the input help if it isa search string
(that is, if it containsa ™" or a’+") and the parameter linked with the search field is an IMPORT
parameter.

Parameters that only contain additiona information about the search field should not be defined as
IMPORT parameters since the user must otherwise empty the corresponding screen fields each time
before he can define a new vaue with the input help.

A search help describes the flow of an input help. The search help can only take effect using a
mechanism that assigns the search help to this field. This mechanism is called the sear ch help
attachment to thefield.

Attaching a search help to afield has an effect on the field's behavior. It is therefore considered to be
part of the field definition.

The semantic and technical attributes of a screen field (type, length, F1 help, ...) are not normally
defined directly when the input template is defined. On the contrary, only areference to an ABAP
Dictionary field (usually with the same name) is specified in the Screen Painter. The screen field
takes on the attributes of this field from the ABAP Dictionary.

The same principle is aso used to define the input help of a screen field. The search help is thus
attached to the ABAP Dictionary search field and not to the screen field.

In the search help attachment, the interface parameters of the search help and the screen fields
providing data for the input help or getting data from the input help are assigned to one another. The
search field must be assigned to an EXPORT parameter of the search help at thistime. This
parameter should also be an IMPORT parameter so that the user can take advantage of search
patterns that are already entered.

Fields that do not have a search help attachment can aso have an input help since further
mechanisms (e.g. domain fixed values) are aso used for the F4 help.

There are three mechanisms for attaching a search help to afield of the ABAP Dictionary.

A search help can be attached directly to afield of a structure or table. The definition of this
attachment is analogous to that of aforeign key. Y ou have to define an assgnment (between the
interface parameters of the search help and the fields of the structure) for which the system makes a
proposal.

If afield has a check table, its contents are automatically offered as possible valuesin the input help.
The key fields of the check table are displayed. If a check table has atext table, itsfirst character-like
non-key field is displayed.

If you are not satisfied with the described standard display of the data of the check table, you can
attach a search help to the check table. This search help isused for al the fields that have this table
as check table. Y ou have to define an assignment between the interface of the search help and the
key of the check table when you define the attachment.

The semantics of afield and its possible values are defined by its data element. Y ou can therefore
attach a search help to a data e ement. The search help isthen available for dl the fields that refer to
this data element. In the attachment you must define an EXPORT parameter of the search help for
the data transfer.

Attaching a search help to a check table (or a data element) can result in a high degree of reusability.
However, there are restrictions on passing further vaues via the interface of the search help.

m In order to be able to offer a meaningful input help for as many screen fields as possible, the R/3
System uses a number of mechanisms. If there is more than one such mechanism available for a
field, the one that is furthest |eft or at the top of the above hierarchy is used.

m |n addition to the options described above for defining the input help of afield in the ABAP
Dictionary, you can also define it in the screen field. The disadvantage, however, is that there is no
automatic reuse.

m With the screen event POV you can program the input help of afield by yourself. You can adjust the
design of the help to the standard help using the function modules
FAIF_FIELD VALUE_REQUEST or F4IF_INT_TABLE_VALUE REQUEST.
However, you should check to seeif the part of the input help that you programmed yourself should
be implemented as a search help exit instead (see appendix).

m You can aso attach a search help to a screen field in the Screen Painter. There are some functional
restrictions on this kind of attachment as compared with attachment in the Dictionary.

m You should no longer use the input checks defined directly in the flow logic of the screen, from
which it is also possible to derive input helps.

m Thefunction Technical info is offered in the hit list in the menu of the right mouse key. It can be
used to find out which of the specified mechanismsis being used.

m Y ou sometimes have to search alarge amount of data with an input help. This means that you might

have to wait along time for the possible entries to be displayed, and can aso result in a significant
increase in the load on the system.

m When you define a search help, you should therefore check whether you should take measures to
optimize the accessing behavior for the selection method. Thisis especidly true if the selection uses
aview and thus more than one physical table.

m If the number of entriesin the selection method is very large, you should restrict the hit list with
further conditions. This also increases the clarity of the hit list. The additiona conditions can directly
result from the context, or can be entered in the dialog box for restricting values by the user. The

performance of the input help can frequently be significantly improved by creating an index on the
fields used to formulate the restrictions.

m |f the number of entries in the selection method is relatively small, you should always check whether
the selection method can be buffered.

In the relational data model, entities are usualy represented by formal keys. In red life, however,
these entities are often identified by one or more of their attributes. For example, the key for a person
is the personnel number. A person will generally describe another with his name and possibly his
address.

The attributes used to identify an entity can differ from one user to the next and from situation to
Situation. A user wants to use these attributes in an input help to define avalue for afied that
requires that aformal key be entered.

We therefore need sear ch paths permitting access to the data using non-key fields. Severd different
search paths should be possible for one field.

A search path for afield can be implemented with a search help having the form described above. To
describe an input help with more than one aternative search path, a set of search helps can be
combined into a new object in the R/3 System. Since this object is the description of the input help
for afield, it is dso caled a search help.

In contrast to the elementary sear ch helps described above, the search helps that combine severa
search paths are called collective search helps.

Collective search helps are sometimes used to map the distribution of the possible entries for afield
into severa (digunct) datasets.

Like an dementary search help, a collective search help has an interface of IMPORT and EXPORT
parameters with which it exchanges data. Using this interface, the collective search help can be
attached to fields, tables and data e ements exactly like an elementary search help.

Only one search help can be attached to afield, table or data e ement. Several search paths are
therefore attached with a collective search help.

Y ou can omit the components for describing the dialog behavior and data selection when you define
a collective search help. The included search helps are listed here. Y ou must assign the parameters of
the collective search help to the interface parameters of the included search help for each inclusion.

A search help can dso be included in severa collective search helps and at the same time itself be
attached to fields, tables and data elements. A collective search help can also be included in another
collective search help.

When you use a collective search help, you are offered the elementary search helps contained in the
collective search help as pardllel tab pages. If you repeatedly use a collective search help, the tab
page that was last used is automatically active. Thisis because most users always use the same
search path.

The set of search paths that are meaningful for an object greatly depends on the particular
circumstances of the SAP customer. The customer often would like to enhance the standard SAP
collective search helps with his own elementary search helps. Release 4.6 provides an append
technique that permits the enhancement of cdllective search helps without modifications.

An append sear ch help isacollective search help that is assigned to another collective search help
(its appending object) and that enhances it with the search helpsit includes. The append search help
uses the interface of its appending objects.

The append search help lies in the customer namespace. Normally the search helps included in the
append search help are aso created by the customer and lie in the customer's namespace. However,
the required elementary search help might already be provided by SAP, in which case the customer
only hasto add it to his own append search help.

Append search helps are used with SAP to improve component separation. Some SAP collective
search helps therefore dready have one or more append search helps in the standard search help.
Customer enhancements should always be made by creating a separate append search help.

SAP collective search helps often contain elementary search helps that are not required by all
customers. The search helps you do not need can be hidden using an append search help. To do this,
the corresponding search help must be included in the append search help and the hidden flag must
be st.

Unit: Search Helps

*e e

At the conclusion of these exercises you will be able to:
Implement input helps with elementary search helps
Apply the different features of search help attachments in the ABAP

/

Dictionary

Define input helps with more than one search path using collective
search helps

Add or remove search paths for collective search helps without
modifications

Many management tasks require that you search for employee data. Suitable search
options are needed to do this. Such search options will beimplemented in this exercise.

)

8-1

Go to the display screen for table ZDEPMENTxx and call Utilities® Table
contents ® €reate entries. An input template appears in which you can create new
entries for table ZDEPMENTXx (i.e. new departments). The head of the new
department should a so be defined here. Make this entry in field Department head.
Maintenance of this field should be supported with an input help that displays the
(personnel number of the) employee.

Verify that the field already has an input help. Find out which input help
mechanism is used here.

The objective is to make the input help for check table ZEMPLOY xx more user-
friendly. Check your success by calling the input help again.

To do this, create an elementary search help ZEMPLOY xx.
The following attributes should appear in the specified order in the hit list:
Carrier
First name
Last name
Personnel number
Department code

Because of the large number of employees, you should restrict the displayed values
by specifying the first and/or last names of the person wanted before displaying the
hit list.

8-3

Keep in mind that the last name is used more frequently as a restriction than the
first name.

If acarrier was aready specified before the input help was called, only its
employees are offered. Otherwise an input field on the input template for the carrier
will be filled when the employee is selected.

Make sure that the search help defined for the check table help of table
ZEMPLOY xx is used and check your success as described above.

Verify that the input help for field ZFLCREWxx-EMP_NUM is defined with
the search help you just created by calling Create entries for table ZFL CREWxX.
Understand the underlying mechanism.

The input help for fiedld ZFLCREWxx-EMP_NUM shows all employees. However,
you only want to look at flight personnel for the given field. The objective isto
correct this.

Y ou should therefore create a search help ZEMPLOY _FLY xx that only displays
flight personnel. The display attributes of the search help should be identical to
those of search help ZEMPLOY xx. However, since the group of flight personnel is
not too large, the hit list can be displayed immediately in this case. The user should
be able to limit the employees with their first and last names from this list.

Using a suitable search help attachment, make sure that the search help is used for the given field
and check your success as described.

M7 Consider whether you can use work from previous exercises here. Is it necessary
=~ — orsensibleto create your own view for this exercise?

~ ~

Supplementary Exercise: With Create entries, verify that the fields containing the
personnel number of the last person to make the change in tables ZEMPLOY xx and
ZDEPMENTXxx do not have their own input help.

The objective here is to define a suitable input help for these two fields. The two
search helps defined so far cannot be used because table changes can only be made
by administrative employees. The input help to be defined should therefore display
only these.

Define search help ZEMPLOY _ADMxx that displays the administrative employees
of the airlines. The search help should have the same display attributes as
ZEMPLOY _FLYxx. However, it is not easy to estimate the number of
administrative employees. Make sure that the search help directly displays the
values found if there are no more than 100. Otherwise you should first offer a
search template in which you can define the employee's airline as well as the first
and last names.

Attach the search help to the data element. Verify that the search help is now used
both in ZEMPLOY xx and in ZDEPMENTXxx for the input help of field
Lastchangedby.

Check whether the requirements for field Carrier specified in Exercise 1 are
satisfied. How do you explain this effect? Can you get better results by using a
different type of attachment?

8-4 You might want to offer further search paths for finding employees. To do this, take
the following steps:

Copy search help ZEMPLOY xx to search help ZEMPLOY _SIMPLEXX.
Convert search help ZEMPLOY xx to a collective search help.
Include search help ZEMPLOY _SIMPLEXxx in search help ZEMPLOY xx.

Check if the input help of field ZDEPMENTxx-Supervisor changed due to these
operations.

8-5 You redly have to enhance the input help for the employees with another search
path: This search path should give you an overview of all the employees involved
in aflight.

To do this, create another elementary search help ZEMPLOY _FLIGHTXxX.

When you use this search help, the user can limit the search to the flight personnel
for certain flights before displaying the possible values. The flight should be
identified by its cities of arrival and departure and by its flight date.

The carrier should be defined as in Exercise 1.

The following information should appear in the hit list for the search help:

Carrier

First name

Last name
Personnel number
Flight

Date of flight

Make sure that the search help you created is available as an alternative search path for finding
employees and verify your results.

— — Useyour solutions from previous units.

8-6 Your system has special requirements when searching for employees:
8-6.1.1An additional search path that only offers flight personnel should be offered.

8-6.1.2 The search path with which employees can be found by their flights is not
required.

Change the input help for field ZDEPMENTxx-Department head accordingly

without modifying search help ZEMPLOY xx (or atable that is involved).

8-7 Supplementary Exercise: Call the function Create entries for table ZEMPLOY xx.
Verify that the check table help for table ZDEPMENTXx is used for field
Department code. Find out where the displayed text field comes from. Check the
behavior of the input help for field Carrier on the input template.

Now enhance the check table help just tested so that the telephone number of the

8-8

department appears in the hit list in addition to the information already displayed.
Take the necessary steps and check your success as usual.

Supplementary Exercise: This exercise demonstrates the use of help views (see
appendix).

Enhance the search help defined in Exercise 7 so that the last name of the head of
the department also appears in the hit list. Make sure that those departments that

have no decription in the user's logon language or for which the Department head
field is empty are also displayed.

Make sure that the column header with the last names of the department heads is
called 'Department head' and not 'Last name' in the hit list. Use data element
S HEAD.

Check your success in the usual manner.

8-1

/ Unit: Search Helps

Starting with the maintenance transaction for table ZDEPMENTXxx, call the F4 help
as described. Choose Techn. info (with the right mouse button) in the hit list. In
Search help you can find out that the input help is the check table help for table
ZEMPLOY xx and that it is a pure check table help (without a search help and
without a text table).

To create search help ZEMPLOY xx:

1
2)

3)
4)

5)

6)

7)

8)

9)

10)

Choose Search help in the initial screen of the ABAP Dictionary and enter
ZEMPLOY xx in the corresponding field.

Choose Create. In the next dialog box, confirm that you want to create an
elementary search help.

Enter a short text for your search help.

The search help should support the search for employees. These are
managed in table ZEMPLOY xx. Y ou therefore have to select thistable (or a
view on this table) as selection method. The table is sufficient for this
exercise. Enter it in field Selection method.

To obtain the required behavior, choose dialog type Complex dialog with
value restriction.

Choose the search help parameters using the F4 help. Y ou should retain the
hit list with the possible search help parameters by selecting Hold list, since
you don't have to call the help again in this case. Select fields Carrier, First
name, Last name, Personnel number and Department code as parameters.

Mark all parameters as EXPORT parameters (column EXP). Mark the
attribute to be searched for (i.e. Personnel number) and the hierarchically
higher Carrier as IMPORT parameters (Column IMP). This ensuresthat a
corresponding entry in the input template is taken into consideration (as
described in the exercise).

Y ou can define the hit list by assigning the corresponding position numbers
(e0.1,2,3,4,5) in column LPos.

Y ou can define the dialog box for restricting values by assigning position
numbers in column SPos. Y ou should therefore enter positive numbersin
these columns for parameters First name and Last name, where the value of
Last name should be smaller than that of First name.

Activate your search help. The search help is not yet effective for field
ZDEPMENTxx-Department head. However, you can try out the search help
immediately with the Test function.

The search help you just created can only improve the check table help of table
ZEMPLOY xx (and thus the input help of field ZDEPMENTxx-Department head) if
it was attached to table ZEMPLQOY xx. You can do this as follows:

8-2

1) Go to change mode in the maintenance screen for this table. Choose Goto ®
Search help ® For table. In the next dialog box, enter the name of search
help ZEMPLOY xx. Choose Continue.

2) The proposal created by the system for assigning the search help parameters
to the key fields of the table is probably correct. Check this and copy the
definition.

Activate table ZEMPLOY xx.

3) Call the Create entries function for table ZDEPMENTxx again. The input
help of field Department head should now behave as desired. If you call
Techn. info again, you can confirm that the search help you just defined isin
effect.

Call the input help as described. With Techn. info you can verify that search help
ZEMPLOY xx isredly in effect and that this is because table ZEMPLOY xx is also
check table of field ZFLCREWxx-EMP_NUM.

The search help to be created for the flight personnel should be very similar to the
search help for all employees. It would therefore make sense to copy search help
ZEMPLOY xx to search help ZEMPLOY_FLY xx and then modify it. Alternatively.
search help ZEMPLOY _FL Y xx can be created analogously to the method
described above, aso making the following changes:

The short text for search help ZEMPLOY _FL Y xx should be adjusted to suit its meaning.
Change the dialog type to Immediate value display (Dropdown).

The two changes, however, do not solve the main problem in this exercise, namely
that the search help should display only flight personnel. Y ou can do this by
selecting a view that only contains flight personnel as selection method.

Y ou aready defined such aview in Exercise 7-1. Entering this view as selection
method and activating the search help will solve the problem. However, this
assumes that you named the view fields the same as the underlying fields of table
ZEMPLOY xx. Otherwise you have to adjust the names of the search help
parameters to the names of the view fields.

The solution just described, however, has one disadvantage. View ZEMPFLY XX is
defined with ajoin on tables ZEMPLOY xx and ZDEPMENTXxx. However, only
information from table ZEMPLOY xx is needed for the search help. An
unnecessarily complex database query is therefore created when you use search
help ZEMPLOY _FLYxx. This can have a negative effect on the performance of the
input help.

Y ou should therefore create a new view having only base table ZEMPLQOY xx. This
view can be obtained for example by copying it from view ZEMPFLY xx. Y ou then
have to remove base table ZDEPMENTxx from this copy. Join conditions and view
fields referring to this table are also deleted.

This view should now be entered as selection method for search help

ZEMPLOY _FLYxXx.

The search help only becomes effective for field ZFL CREWxx-EMP_NUM when
it has been attached. Go to change mode in the mainterance screen for table
ZFLCREWXX. Position the cursor on field EMP_NUM. Choose Goto ® Search
help® For fied.

8-3

Continue.

The proposal created by the system for assigning the search help parameters to the
fields of the table is probably correct. Check this and copy the definition.

Activate table ZFL CREWxX.

Check your success as described.

Note: Of course you are not recommended to attach search help

ZEMPLOY _FLYxx to table ZEMPLOY xx. Thiswould have the desired effect for
field ZFLCREWxx-EMP_NUM. However, only flight personnel would be offered
for all other fields to be checked against table ZEMPLOY xx as well. This, however,
is a senseless restriction for example for field ZDEPMENTxx-Department head

Note: Using the default values for search help parameters described in the
appendix, you can also define the required search help ZEMPLOY _FLY xx without
using aview at al. Keep selection method ZEMPLOY xx. Include Area asan
additional parameter in the search help. Leave columns IMP, EXP, LPos and SPos
empty for this parameter. Enter the value 'F' (including the apostrophes) in column
Default value. The search help thus defined also does what you desire.

There is aso away to modify search help ZEMPLOY xx so that it can be used for
the desired function without detracting from the results of Exercise 1. Parameter
Area must be added to search help ZEMPLOY xx here. It must be marked as an
IMPORT parameter (mark column IMP, leave all other columns empty). You can
now attach search help ZEMPLOY xx to field ZFLCREWxx-EMP_NUM. When
you assign the fields to the search help parameters, you have to assign the constant
'F (including the apostrophes) to parameter Area.

After these actions, the input help of field ZFL CREWxx-EMP_NUM will function
as desired, whereas the input help of field ZDEPMENTxx-Department head is not
affected by these changes.

This solution, however, would not result in a search help for the flight personnel.
Y ou would have to do this again when you solve Exercise 8-6.

Check if an input help exists for the fields as described. If it does not exig, it is
possible that no foreign key was defined for these fields.

Search help ZEMPLOY _ADMxx to be defined should be very similar to search
help ZEMPLOY _FLYxx. You should therefore create it by copying and then make
the following changes:

The short text for search help ZEMPLOY _ADMxx should be adjusted to suit its meaning.
Change the dialog type to Dialog depends on set of values.

Since the airline should also appear in the dialog box for restricting values, there must be
an entry in column SPos for the corresponding parameters. This parameter must be lower
than both existing parameters. If necessary, increment them.

Y ou aso have to make sure that the search help only displays administrative
employees. It is best if you copy the view created in the previous exercise and
replace the value 'F in the copy with 'A’ in the selection condition. After activating
this view you can enter it as selection method for search help ZEMPLOY _ADMXxX.
Activate the search help.

The search help will be effective for the two fields if you go in change mode to the

Al ntAnANnAn franannti Al AF HaA AdbAa Al AnaAnt VA ArAantbAA TR DavAavrAaiceAa D D fAr | A

8-5

changed by. In Search help, enter ZEMPLOY_ADMxx in field Name. In field
Parameter, enter the name of the field for the personnel number (can be selecting
with the F4 help).

Activate the data el ement.

Check your success in the usual manner. Copying the airline does not function
correctly in both directions in this case. To check this, enter avalue in field Carrier
before calling the input help. It is not used in the input help. Vice versa, selecting a
value for Last changed by does not update the airline.

This effect can be explained in that it is not possible to take further parameters into
consideration when attaching a search help to a data e ement. In the present case,
attaching the search help to field ZCHANGExx-Changer would not have corrected
this error since field Carrier is not contained in structure ZCHANGExx. This field
therefore could not have been taken into consideration in the attachment.

Proceed as follows:

1) Copy search help ZEMPLOY xx to search help ZEMPLOY_SIMPLExx and
activate the new search help.

2) In change mode, go to the maintenance screen for search help
ZEMPLOY xx. Choose Edit ® Change search help type and confirm it in
the next dialog box.

3) Click on tab page Included search helps. Enter search help
ZEMPLOY _SIMPLExx.

4) Position the cursor on the search help just entered. Choose Parameter
assignment. Have the system make a proposal for the assignment.

5) The proposal is probably correct. To be on the safe side, check it and then
copy it.

6) Activate search help ZEMPLOY xx.

By caling the input help for field ZDEPMENTxx-Department head you can see
that the input help is still functioning. With Techn. info you can verify that a
collective search help is now in effect.

Y ou aready defined a suitable selection method (view ZCREWSxX) for the new
elementary search help ZEMPLOY_FLIGHTxx in Exercise 7-2. Y ou can how
proceed as follows:

1) In theinitial screen of the ABAP Dictionary select Search help. Enter the
name ZEMPLOY _FLIGHTxx in the corresponding field and choose Create.
In the next dialog box, confirm that you want to create an e ementary search
help.

2) Enter a short text. Choose Complex dialog with value restriction asdialog
type.

3) Enter ZCREWSxx as selection method.

4) Choose the following search help parameters using the F4 help: Carrier,
First name, Last name, Personnel number, Flight number, Flight date,
Departure city and Arrival city.

5) Mark all parameters as EXPORT parameters (column EXP). Mark Carrier
and Personnel number as IMPORT parameters (Column IMP).

6) Assign position numbers for the parameters in column LPos. Leave this
column empty for parameters Departure city and Arrival city.

7) Assign position numbers for parameters Departure city, Arrival city and
Flight date in column SPos.

8) Activate the search help ZEMPLOY _FLIGHTXxx.

Y ou now have to include search help ZEMPLOY _FLIGHTxx in collective search
help ZEMPLOY xx. Proceed as follows:

1) In change mode, go to the maintenance screen for search help
ZEMPLOY xx. Click on tab page Included search helps.

2) Enter search help ZEMPLOY _FLIGHTxx directly below search help
ZEMPLOY_SIMPLExx in the list of search helps.

3) Position the cursor on the search help just entered. Choose Parameter
assignment. In the next dialog box, confirm that you want to create a
proposal for the parameter assignment.

4) The parameter assignment proposed by the system is probably correct.
Check this and copy the assignment.

5) Activate search help ZEMPLOY xx.

Y ou can check your success as usua by calling the input help for field
ZDEPMENTxx-Department head.

Since you want to make the changes without modifying existing objects, you have
to create an append search help for collective search help ZEMPLOY xx. Proceed as
follows:

1) In display mode, go to the maintenance screen for search help
ZEMPLOY xx. Choose Goto ® Append search helps.

2) A name for the append search help is proposed in the next dialog box. You
can copy this name.

3) Enter a short description for the append search help.
4) Click on tab page Included search helps.

5) Enter ZEMPLOY_FLYxx and ZEMPLOY _FLIGHTxx inthelist of
included search helps. Mark column Hidden for the second entry.

6) Position the cursor on the name of search help ZEMPLOY _FLY xx. Choose
Parameter assignment. In the next dialog box, confirm that you want to
create a proposal for the parameter assignment.

7) The parameter assignment proposed by the system is probably correct.
Check this and copy the assignment.

8) Activate your append search help.

Y ou can check your success as usua by calling the input help for field
ZDEPMENTxx-Department head.

Call the input help for field ZEMPLOY xx- Department code as described. With
Techn. info you can see that the input help is determined with check table
ZDEPMENTXx of thisfield. You can also see that there is a text table for the check
table.

In this case too, entries that aready exist in field Carrier are taken into

AnnmiAArati Al A A TA Al Cirmiilavhvy FLAIA CAavviAr ia viadAkAA dlhAn AviAlLLA T~

sdected from the hit list.

To make the required enhancement, you must create an elementary search help and
attach it to table ZDEPMENTXx. Since al the data to be used in the input help are
contained in table ZDEPMENTxx and its text table ZDEPMENTTxX, table
ZDEPMENTxx can be used as the selection method of this search help.

Proceed as follows:

1) In theinitial screen of the ABAP Dictionary select Search help. Enter a
name for the search help to be created in the corresponding field.

2) Choose Create and confirm that you want to create an elementary search
help in the next dialog box.

3) Enter a short text for your search help.
4) Enter ZDEPMENTXx as selection method.

5) With the input help, select search help parameters Carrier, Department
code, Description and Telephone.

6) Mark all parameters as EXPORT parameters (column EXP). Mark
parameters Carrier and Department code as IMPORT parameters (Column
IMP).

7) Assign position numbers in the hit list for the parameters in column LPos.

8) The check table help can provide upon request a dialog box for restricting
values having the fields Carrier and Department code. Y ou can retain this
behavior by assigning position number for these two parameters in column
SPos.

9) Activate the search help.

10) Go to change mode in the maintenance screen for table ZDEPMENTXX.
Choose Goto ® Search help® For table.

11) Inthe next dialog box enter the name of the search help you just created and
choose Continue.

12) The proposal created for assigning the search help parameters to the key
fields of table ZDEPMENTXX is probably correct. Check this and copy the
assignment.

13) Activate table ZDEPMENTXX.
Check your success in the usua manner.

Y ou can find the last names of the department heads in table ZEMPLOY xx. The
data of the search help must be selected with the three tables ZDEPMENTXX,
ZDEPMENTTxx and ZEMPLOY xx.

Y ou must therefore select a view as selection method of the search help. The
exercise dates that this view must implement an outer join. You must therefore
choose a help view.

To define the help view:

1) In theinitial screen of the ABAP Dictionary select View. In the
corresponding field, enter a name beginning with the prefix H_Z for the
help view.

2) Choose Create and confirm that you want to create a help view in the next
dialoa box.

3) Enter a short text for the help view.

4) Enter ZDEPMENTXx in the only input field in the area Tables.

5) Position the cursor on the table names just entered and choose
Relationships. In the next dialog box mark the relationship to table
ZEMPLOY xx under Referenced tables and the relationship to table
ZDEPMENTTxx under Dependent tables. Copy this selection.

6) Click on tab page View fields. Some fields that you should not change are
already entered here. Y ou have to include the following fields in the view
using the Table fields function: ZDEPMENTxx-Telephone,

ZDEPMENT Txx-Description and ZEMPLOY xx-Last name.

7) Activate the help view.

Y ou can now adjust the search help to the additional requirements. Proceed as

follows:

1) Go to the maintenance screen for the search help created in the previous

2)

3)

4)

exercise. Replace ZDEPMENTXxx with the help view you just created in
field Selection method.

Choose the additional search help parameter Last name using the input help.
Assign it a position in the hit list in column LPos. Note that this column
may not contain a duplicate (positive) number. You might therefore have to
adjust the position numbers of the other parameters.

To assign the desired title in the hit list of the column containing the last
names of the department heads, mark column Modified for parameter Last
name (it isto the right of column Data element). Y ou can now enter values
for the data element of this parameter. Replace the entered data element

S LNAME with S HEAD.

Activate the search help.

Check your success in the usua manner.

Note: You can aready specify the alternative data element for column Last name
when you define the help view. To do so you must mark column Mod for field Last
name in the maintenance screen for the view fields of the help view. You can then
replace dataelement S LNAME with S HEAD. In this case you can leave out step
4 in the above description.

Section: ABAP Programming Techniques

8 SAP AG 1999

The ABAP Runtime Environment !’
DA

Contents

® Components of an ABAP program
® Processors within awork process

® ABAP programs: Types and execution methods

8 SAP AG 1999

An ABAP program contains the following components:

m Sourcecode
...containing the ABAP statements

m SCcreens
... consist of the screen layout and associated flow logic. Y ou normally create the layout of a screen
using the Screen Painter. However, there are specia kinds of screens, called selection screens and
lists, whose layout and flow logic are designed exclusively using ABAP statements.

m Interface
...contains all of the entries in the menus, the standard toolbar, the application toolbar, and function
key settings. It containstitles and statuses. A statusisa collection of function key settings and
menus.

m Text elements
... arelanguage-specific. They can be trandated either directly from the text element maintenance
tool, or using a specia trandation tool.

m Documentation
... isaso language-specific. Always write documentation from the user's point of view. If you want
to document the programming techniques you have used, use comments in the program code instead.

m Variants
... allow you to predefine the values of input fields on the selection screen of a program.

ABAP isan event-driven programming language, and as such is suited to processing user dialogs. The
source code of an ABAP program consists of two parts:

m Declarations
Declarations include the statements for globa data types and objects, selection screens, and (in
ABAP Objects) local classes and interfaces within the program.

m Processing Blocks (indivisble program units)
Each processing block must be programmed as a single entity. There are two basic kinds of
processing blocks:
Event Blocks:
Event blocks are introduced by an event keyword. They are not concluded explicitly, but end when
the next processing block starts.
Dialog M odules and Procedures:
Dialog modules and procedures are introduced and concluded using keywords.
The contents of all processing blocks form the processing logic.

When you gener ate the program, these parts are compiled to form the load version. Thisisinter preted
at runtime.

In the simplest case, your program will consist of a single source code unit that contains al of the
relevant processing blocks. To make your programs easier to understand, and to increase the degree
to which your programs can be reused, you should use include programs.

When you create a program from the Object Navigator, the system proposes to create a TOP include
for the program. This option is particularly useful when you create module pools.

m When you create a processing block, the system aways asks in which include program it should
insert the relevant ABAP code.

m |f the include program does not exist, the system creates it and inserts an | NCLUDE statement for it
in the main program.

m If you name your program according to the naming convention SAPM Y| Z} <r em_nane> and then
create anew processing block, the system proposes the name of the new include using the following

convention:
M Y| Z} <r em_nanme><abbr ev><nunp.

m When you create further processing blocks, the system automatically proposes the appropriate
include program.

In thisway, the system helps you to create programs whose structures are easy to understand. The
standardized naming convention will help you to find your way around other peopl€'s programs.

The R/3 System is based on a client/server architecture with the three tiers database server, application

server, and presentation server. It allows alarge number of users with inexpensive and relatively slow
machines to take advantage of a smaler number of faster, expensive application servers by occupying
work processes on them. Each work process on an application server is assigned to awork process on

the (expensive, even more powerful) database server.

User dispatching isthe process by which the individua clients at presentation server level are assigned
to awork process for a particular length of time. The work processin turn is linked to awork processin
the database. Once the user input from a dialog step has been processed, the user and program context
is"rolled out" of the work process so that the work process can be used for another dialog step from
another user while the first user is making entries on the next screen. This makes the best possible use
of the resources available on the application server.

The three-tier architecture makes the system easily scalable. To add extra users, you merely have to
install more inexpensive presentation servers. Y ou can aso increase the efficiency of the whole system
by adding extra application servers with their associated work processes.

The work processesin the middle layer - often called the application server - are software
components that are responsible for processing dialog steps. They are implemented as "virtual
machines'. This ensures that ABAP programs can run independently of the hardware platform on
which the R/3 System is installed.

Work processes contain other software components that are responsible for various tasks within a
dialog step:

Screen processor

The screen processor is responsible for communication between the SAPgui and the work process
(viathe dispatcher). It processes the screen flow logic and passes field contents to the processing
logic in the program.

ABAP processor

The ABAP processor executes the processing logic in the ABAP program and communicates with
the database interface. The screen processor tells the ABAP processor which part of the program
(module) needs to be processed (according to the screen flow logic).

Database interface

The database interface is responsible for the communication with the database. It alows accessto
tables and Repository objects (including ABAP Dictionary objects), controls transaction execution
(COMMIT and ROLLBACK), and administers the table buffer on the application server.

Theindividual processing blocks are called in a predetermined sequence at runtime, regardless of the
position in which they occur in the program. Once a processing block has been called, the
statements within it are processed segeuentialy.

Event block

If the system program or a user triggers an event for which the corresponding event block has been
written in the processing logic, that event block is processed. The program flow is controlled either
by the system or the user.

Modularization unit
When the system encounters a modularization unit call within a processing block, it calls the
corresponding processing block. In this case, the program flow is controlled by the programmer.

Assigning transaction codes
To alow amodule pool to be executed, you must assign atransaction code to it. You can (but do

not have to) assign a transaction code to an executable (type 1) program.

You assign adialog transaction to amodule pool. The following steps occur when you run adialog
transaction:

First, the LOAD- CF- PROGRAMevent istriggered. Once this event block has been executed, the
ABAP processor passes control to the screen processor. For an example of how to use this new
event, refer to the example in the Function Groups and Function M odules unit.

The screen processor processes the intial screen specified in the transaction definition. The initia
screen can be a selection screen (regardless of the program type). The PROCESS BEFORE

QUTPUT event istriggered and control passes to the ABAP processor, which processes the first PBO
module.

The ABAP processor executes the processing block and returns control to the screen processor.
Once al PBO modules have been processed, the contents of any ABAP fields with identically-
named corresponding fields on the screen are transported to the relevant screen fields. Then the
screen is displayed (screen contents, active title, active status).

Once the user has chosen a dialog function (such as ENTER), the contents of the screen fields are
transported back to the corresponding identically-named fields in the ABAP program, and the

processing blocks that belong to the PROCESS AFTER | NPUT event are processed. The system
then continues by processing the next screen.

The only processing logic that is processed in a dialog transaction are the statements belonging to the
LOAD- OF PROGRAMevent and those occurring in the various modules.

However, you can also use the statement LEAVE TO LI ST- PROCESSI NG This makes al of the
list processing events available to you.

You can only assign areport transaction to an executable (type 1) program. In areport transaction,
the system calls particular eventsin afixed sequence, and calls a series of standard screens. The
following steps occur when you run areport transaction:

Firgt, the LOAD- G- PROGRAMevent istriggered.
Thenthel NI TI ALI ZATI ONevent is triggered.

Next, the standard selection screen is called (if you have declared one), and its corresponding events
aretriggered: AT SELECTI ON SCREEN QUTPUT and AT SELECTI ON- SCREEN

Next, the START- OF- SELECTI ONeventis triggered. (Thisisthe default event block. If you omit
this event keyword, al statements that are not assigned to another processing block are treated as
though they belong to it.)

If you have attached alogical database to your program, the system triggers the GET <node>and
CGET <node> LATE events.

Then the END- OF- SELECTI ON event is triggered.
Y ou can aso include screen processing (as in module pools) by using the CALL SCREEN statement.

You can start executable (type 1) programs without using a transaction code. Y ou can aso run them
in the background.

If you fill the list buffer of the basic list (using the WRI TE, SKI P, and ULI NE statements), two
further events are triggered: At the beginning of each new page, the TOP- G- PACE event is
triggered, and the END- OF PAGE event istriggered at the end of each page.

Once the END- OF- SELECTI ON event block has been processed, interactive list processing starts.
The system displays the formatted basic list . The user can now trigger further events.

If the user double-clicks aline or triggers the function code Pl CK in some other way, the AT
LI NE- SELECTI ONevent istriggered. In the standard list status, this function code is aways
assigned to function key <F2>. In turn, <F2> is dways assigned for a mouse double-click.

If you fill the list buffer of the detail list (of which you may have up to twenty) using the WRI TE,
SKI P, and ULI NE statements, two further events are triggered:

At the beginning of each new page, the TOP- G- PAGE DURI NG LI NE- SELECTI ON event is
triggered, and the END- OF PAGE DURI NG LI NE- SELECTI ON event istriggered at the end of
each page. (These events are not displayed in the graphic.) Interactive list processing is started
again. The system displays the formatted detail list (screen 120).

Any other function codes that have not been "trapped” by the system trigger the event AT USER-
COVVAND.

The following types of programs cannot be executed directly. Instead, they serve as containers for
modularization units that you call from other programs. When you call one of these modularization
units, the system always loads its entire container program.

Further infamation about thisis provided later on in the course.

Function group (type F)
A function group can contain function modules, local data declarations for the program, and screens.

For further information, refer to the Function Groups and Function M odules unit.

Include program (type)
An include program can contain any ABAP statements.

For further information, refer to the Program Organization section of this unit.

Global interface (type J)
An interface pool can contain global interfaces and local data declarations.
For further information, refer to the I ntroduction to ABAP Objects unit.

Global class (type K)
A class pool can contain global classes and local data declarations.

For further information, refer to the I ntroduction to ABAP Objects unit.

Subroutine pooal (type S) (external subroutines)
A subroutine pool can contain subroutines and local data declarations.
Caution! Type S programs ar e obsolete and have been replaced by function groups.

i Unit: ABAP Runtime Environment

Topic: Creating Repository Objects

At the conclusion of these exercises, you will be able to:

Create devel opment classes

*e P

Create programs

You are a programmer for an airline consortium, and it is your job to
write analysis programs for severa airlines.

N

1. Log onto the operating system and then to the R/3 training system (your instructor will tell
you its name) with the user name BC402- ##. Enter a new password.
isyour two-digit group number.

2. You need to create a development class as a container for your Repository objects. The
development class must be assigned to a change request. Y ou also need to create two
programs.

isyour two-digit group number.
Model solutions:

BC402
SAPBC402_TYPS_COUNTERLI ST1
SAPBC402_TYPS_FLI GHTLI ST1

2-1 Createthe development class Z##_ BCA02.

2-2 Create an executable (type 1) program Z##_ BC402_COUNTERLI ST1
without a TOP include.

2-3 Create an executable program Z##_ BC402_FLI GHTLI ST1
without a TOP include.

~ L~ From this point onwards, you should always work with the Object
- —Navigator. This provides you with an overview of al of the
Repository objects in your development class. From here, you can

select objects you want to work on.

Unit: ABAP Runtime Environment
/ Topic: Creating Repository objects

2-2 Model solution SAPBC402_TYPS_COUNTERLI ST1

*

*& Report SAPBCA02_TYPS_COUNTERLI ST1
*&

*

*& solution to exercise 1 data types and data objects .
*&

*

REPORT sapbc402_typs_counterlistl.

2-3 Model solution SAPBC402_TYPS_FLI GHTLI ST1

*

*& Report SAPBC402_TYPS_FLI GHTLI ST1
*&

*

*& sol ution of exercise 2 datatypes and dat aobj ects
*&

*

REPORT sapbc402 typs flightlistl.

b R I .

L T N

Data Types and Data Objects

Contents

Kinds of data types
Defining data types

Kinds of data objects and how to declare them

Field symbols and references

8 SAP AG 1999

To work with data at runtime, you need to store it in the program at runtime and address it from your
program. The system needs to know the type of the data (for example, character string, whole number,
table consisting of name, currency amount, and date, and so on). A data object is a named memory
areathat is structured according to a particular data type. The type normally specifies al of the
attributes of the data object. Using the name, you can access the contents, that is the data, directly. The
name may be a compound name consisting of more than one single name.

Y ou could regard a data type as being similar to the construction plans for abuilding. The plans could
be used for more than one building, which would al have the same type, but you would still be able to
tell them apart. Suppose the buildings were used for storage. Y ou would find a particular item using
the address of the building, and knowing on which floor, in which room, and in which shelf or bin it
was stored. Y ou would have to consider carefully when drawing up your plans the kinds of things you
would want to store in your buildings.

The ABAP language is very flexible. Some of the attributes of a data type do not have to be specified
until you use it to declare a data object, or, in some cases, not until runtime. It aso alows you to use
data objects that you have aready declared or ABAP Dictionary objects as the basis for new types or
data objects.

There are various places in the ABAP Workbench in which you can store and define data types:

m ABAPDDictionary
The ABAP Dictionary contains 23 predefined data types, which serve as abasis for al other ABAP
Dictionary objects (such as domains, data el ements, data types, and so on). These ABAP Dictionary
types are available for use globally throughout the system.
Aswedll asthe Dictionary objects used to access tables (tables, views, search helps, and so on), you
can aso (from Release 4.5) create global data typesin the ABAP Dictionary.
Previoudly, the only way to define global data types was to use atypegroup. Type groups are still
supported, but the concept is actually obsolete now that it is possible to define globa datatypesin
the ABAP Dictionary.

m ABAP programs
Data typesthat you definein an ABAP program are local, that is, only valid within that program.
Y ou use the ten predefined ABAP data types as a basis for your own types.

Both global and locd data types fit into the schematic diagram above. The names used above should
make it easier for you to understand the following dides and the online documentation.

Thetechnical attributes of an elementary field are defined by an elementary type.
A structure type consists of components.
A table type consists of alinetype, accesstype, key definition, and key type.

In certain exceptional cases, types only desscribe part of the attributes of a data object. For example,
atable type does not specify how many lines the table will have. This attribute is not set until
runtime, and only affects that one data object.

You can nest types "deeply” to any level. That means:

A structured type can have components that are themselves structured or table types. This enables
you to construct very complex data types. However, the smallest indivisible unit is always an
elementary type.

The ABAP Dictionary contains a series of predefined data types to represent the externa data types of
the various database systems.

m When you define afield with type CURR in the ABAP Dictionary, you must always link to a
currency. You do this by specifying afield with the type CUKY. (When you create alist, you use the
CURRENCY addition in the WRI TE statement). The same appliesto type QUAN, which must dways
link to afield with type UNI T.

m Type FLTP isuseful for calculations involving very large or very smal numbers. This usualy only
occurs in scientific applications or when making estimates.

m For business calculations, you should aways use type DEC or QUAN. The arithmetic isthe same as
that to which you are used "on paper” - the system calculates precisely to the last decimal place.

m A typica usefor type NUMC isfor postad code fields- fieldsin which only digits should be allowed,
but with which you do not want to perform calculations. (It is, however, possible to use conversions
and calculate with alpha-numeric data.) For further details about arithmetic and conversions, refer to
the Statements unit.

m Based on their underlying data type, some data objects are displayed according to for matting
options (for example, country-specific date formats). Each user defines these formats in their user
defaults.

All of these data types apart from string and rawstring are elementary types. For technical reasons,
these are classified as nested types. This has consequences for certain uses, such asthe | NTO clause
of a SELECT statement.

m Dataelement
Data elements have a business meaning (field label, help text, and so on). Up to and including

Release 4.0, it was only possible to specify the technical attributes of a data element by specifying a
domain. Each domain had to have a predefined Dictionary type assigned to it. Thisis still possible.
However, it isnow possible to enter a predefined Dictionary type directly. If you want to ensure that
the technical attributes of a group of data elements can only be changed centrally, you should
continue to use domains.

As part of ABAP Objects, you can now designate a data element areferencetype and declare
global types for references to global classes or interfaces. Note that, in this case, the type of the data
element is no longer elementary, but nested. The same applies when you use the predefined types
stringandrawstring.

m Structure
Each component of a structure must have a name so that it can be addressed directly. For the type of

a component you may specify a predefined Dictionary type, a data element, a structured type, or a
table type. Thisallows you to construct nested data types. Note the consequences we have aready
mentioned with particular kinds of access. For example, if a structure contains a component with the
type reference or st ri ng, you cannot use | NTO CORRESPONDI NG FI ELDS CF ina SELECT
statement. Instead, you must list the components in the | NTO clause.

The data type of an interna table is fully specified by its.

m Linetype
The line type defines the attributes of the individual fields. Y ou can specify any ABAP datatype.

m Key definition
The key fields and their sequence determine the criteria by which the system identifies table lines.

m Key type
Y ou can define the key as either unique or non-unique. The uniqueness of the key must be
compatible with the access type you have chosen for the table. If the key is unique, there can be no
duplicate entries in the table.

m Accesstype
Unlike database tables, the system assigns line numbers to certain kinds of internal tables. This
means that you can use the index to access lines as well as thek ey. We sometimes use the term

"table type" to refer to this.

We can aso divide up internal table types into three kinds by their access type:

Standard tables. In a standard table, you can access data using either the table index or the key.
Since the key of a standard table aways has to be non-unique for compatibility reasons, the system
searches the whol e table each time you access it using the key. Consequently, you should always use
the index to access a standard table whenever possible.

Sorted tables. In a sorted table, the system automatically stores the entries and inserts new entries
sorted by the table key. The system uses a binary search on the table when you access it using the
key. You can specify the key of a sorted table as unique. You will often use the key to access a
sorted table, but it is aso possible to use the index. Standard tables and sorted tables are generically
known as index tables.

Hashed tables. Y ou can only access a hashed table using the key. There are certain conditions
under which you can considerably reduce the access times to large tables by using a hashed table.
The key of a hashed table must aways be unique.

Y ou do not have to specify the access type fully. You can either omit it altogether, or specify it

partially (index table). The table typeisthen generic, and, by omitting certain attributes, we can use
it to specify the types of interface parameters.

To find out the access type of an interna table at runtime, use the statement DESCRI BE TABLE

<itab> KIND <charfi el d>.

The linetype specifies the semantic and technical attributes of the individua fieldsin aline. As
already mentioned, you can specify either another table type, a structured type, or an elementary
type. If you only use an elementary type, the internal table will have a single column with no
component name (unstructured table).

Key definition

m The default key consists of al character (alphanumeric) components of the line type that are not
themselves table types. In this case, it would be empty (only possible with standard tables).

m |tisparticularly useful to name the linetype, that is, the whole line, as the key if the table typeis
unstructured.

m You can aso name key components and their sequence explicitly.
m A fina possibility is not to specify the key, leaving it generic instead.
Key type

Aswell as defining the key as unique and non-unique, you can specify a generic key type by omitting
the specification.

For further information about choosing the right table type attributes, refer to thelnternal Table
Operations unit.

Type F isuseful for calculations involving very large or very smal numbers. This usually only
occurs in scientific applications or when making estimates.

For business calculations, you should aways use type P. The arithmetic is the same as that to which
you are used "on paper” - the system calcualtes precisaly to the last decimal place.

A typical use for type Nisfor postal codefields- fields in which only digits should be alowed, but

with which you do not want to perform calculations. (It is, however, possible to use conversions and
calculate with alpha-numeric data)) For further details about arithmetic and conversions, refer to the
Statements unit.

Unlike type C, N, or X fields, the length of a string or hexadecimal string is not statically defined.
Instead, it is variable, and, at runtime, will always take the length of its current contents. The
memory is managed dynamically by the system. Strings and hexadecimal strings can have any
length.

Y ou cannot currently use STRI NG or XSTRI NGto specify the type of a screen field.

Y ou can only define a new data type based on an existing type. Use the TYPE addition to refer to data
types, that is, predefined ABAP types, user-defined local types, predefined ABAP Dictionary types,
user-defined ABAP Dictionary types, or fields or entire lines from database tables. If you refer to
an ABAP Dictionary type, changes to the global type are automatically passed on to your type. This
ensures that your type is aways compatible with the corresponding ABAP Dictionary object. Types
that refer to the ABAP Dictionary aso have the advantages of formatting options, field help, and
possible entries help.

The underlying ABAP Dictionary data type is converted into the corresponding ABAP data type
when the program is generated. For further information, refer to the ABAP syntax documentation
for the TABLES statement.

If aglobal and alocal data type both have the same name, the system uses the local type.

Use the LI KE addition to refer to the type of a data object that you have already declared. Thisaso
appliesto the next dides.

Elementary types
The length specification after the type name for ABAP datatypes C, N, and X specifies the number of
charactersin the type. For type P fields, you can aso set the number of decima places. If you omit
these specifications, the system uses the default values (refer to the chart under Predefined ABAP
Types).

Structured types
Use the statements

TYPES BEA N OF <structype>.
and

TYPES END OF <structype>.

to enclose the list of components in your structure. Any type definitions may appear between the
two statements. Y ou can aso construct nested data types.

To refer to the linetype of atable type or an internal table, use the additions TYPE LI NE OF

<i tabtype>orLI KE LI NE OF <it ab> respectively.

Tabletypes
Similarly to when you create table types in the ABAP Dictionary, you must specify various attributes
here:

m Thelinetype after. .. TABLE OF (asaways, if you refer to adatatype, use TYPE, if you refer to
adata object that has aready been declared, used L1 KE);

m The accesstype before TABLE OF ... (If you omit this, the system uses the default access type,
which is standard. Y ou can aso specify a generic table type using | NDEX or ANY.);

m The key definition after the key type (to specify the default key, use the DEFAULT KEY addition);
Y ou can dso specify fields from the (flat) line type and specify the sequence explicitly. If the table
is unstructured, you can use the TABLE LI NE addition);

m Thekey typeafter... WTH (UNI QUE or NON UNI QUE) .
If you omit the key specification entirely, the system uses the non-unique default key.

m For information about the optional | NI TI AL SI ZE <n> addition, refer to the page Declaring
Internal Tables.

We have not yet introduced r efer ence types. These will be discussed in conjunction with field symbols
and references.

Similarly to when you define data types, you must specify a type when you declare data objects. You
can do thisin one of two ways:

m Either by referring to a data type (using the TYPE addition), or a data object in the program that has
aready been declared (using the LI KE addition). Y ou can use exactly the same syntax variantsin
the DATA statement as when you declare loca data types using the TY PES statement.

m You can also construct afield, structure, or interna table directly in aDATA statement, without
having to define your own data type first.

In most cases, you will want to change the value of data objects at runtime. They are therefore also
known as variables. Y ou can assign a starting value to a data object using the VAL UE addition. If
you do not, the system assigns it the initia value appropriate to its type (see the table under
Predefined ABAP Types).

There are two further statements that you can use to declare special data objects:

m STATI CSdeclares|oca variables in a subroutine whose va ues are retained in subsequent
subroutine calls instead of being initialized again. For further information, refer to the Subroutines
uint.

m CLASS- DATA, an ABAP Objects statement, allows you to declare static class attributes.

With the exception of the W TH HEADER LI NE addition, the syntax for declaring internal table
objectsis exactly the same as that used to define table types or other kinds of data objects. The addition
alowsyou to create an internal table with a header line. However, thisis an obsolete programming
technique, and you should consequently no longer use it. For more information about header lines,
along with general information about interna tables, refer to the Internal Table Operations unit.

Dynamic table extension

Unlike arrays in other programming languages, the number of linesin an internal table isincreased
automatically by the ABAP runtime environment as required. Y ou therefore do not have to worry
about managing the size of the table, but only about inserting, reading, or deleting lines. This makes
chained lists redundant in ABAP.

I NI TI AL S| ZE addition

When you create an interna table, the system allocates 256 bytesto it. The system then alocates a
block of 8 KB to the table when you first add data, followed by further 8KB blocks as required. If you
are only expecting to place afew linesin your table, or are using nested internd tables, it may be worth
restricting the first automatic extension using the addition | NI TI AL SI ZE <n>. You may do this
either in the data object definition or in the type definition. <n> is the maximum number of lines that
you are expecting to put in the table. When the system first alocates memory, it alocates the product
of <n> and the length of the line. In the second step, it alocates twice that amount, and then in
subsequent steps, it allocates between 12 and 16 KB.

Selection screens are a specia kind of screen whose layout you program directly in the processing logic
using ABAP statements. In an executable (type 1) program, there is a standard selection screen
(screen number 1000). The definition of the standard selection screen does not require the statements
that normally mark the beginning and end of a selection screen definition, neither does it require an
explicit cal. The following statements alow you to easily create screens on which the user can enter
data.

m PARAMETERS creates an input field on the selection screen with the type you specify and a variable
in the program with the same name. You cannot usef , st ri ng, xst ri ng, or references to specify
the type.

m SELECT- OPTI ONS creates a pair of "from - to" fields on the screen, in which it is possible to enter

sets of complex selections for a specified variable. The values that the user enters are stored in an
internal table that the system creates automatically. The internal table has four fieldssi gn,
option,l ow,andhi gh.

m You can aso create thiskind of tableusing ...{TYPE|LIKE} RANGE OF However, tables
declared in thisway are not linked to the selection screen.

For further information about these statements, refer to the coursesBC405 (Techniques of List
Processing and ABAP Query) and BC410 (Programming User Dialogs).

Constants and literals are fixed data objects - you cannot change their values at runtime.

m You define constants using the ABAP keyword CONSTANTS. Init, you must use the VALUE
addition to assign a value to your constant.
Recommendation:
Avoid using literals wherever possible. Use constants instead. Y our programs will then be easier to
maintain.

m Literasalow you to specify avalue directly in an ABAP statement. There are two kinds of literals -
numeric literals and text literals. Text literals must always be enclosed in single quotes. Integers
(including aminus sign if appropriate) can be represented as numeric literals. They are mapped to
the data typesi and p (based on the interval that each data type can represent).

Example:

DATA: resultl TYPE i, result2 LIKE resultl.

resultl = -1000000000/300* 3. "resultl: 999.999-

result2 = -10000000000/300* 3. "result2: 10.000.000-

A numeric literal can contain up to 31 digits.

All other values (decimal and floating point numbers, strings, and so on) must be given as text
literals. The system converts the data type if necessary.

A text literal can contain up to 255 characters.

If you want a single quote to appear in atext literal, you must use two single quotes in order for it to
be interpreted as part of the literal and not the closing single quote.

Text symbolsare a specia form of text literals.

Y ou can create a set of text symbols for any program. These can be used for output in various ways.
The advantage of text symbols over normal text literalsis that they can be trandated. Furthermore,

text elements are stored separately from the program source code, making your program easier to
understand.

Text symbols are often used to create lists that are not language-specific. Y ou can aso use them to
assign texts dynamically to screen objects. (Static text elements for screen objects are a specia
case, and can be trandlated).

Y ou can display text symbolsin two different ways using the WRITE statement:
m VWRI TE t ext - <tsl1>. (where<t s1> can beany three-character ID).

m WRI TE '<default text>' (<ts2>). (where <t s2> can beany threecharacter ID).

Inthiscase, <t s2> isdisplayed if thereis atext for it in the current logon language. If there is not,
the default text is displayed.

When you use screens, the system automatically transports field contents from the processing logic to
the screen and back, but only wher e screen fields and ABAP fields have the same names.
Restriction:

If you use screen fields with a reference to the ABAP Dictionary (Get from Dictionary functionin
the Screen Painter), you must use the TABLES statement to declare a data object with the same
name as the ABAP Dictionary object in order for the field transport to work. Structures you declare
like this are often referred to as work areas.

There are numerous advantages to using an ABAP Dictionary reference: Dictionary objects normally
include foreign key checks, field help, possible entries, and the necessary error dialogs.
Consequently you can catch inconsistent data as soon as the user enters it and before you even leave
the screen.

If you program your own field checks, the field contents must already have been transported to the
program. If you forget to reset the field when a check fails, an unwanted value may remain in the

work area. Y ou also face the same danger if you are not sure whether work areas are shared by more
than one program.

To avoid these dangers, you should regard TABLES work areas as an interface between the screen and
program, and only use them in this context. They provide data for the screen at the end of the PBO
event, and receive it again when the vaues are transported from the screen.

Logical databases are special ABAP programs that you can attach to an executable (type 1) program.
They read data from the database and pass it to the executable program. Because the task of reading
the data has been passed to the logical database, your own ABAP program becomes considerably
simpler.

The logica database passes the data to your program using interface work areas that you declare using
the NODES <node> gtatement. The statement creates a variable <node> that refers to the data
type in the ABAP Dictionary with the same name.

The datais passed to your program record by record. Each time the logical database makes arecord
available to your program, the corresponding GET <node> or GET <node> LATEeventis
triggered. In your program, you can code the relevant event blocks.

Y ou can determine the type of the data record returned by the logical database using the TYPE addition.
However, you are restricted to types that are supported by the logical database. For further
information about this statement, refer to the online documentation or course BC405 (T echniques of
List Processing and ABAP Query).

The data object SPACE is a constant with type C and length 1. It contains a single space.

The system automatically creates a structure called sy for each program, based on the ABAP
Dictionary structure syst . Theindividual components of the structure are known as system fields.
They contain values that inform you about the current state of the system. The values are updated
automatically by the ABAP runtime environment.

Y ou can accessindividual system fields using the notation sy- <system f i el d>.

System fields are variables, so you can change them in your programs. However, you should only do
thisin cases where it is explicitly recommended in the documentation (for example, navigating
between list levels by manipulating sy- | si nd). Inall other cases, you should only read the
contents of system fields, since by changing them you might overwrite information that is important
for subsequent steps in the program.

The online documentation contains alist of all system fields with notes on their use. You can also
display the structure sy st inthe ABAP Dictionary.

You declare field symbols using the FI ELD- SYMBOLS <<f s>> gstatement. The brackets (<>) are
part of the syntax.

Field symbols allow you symbolic access to an existing data object. All of the changes that you make
to the field symbol are applied to the data object assigned toiit. If thefield symbol is not typed
(TYPE ANY), it adopts the type of the data object. By specifying atype for the field symboal, you
can ensure that only compatible objects are assigned to it.

Field symbols are smilar to der eferenced pointers.

Y ou use the ASSI G\ statement to assign a data object to the field symbol <<f s>>. Tollift atype
restriction, use the CASTI NGaddition. The data object is then interpreted as though it had the data
type of the field symbol. Y ou can aso do this with untyped field symbols using the CASTI NG
TYPE <t ype> addition.

Usethe expresson <<f s>> | S ASSI GNED to find out whether the field symbol <<f s>> is
assigned to afield.

The statement UNASSI GN <<f s>>. setsthe field symbol <<f s>> so that it points to nothing.
Thelogical expression <<f s>> | S ASSI GNED isthen fase.

An untyped field symbol that does not have a data object assigned to it behaves (for compatibility
reasons) like a constant with type C and length 1.

The statement TYPES <ref type> TYPE REF TO dat a. *) defines areference type to adata
object. DATA. . . defines the corresponding reference itself. Such areferenceisafield in which an
address can be stored.

The GET REFERENCE OF <dat a obj ect> | NTO <r ef er ence> statement writes the
address of the data object (already declared) into the reference variable. In other words, the reference
points to the data object in memory.

Thus ABAP uses reference semantics (changes apply to the address) as well as value semantics, as
used in field symbols (where changes apply to the data objects). However, in ABAP, reference
semantics is restricted to assignments.

The dereferencing operator ->* in the ASSI GN statement allows you to assign the data object to
which the reference points to afield symbol. Y ou can then access the vaue of the data object.

Y ou can create a data object with a specified type at runtime using the CREATE DATA
<r ef er ence> statement. This data object has no name, but the reference pointsto its address.
(Seedso GET REFERENCE CF...)

For further information about using references in ABAP Objects, refer to the I ntroduction to ABAP
Objects unit.

*) Note: Datain this context is not a keyword, but rather a predefined name like space or p.

Y ou can usetype casting dynamically when you assign a data object to afield symbol. The graphic
presents an example of this.

The name of the database table is not known until runtime (and consequently, neither is the line type).
Since you cannot specify adynamic | NTO clause in the SELECT statement, the system writes the
data records into the long character field line.

The assignment to field symbol <f s_wa> and the type casting then make it possible to access the field
asthough it were aflat structure. All type attributes are inherited from the database table. (You can
aso refer to the line type of an ABAP Dictionary object using the TYPE addition.)

If you knew the component names, you could display the fields directly using
WRI TE <fs_wa>-....

However, you will not normally know the names of the components. In this case, you must use the
ASSI GN COVPONENT variant, in which the components of the structure <f s_wa> are assigned
one-by-one to the field symbol <f s_conp> and then displayed. When the loop runs out of
components, the program reads the next data record.

Problem
The address of | i ne must satisfy the same address rules as a table structure (address must be
divisible by four with no remainder). Y ou can force this by declaring an integer field dumy directly
before declaring | i ne. (Integers are dways stored at addresses that are divisible by four.)

Unlike conventional data objects, you can specify the type of a data object created at runtime
dynamicaly. The above exampleisadightly modified version of the example on the previous page.

Thistime, the ideais the create the data object for the | NTO clause dynamically at runtime. Inthis
case, the typeis aready known (you have entered the table name), and there are no more aignment
problems. The statement ASSI GN d_ref->* to <fs_wa> assgnsthe dataobject to the field
symbol. The datatype of the table isinherited by the field symbol, so type casting is no longer
necessary.

Instead of using along character field, you can now write the data record into the data object with the
same type to which the reference d_r ef is pointing, by using the field symbol <f s_wa>.

Y ou will sometimes need to find out the attributes of a data object at runtime, especialy when you use

field symbols and references. The DESCRI BE FI ELD statement returns various type attributes of
variables.

Caution:

If you query the length of afield with type st ri ng or xst ri ng, the system does not return the
length of the string. Instead, it returns the length of the string reference, which is always eight bytes.
To find out the length of the string, use the OUTPUT- LENGTH addition.

The statement DESCRI BE TABLE <i t ab> LI NES <n> returns the number of linesin an internal
table.

Since the introduction of ABAP Objects, there is now a system caled the RTTI concept (Run Time
Type | nformation) that you can use to find out type attributes at runtime. It is based on system

classes. The concept includes al ABAP types, and so covers dl of the functions of the statements
DESCRI BE FI ELDand DESCRI BE TABLE.

Unit: Data Types and Data Objects:
Topic: Defining data types
and data objects

*e e

At the conclusion of these exercises, you will be able to:
Define data types
Define variables and selection options

Declare field symbols

You are a programmer for an airline consortium, and it is your job to
write analysis programs for severa airlines.

L2 s

1. Completethe program Z##_BC402_COUNTERLI ST1.
Create a suitable internal table to allow you to buffer the names of airports and their codes.
Create a second internal table for airlines, airports, and counter numbers.
isyour two-digit group number.
Model solution:
SAPBC402_TYPS_COUNTERLI ST1

1-1

1-2

1-3

1-4

Define the structure typet _ai r por t . It should have the following structure:

Component Type
id sairport-id
nane sai rport-nane

Define the structure typet _count er . It should have the following structure:

Component Type

airport scounter-airport
airp_name sairport-name
carrid scounter-carrid
countnum scounter-countnum

Declare theinterna tablei t _carr _count er asastandard table with the line
typet _count er and anornunique default key.

Declare the structure wa_count er with the datatypet count er .

1-6

1-7

Declare theinternal tablei t _ai r port _buf f er asahashed table with the line
typet _ai r port . The unique key should contain the component i d.

Declare the structurewa_ai r port with datatypet _ai r port.

On the standard selection screen, declare the selection option so_car r for the
fiddwa_counter-carri d.

Maintain a selection text.

2. Complete the program Z## BC402- FLI GHTLI ST1:
Declare an interna table to hold flight timetable data for various airlines.
It should later be possible to assign one or more available aircraft types to each airline.
This should be implemented as a second internal table, nested in the line type of the
original table.
To type the inner internal table, you will first create two ABAP Dictionary objects.
Y ou should also declare a selection table for the set of airlines for which the authorization
check was successful.
isyour two-digit group number.
Model solutions:
BC402_TYPS_ PLANE
BC402_TYPS PLANETAB
SAPBC402_TYPS_FLI GHTLI ST1

2-1 Inthe ABAP Dictionary, create the global structure Z## BCA402_ PLANE. It
should have the following structure (remember that you must relate a currency field
to the amount field):

Component Type using data el ement
PLANETYPE S PLANETYE
SEATSMAX S SEATSMAX

AVG PRI CE S PRI CE

CURRENCY S CURRCODE

2-2 Inthe ABAP Dictionary, create the globa structure Z##_BCA402_PLANETAB. For
the line type, use the globa structure Z## BC402_PLANE. Definetheinternal
table as a standard table with a non-unique key consisting of the component
PLANETYPE.

2-3 Inthe program, define the structuretypet f1 i ght . It should have the following
structure: (Note that the last component has a global table type.)

Component Type

carrid sflight-carrid
conni d sflight-connid
fldate sflight-fldate
cityfrom spfli-cityfrom
cityto spfli-cityto

seat socc sflight -seatsocc
payment sum sflight-paynment sum
currency sflight-currency
it_planes z## bc402_pl anet ab

2-4 Definetheinternal tabletypet fli ghttab withlinetypet fli ght . It should
be a sorted table with the unique key carri d conni d fl date.

2-5

2-6

2-7

2-9

Declareastructurewa_f | i ght withthedatatypet fli ght .
Declarean internal tablei t _f | i ght s withthedatatypet fli ghtt ab.

On the standard selection screen, declare the selection option so_car r for the
fildwa_f | i ght-carrid.

Declareaselectiontableal | owed_carri ers for fieldswithtypet fli ght-
carrid.

\\'/// ... TYPE RANGE OF ...

- ~

Declareawork areawa_al | owed_car r for the selection table
al l owed_carriers.

2-10 Maintain the selection texts.

Topic: Defining data types

/ Unit: Data Types and Data Objects:
and data objects

1 Model solution SAPBC402_TYPS_COUNTERLI ST1

*

*& Report SAPBCA02_TYPS_COUNTERLI ST1
*&

*

*& solution of exercise 1 data types and data objects
*&

*

REPORT sapbc402_typs_counterlistl.
TYPES:

BEG N OF t_airport,
id TYPE sairport-id,
nane TYPE sai rport - nane,
END OF t_airport,

BEG N OF t _counter,
ai rport TYPE scounter -airport,
ai rp_name TYPE sairport - nane,
carrid TYPE scounter-carrid,

count num TYPE scount er - count num
END OF t _counter.

DATA:
it_carr_counter TYPE STANDARD TABLE OF t_counter,

wa_counter TYPE t_counter,

it_airport_buffer TYPE HASHED TABLE OF t _airport
W TH UNI QUE KEY i d,

wa_airport TYPE t_airport.

SELECT- OPTIONS so_carr FOR wa_counter-carrid.

b R I .

2 M odel solution SAPBC402_TYPS_FLI GHTLI ST1

*

*& Report SAPBC402_TYPS_FLI GHTLI ST1
*&

*

*& solution of exercise 2 data types and data objects
*&

*

REPORT sapbc402 typs flightlistl.

TYPES:
BEG N OF t_flight,
carrid TYPE spfli-carrid,
connid TYPE spfli-connid,
fldate TYPE sflight-fldate,
cityfrom TYPE spfli-cityfrom
cityto TYPE spfli-cityto,

seat socc TYPE sflight-seatsocc,

payment sum TYPE sfli ght - paynent sum

currency TYPE sflight-currency,

it_planes TYPE bc402_typs_pl anet ab,
END OF t_flight,

t flighttab TYPE SORTED TABLE OF t_flight
W TH UNI QUE KEY carrid conni d fldate.

DATA:
wa_flight TYPE t_flight,
it flights TYPE t_flighttab.

SELECT- OPTI ONS so_carr FOR wa_flight-carrid.

* for authority-check:

kkhkkkhhkkhkkhkkhhkhkhkkhkhkkikkhkk*k

DATA:
al lowed carriers TYPE RANGE OF t _flight-carrid,
wa_al lowed carr LIKE LINE OF all owed_carriers.

* % ok X X *

Contents

Assigning values

)
® Processing strings and parts of fields
® Numeric operations

)

Program flow control

8 SAP AG 1999

Use CLEARTo reset any variable data object to the initial value appropriateto itstype.
m |n astructure, each component is reset individualy.
m |naninterna table w ithout a header line, all of the lines are deleted.

Use MOVE to copy the contents of one data object to another variable data object.

With complex objects, you can either address the components individually or use a"deep copy”. If the
source and target objects are compatible (see next page), the system copies the objects component by
component or line by line.

If they are not compatible, the system converts the objects as long as there is an appropriate conversion
rule.

If you are copying between two structures, and only want to copy values between identically-named
fields, you can use the MOVE- CORRESPONDI NG statement.

The conversion mechanisms explained on the following pages apply not only to the MOVE and MOVE-
CORRESPONDI NG statements, but also to calculations and value comparisons.

Unlike the MOVE statement, whenyou use WRI TE. .. TQO. .. to assign vaues, the target field is
always regarded as a character field, irrespective of its actual type. WRITE...TO behavesin the same
way as when you write output to alist. Thisalows you to use formatting options when you copy data
objects (for example, country-specific date formatting).

If two data types are not compatible but there is a converion rule, the system converts the source object
into the type of the target object when you assign values, perform calculations, or compare values.

The following pages contain the basic forms of the conversion rules, and examples for the most

frequent cases. For afull list of al conversion rules, refer to the ABAP syntax documentation for the
MOVE statement.

If there is no conversion rule defined for a particular assignment, the way in which the system reacts
depends on the context in which you programmed the assignment.

m |f the types of the objects involved are defined statically, asyntax error occurs.

Example:
DATA: date TYPE d VALUE '19991231', tinme TYPE t.

FI ELD- SYMBOLS: <fs_date> TYPE d, <fs_tinme> TYPE t.
ASSI G\ date TO <fs_date>, time TO <fs_tine>.
<fs time> = <fs_date>.

m |f the types of the objects involved are defined dynamically, aruntimeerror occurs, because the
system cannot tell in the syntax check whether they are convertible or not.
Example (remainder as above):

FI ELD- SYMBOLS: <fs_date> TYPE ANY, <fs_time> TYPE ANY.

In general, there isarule for converting every predefined ABAP data type into any other predefined
type.

Special cases:

m Thereare no rulesfor converting from type D totype T or vice versa, or for converting ABAP
Objects data types (object reference to object reference, object reference to interface reference).

Assignments or comparisons of this type cause syntax errors (where it is possible for the system to
detect them).

m When you assign atype Cfield to atype P field, you may only use digits, spaces, a decimal point,
and a plus or minus sign. The target field must also be large enough.

m When you convert a packed number to atype C field, the leading zeros are converted into spaces.

For full information about conversion rules for elementary types, refer to the online documentation in
the ABAP Editor for the MOVE statement.

The ABAP runtime environment has rules for converting
m Structures to non-compatible structures

m Elementary fields to structures

m Structures to eementary fields

In each case, the system converts the source variables to character fields and fills the target structures
byte by byte. The relevant conversion rules for elementary fields then apply.

Internal tables can only be converted into other internal tables. The system converts the lines types
according to the relevant rule for structures.

The example above shows that copying between non-compatible types may result in the target fields
containing values that cannot be interpreted properly. To avoid this problem, you should copy
values field by field in these cases. This ensures that the system applies the correct conversion rule
for elementary fields.

If you want to manipulate strings, it is better to use the statements expresdy intended for this
purpose.

Y ou can use the following statements to process stringsin ABAP:
m SEARCH Tosearchinastring

m REPLACE To replacethefirst occurrence of a string

m TRANSLATETO replace al specified characters

m SH FT To shift acharacter at atime

m CONDENSE To remove spaces

m CONCATENATE To chain two or more strings together

m OVERLAY To overlay two strings

m SPLIT To split astring

In all string operations, the operands are treated like type C fields, regardless of their actual field type.
They are not converted.

m All of the statements apart from TRANSLATE and CONDENSE set the system field sy - subr c.
SEARCHa s0 sets the system field sy- f dpos with the offset of the beginning of the string found.

m All of the statements apart from SEARCH distinguish between upper- and lowercase.
m To find out the occupied length of a string, use the standard function STRLEN() .

The system searches the field <field> for the string <searchstring>. The search string can have the
following form:

m'<str>'" String (trailing blanks are ignored)

m ' . <str> " Any string between the periods
(spaces are included in the search.)

m ' <str>*" A dring beginning with and including '<str>'
m ' <str>*" A dtring beginning with and including '<str>'

The offset of the found string is placed in the system field sy- f dpos If the search string is not found,
sy- f dpos containsthe value 0 and sy- subr c isset to 4.

You can use SEARCH <i t ab>instead of SEARCH <f i el d>. The system then searchesfor the

search string <sear chst r i ng> within the interna table <i t ab>. In thisvariant, the system also
setsthe system field sy- t abi x to the index of the line containing the search string.

REPLACE <str1> WTH <str2> | NTO <fiel d>.
Replaces the first occurrence of <strl> in <field> with <str2>.

TRANSLATE <fi el d> USI NG <str>.

Replaces all lettersin <f i el d>accordingto <st r >. <st r > contains the search and replacement
charactersin pairs. For the example: TRANSLATE ... USING ' AB'.

TRANSLATE <fi el d> TO UPPER| LONER CASE
Replaces dl lowercase letters in <field> with uppercase (or vice versa).

SHI FT <field> [<var>] [R GHI] [C RCULAR].

<var > can be one of the following:

BY <n> PLACES Shifts<fi el d>by <n> characters

UP TO <str> Shifts<f i el d> up to the beginning of <st r >

The additions have the following effect:

Rl GHT Shifts to the right

Cl RCULAR Shiftsto theright - characters shifted off the right-hand edge of the field reappear on
the left.

CONDENSE <fi el d> [NO GAPS] .

Consecutive spaces are replaced by a single space or are deleted.
Note:

Y ou can delete leading or trailing spaces using

SH FT <fi el d> LEFT DELETI NG LEADI NG SPACE or
SHI FT <field> R GHT DELETI NG TRAI LI NG SPACE

m SPLIT <field> AT <sep> INTO <f1> ... <fn>| TABLE <itab>}.
Splits<f i el d> at each occurrence of the separator string <sep> and places the parts into the fields
<f1> <fn>orintoconsecutive linesof theinterna table <i t ab>.

m CONCATENATE <f1> ... <fn> INTO <f> [SEPARATED BY <separ at or >] .
Combinesthefidds<f 1>. .. <fn>in<i fel d>. Trailing spaces are ignored in the component
fields. You can use the SEPARATED BY <separ at or > addition to insert the string
<separ at or > betweenthe strings<f 1>. . . <f n>.

m OVERLAY <f1> WTH <f2> [ONLY <str>].

<f 2> overlays <f 1> at al positions where <f 1> contains a space or one of the charactersin
<str>.

Note
See also Accessing Parts of Fields.

In any statement that operates on a character-type field, you can address part of the field or structure by
specifying a starting position and a number of characters. If the field lengths are different, the
system either truncates the target or fillsit with initial values. The source and target fields must have

thetype X, C,N, D, T, or STRI NG. Y ou can also use structures.

Example

MOVE <fi el d1>+<of f 1>(<l enl1>) TO <fi el d2>+<of f 2>(<| en2>).

This statements assigns <| en1> charactersof field <f i el d1> starting at offset <of f 1> to
<l en2> characters of <f i el d2> starting at offset <of f 2>.

Caution
Under Unicode *) only fields with type C, X, and STRING are suitable for partial access. In other

cases, you should use field symbols with casting.

*) Language- and culture-independent character set.

In ABAP, you can program arithmetic expressions nested to any depth. Y ou must remember that
parentheses and operators are keywords, and must therefore be preceded and followed by at least one

space.

The ABAP runtime environment contains a range of functions for different data types. The opening
parenthesis belongs to the functions name itself (and is therefore not separated from it by a space).
The remaining elements of each expression must be separated by spaces.

The expressions are processed in normal algebraic sequence - parenthetical expressions, followed by
functions, powers, multiplication and division, and finally, addition and subtraction.

A caculation may contain any data types that are convertible into each other and into the type of the
result field. The system converts all of the fields into one of the three numeric datatypes (I , P, or
F), depending on the data types of the operands. The ABAP runtime system contains an arithmetic
for eachh of the three data types. The system then performs the calculation and converts it into the
data type of the result field.

The DI V (integer division) and MOD (remainder of adivision) always return whole numbers.

In integer and packed number arithmetic, the system always rounds to the corresponding decimal place.
So, for example:

DATA int TYPE i. int =4/ 10. " result: O
int =5/ 10. " result: 1

or

DATA: pack TYPE p DECI MALS 2. pack = 4 / 1000. " result: 0.00
pack = 5/ 1000. " result: 0.01.

However, intermediate results using packed numbers are always accurate to 31 decimal places.

The arithmetic used depends on how the system interprets the numeric literas:
DATA int TYPE i. int 1000000000 / 300000000 * 3. " result: 9

i nt 10000000000 / 3000000000 * 3. " result: 10

If you do not set the fixed point arithmetic option in the program attributes, the DECI MAL S addition in
the DATA statement only affectsthe output, not the arithmetic. In this case, al numbers are
interpreted internally as integers, regardless of the position of the decimal point. Y ou would then
have to calculate the number of decimal places manually and ensure that the number was displayed
correctly. Otherwise, the results would be meaningless.

DATA: pack TYPE p DEC NALS 2.
pack = '5000.00" * '0.20'. " result: pack = 100000. 00
Furthermore, the system would also round internally (integer arithmetic - see above).

Thefixed point arithmetic option is always selected by default. Y ou should always accept this
value and use packed numbersfor business calculations.

Cadlculations using data type F are always, for technical reasons, imprecise.
Example
Suppose you want to calculate 7.72% of 73050 and display the result accurate to two decimal places.
The answer should be 5310.74 (73050 * 0.0727 = 5310.735). However, the program returns the
following:
DATA: float TYPE f, pack TYPE p DECI MALS 2.
float = 73050 * '0.0727'. " result: 5.3107349999999997E+03
pack = float. WRITE pack. " result: 5310.73
Y ou should therefore only use floating point numbersfor approximations. When you compare
numbers, always used intervals, and alwaysround at the end of your calculations.

There are four genera categories of runtime error that can occur in calculations:

m A field that should have been converted could not be interpreted as a number.

m A number range istoo small for a conversion, value assignment, or to store intermediate results.
m You tried to divide by zero.

m You passed an invalid argument to a built-in function
(Forexample: ... log(-3) ...).

For further information, refer to the ABAP syntax documentation for the COVPUTE statement.

m If you assign a date fields to a numeric field, the runtime system calcul ates the number of days that
have eapsed since 01.01.0001.

m Conversdly, when you assign a numeric value to a date field, the system interprets it as the number
of days since 01.01.0001.

m Before any calculations are performed with dates, the value of the date field is converted into its
numeric value (number of days since 01.01.0001)

The above example calculates the last day of the previous month.

When you calculate with time fields, the system uses a smilar procedure, that is, it counts the number
of seconds since 0:00:00.

Comparisons between non-numeric data objects are interpreted differently according to their data type.
m |f possible: Conversion into numbers (heaxadecimal, for example, as dua number);
m Dateand time Interpreted as earlier/later, so 31.12.1999 < 01.01.2000;

m Other characters: Lexical interpretation according to character codes. The two operands are
given the same length and filled with trailing spaces where necessary;

m References. System compares address and data type.
It only makes sense to compare for equality.

When you join and negate comparisons, the usua rules for logical expressions apply:
NOT is stronger than AND, and AND is stronger than OR

Example
NOT fi1=1f2 OR f3 =f4 AND f5 = f6 isthesameas
(NOT (f1 =f2)) OR(f3 =f4 ANDf5 =16).

Y ou should therefore enclose the components expressions of your comparisons in parentheses, even
when it is not strictly necessary, to make them easier to under stand, and for additional safety.

Y ou can aso considerably improve the runtime of your programs by optimizing the structure of your
expressions.

For each of the above relationa operators, there is a corresponding negative expression.
Thelogical expression ... <str 1> <op> <str 2> .. can contain an operator <op> asfollows:
m CO <str 1> only contains characters from <st r 2>;

m CN <str 1> containsnot only charactersfrom <st r 2> (correspondsto NOT <str 1> CO
<str2>);

m CA <str1>containsat least one character from <st r 2>;
m NA <str 1> doesnot contain any charactersfrom <st r 2>;
m CS <str1>containsthestring <str 2>;

m NS <str 1> doesnot contain the string <st r 2>;

m CP <str 1> containsthe pattern <st r 2>;

m NP <str 1> doesnot contain the pattern <st r 2>;

The system field sy- f dpos contains the offset of the character that satisfies the condition, or the
length of <str 1>.

In the first four expressions, the system takes into account upper- and lowercase |etters and the full
length of the string (SPACE column).

To specify patterns, use' *' for any string, and ' +' for any character. The escape symbol is ' #' .

m InaCASE - ENDCASE dructure, you test a data object for equality against various values. When
atest succeeds, the corresponding statement block is executed. If al of the comparisons fail, the
OTHERS block is executed, if you have programmed one.

m Inanl F - END F structure, you can use any logical expressions. If the condition is met, the
corresponding statements are executed. 1f none of the conditions is true, the ELSE block is executed,
if you have programmed one.

In both cases, the system only executes one statement block, namely that belonging to the fir st valid
case.

If each condition tests the same data object for equality with another object, you should use a CASE-
ENDCASE structure. It issimpler, and requireslessruntime.

Outside a loop, you can make the execution of all remaining statementsin the current processing
block conditional using CHECK. If the check fails, processing resumes with the first statement in the
next processing block.

There are four loop structures. The number of the current loop pass is always available from the system
fiedd sy- i ndex. If you use nested loops, the value of sy- i ndex refersto the current one. You
can take control over loop processing using the CHECK <I ogi cal expression>andEXI T
statements. For further information, refer to Leaving Processing Blocks. The graphic shows how you
can control the further processing of aloop.

m Unconditional/l ndex-based loops
The statements between DOand ENDDOare executed until you end the loop with atermination
statement. Y ou can specify a maximum number of loop passes. If you do not, you have an endless
loop.

m Conditional loops
The statements beween VWHI LE and ENDVWHI LE are repeated as long as the condition <logica
expression> is met.

m Multiple-line access to an internal table
For further information, refer to the Internal Table Oper ationsunit.

m Multiple-record accessto a database table or view
Refer to the coursesBC400 (ABAP Workbench: Concepts and Tools)
and BC405 (Techniques of List Processing and ABAP Query), and the syntax documentation for the
SELECT statement.

Reminder
A processing block isan ABAP event block or modulariziation unit.

m You can usethe ABAP statement CHECK <I ogi cal expressi on> outsidealoopto
terminate the processing block if the logica condition is not met. Processing continues with the first
statement in the next processing block. Within aloop, processing resumes at the beginning of the
next loop pass.

m The EXI T statement can behave in three different ways. Within aloop, it terminates the loop
processing completely. Outside aloop but in one of the events listed under Events |1, it makes the
system display the current contents of the list buffer. Events from the other groups listed above can
still be triggered. In the case of LOAD- GF- PROGRAM START- OF SELECTI ON istriggered.

m |nal other cases, EXI T has the same effect as CHECK.

m The statements LEAVE PROGRAMand LEAVE TO TRANSACTI ON <t code> terminate the
current program.

m When you send atermination (type A) message, the current program ends, and the entire program
stack is destroyed. For further information, refer to the unit Program Calls and Passing Data.

Within a processing block, you can use the structure CATCH SYSTEM EXCEPTI ONS. . .
ENDCATCH to catch runtime errors. If the specified system exception occurs, the system leaves the
statements in the block and continues processing after the ENDCATCH statement. This construction
only catches runtime errors at thecurrent call level. If you call a subroutine in which a runtime
error istriggered, you must catch this error in the subroutineitsdf.

Each runtime error is assigned to an ERROR class. For afull list, refer to the syntax documentation
for the CATCH statement.

Y ou can specify one of the following as the system exception <excpt> that you want to catch:
m A singleerror (for example, convt _no_nunber);

m ERROR classes (for example, arit hmeti c_errors);

m All catchable runtime errors.

The return code values<r c1>. .. <r cn> must be numeric literas.

The return code assigned to the runtime error that occurred is placed in the system field sy- subr c. If
more than one value was assigned to it, the system uses the first. Thisis particularly important if you
specify two different ERROR classes that contain the same runtime error.

CATCH SYSTEM EXCEPTI ONS ... ENDCATCH constructions can be nested to any depth. If a
runtime error occurs, the system searches for an assignment in the current statement block. If it does
not find one, it searches in the next-highest block, and so on. Processing resumes after the
ENDCATCH statement of the block in which the assignment was found.

The above example nests three CATCH SYSTEM EXCEPTI ONS ... ENDCATCHstructures.
Beforeeach ENDCATCH statement is a statement that causes a runtime error.

At which statement does the system set the field sy- subr ¢c? With which value? At which statement
does processing resume?

The division by zero in the innermost block triggers the runtime error bcd_zer odi vi de. However,
there is no assignment for the error in this block.

Consequently, the system looks in the next-highest block for the error, whereit isassigned. sy- subr ¢
isset to 4.

The system resumes processing at the first statement after the middle ENDCATCH statement. The
assignment of a string (which cannot be interpreted as a packed number) to a packed number field is
therefore not executed, even though we would have caught the ensuing runtime error
convt _no_nunber in our program.

Finally, we trigger the runtime error convt _over f | ow by assigning a number to the packed field
that istoo big for it. A return code is assigned to this error in the outer block.

Sy-subrc issetto2

The system resumes processing after the corresponding ENDCATCH statement.

Internal Table Operations H'
A

Contents

General information
Access using the index
Access using the key

Access using field symbols

Applied example

8 SAP AG 1999

There are two ways of accessing the records in an internal table:

m By copying individual records into awork area The work area must be compatible with the line
type of the internal table.
Y ou can access the work areain any way, as long as the component you are trying to accessis not
itself an internal table. If one of the componentsis an internal table, you must use a further work
area, whose line type is compatible with that of the nested table.
When you change the internal table, the contents of the work area are either written back to the table
or added as a new record.

m By assigning theindividual data records to an appropriate field symbol. Once the system hasread an
entry, you can address its components dir ectly viaits address. There is no copying to and from the
work area. This method is particularly appropriate for accessing large or complex tables.

If you want to read more than one record, you must use a LOOP. . . ENDLOOP structure. You can
then change or delete the line that has just been read, and the system applies the change to the table
body. You can aso change or delete lines using alogica condition.

When you use the above statements with sorted tables, you must ensure that the sort sequenceis
maintained.

Within aloop, the | NSERT statement adds the data record before the current record in the table. If
you want to insert a set of lines from an internal table into another index table, you should use the
| NSERT LI NES OF <it ab> variant instead.

When you read single data records, you can use two further additions:

m |n the COMPARI NGaddition, the system compares the field contents of a data record with thosein
the work areafor equality.

m |n the TRANSPORTI NG addition, you can restrict the data transport to selected fields.

Other statementsfor standard tables

m SORT <itab> [ASCENDI NG DESCENDI NG
[BY <f 1> [ASCENDI NG DESCENDI NG ..
<f n> [ASCENDI NG DESCENDI NG] [AS TEXT] [STABLE].
These statements sort the table by the table key or the specified field sequence. If you do not use an
addition, the system sorts ascending. If you usethe AS TEXT addition, character fields are sorted in
culture-specific sequence. The relative order of the data records with identical sort keys only remain
constant if you use the STABLE addition.

m APPEND <wa> | NTO <r ank> SORTED BY <f >.
This statement appends the work areato the ranked list <ranked> in descending order. The ranked
list may not belonger than the specified | NI TI AL Sl ZE, and the work area must satisfy the sort
order of the table.

The statements listed here can be used freely with both standard and sorted tables.

When you change a single line, you can specify the fields that you want to change using the
TRANSPORTI NGaddition. Within aloop, MODI FY changes the current datarecord.

If you want to delete a set of lines from an index table, use the variant DELETE <i t ab> FROM . .
TO.. or WHERE. . . instead of aloop. You can program amost any logical expression after WHERE.
The only restriction is that the first field in each comparison must be a component of the line structure

(see the corresponding Open SQL statements). Y ou can pass component names dynamically.
If you want to delete theentire internal table, use the statement CLEAR <i t ab>.

Inthe LOOP AT... ENDLOOP sructure, the statements within the loop are applied to each data
record inturn. The | NTOaddition copies entries one at atime into the work area.

The system places the index of the current loop passin the system field sy - t abi x. When the loop has
finished, sy-t abi x hasthe same valuethat it had before the loop started

Inserting and deleting lines within a loop affects the following loop passes.

Access to a hashed table is implemented using a hash agorithm. Simplified, this means that the data
records are distributed randomly but evenly over a particular memory area.. The addresses are stored
in aspecia table called the hashing table. Thereis a hash function, which determines the address at
which the pointer to a data record with a certain key can be found. The function is not injective, that is,
there can be several datarecords stored at a single address. Thisisimplemented internally as a chained
list. Therefore, athough the system still has to search sequentially within these areas, it only has to
read a few data records (usually no more than three). The graphic illustrates the smplest case, that is, in
which there is only one data record stored at each address.

Using a hash technique means that the access time no longer depends on the total number of entriesin
thetable. On the contrary, it is aways very fast. Hash tables are therefore particularly useful for large
tables with which you use predominantly read access.

Data records are not inserted into the table in a sorted order. Aswith standard tables, you can sort
hashed tables using the SORT statement:
SORT <itab> [ASCENDI NG DESCENDI NG
[BY <f1> [ASCENDI NG DESCENDI NG . .
<f n> [ASCENDI NG DESCENDI NG] [AS TEXT] .

Sorting the table can be useful if you later want to use aloop to access the table.

Y ou can use the statements listed here with tables of all three types. Apart from afew specia cases,
you can recognize the statements from the extra keyword TABLE. The technical implementation of the
statements varies dightly according to the table type.

Asarule, index accessto an internal tableis quickest. However, it sometimes makes more sense to
access data using key vaues. A unique key isonly possible with sorted and hashed tables. If you use
the syntax displayed here, your program coding is independent of the table type (generic type
specification, easier maintenance).

With a standard table, inserting an entry has the same effect as appending. With sorted tables with a
non-unique key, the entry is inserted before the first (if any) entry with the same key.

Toread individual data records using the first variant, all fields of <wal> that are key fields of

<i t ab> must befilled. <wal> and <wa2> can beidentical. If youusethe W TH TABLE KEY
addition in the second variant, you must also specify the key fully. Otherwise, the system searches
according to the sequence of fields that you have specified, using a binary search where possible. You
can force the system to use a binary search with a standard table using the Bl NARY SEARCH addition.
In this case, you must sort the table by the corresponding fields first. The system returns the first entry
that meets the selection criteria

Similarly to when you read entries, when you change and delete entries using the key and awork area,
you must specify al of the key fields.

Y ou can prevent fields from being transported into the work area during loop processing by using the
TRANSPORTI NG NO FI ELDS addition in the WHERE condition. (Y ou can use this to count the
number of a particular kind of entry.)

Other statementsfor all tabletypes

m DELETE ADJACENT DUPLI CATES FROM <it ab>
[COWPARI NG <f1> .. <fn> <fn>}|ALL FIELDS}].
The system deletes al adjacent entries with the same key field contents apart from the first entry.
Y ou can prevent the system from only comparing the key field using the COVPARI NG addition. If
you sort the table by the required fields beforehand, you can be sure that only unique entries will
remain in the table after the DELETE ADJACENT DUPLI CATES statement.

m Searchesdl lines of the table <i t ab> for the string . If the search is successful, the system sets the
fieldssy-t abi x and sy-f dpos.

m FREE <itab>.
Unlike CLEAR, which only deletes the contents of the table, FREE releases the memory occupied by
it aswdll.

If you want to access your data using the index and do not need your table to be kept in sorted order or
to have a unique key, that is, when the sequence of the entries is the most important thing, not
sorting by key or having unique entries, you should use standard tables. (If you decide you need to

sort the table or access it using the key or abinary search, you can aways program these functions
by hand.)

This example is written to manage awaiting list.
Typicd functions are:

m Adding asingle entry,

m Deleting individual entries according to certain criteria,

m Displaying and then deleting the first entry from the lit,

m Displaying someone's position in the list.

For simplicity, the example does not encapsulate the functions in procedures.

The first thing we do in the example is to declare line and table type, from which we can then declare a

work area and our internal table. We aso require an elementary field for passing explicit index
values.

This example omits the user didogs and data transport, assuming that you understand the principles
involved. We redly only want to concentrate on the table access:

m Adding new entries
The data record for awaiting customer is only added to the table if it does not aready existinit. If
the table had a unique key, you would not have had to have programmed this check yourself.

m Deleting single entries according to variouscriteria
The criterion is the key field. However, other criteriawould be possible - for example, deleting data
records older than a certain insertion date reg_date.

m Displaying and deleting thefirst entry from thelist
Once a customer comes to the top of the waiting list, you can delete his or her entry. If the waiting
list is empty, such an action has no effect. Consequently, you do not have to check whether there are
entriesin the list before attempting the deletion.

m Displaying the position of a customer in the waiting list
As above, you do not need to place any datain the work area. We are only interested in the values of
Sy-subrc and sy-t abi x. If theentry isnot in thetable, sy- t abi x isset to zero.

At this stage, let us return to the special case of the restricted ranked list:
DATA <rank> {TYPE| LI KE} STANDARD TABLE OF ... INITIAL SIZE <n>.
APPEND <wa> | NTO <r ank> SORTED BY <f >.

When you choose to use a sorted table, it will normally be because you want to define auniquekey.
The mere fact that the table is kept in sorted order is not that significant, since you can sort any kind of
internal table. However, with sorted tables (unlike hashed tables), new data records are inserted in the
correct sort order. If you have atable with few entries but lots of accesses that change the contents, a
sorted table may be more efficient than a hashed table in terms of runtime.

The aim of the example here is to modify the contents of a database table. The most efficient way of
doing thisisto create aloca copy of the table in the program, make the changes to the copy, and then
write al of its data back to the database table. When you are dealing with large amounts of data, this
method both saves runtime and reduces the load on the database server.

Since the internal table represents a database table in this case, you should ensure that its records have
unique keys. Thisisassured by the key definition. Automatic sorting can also bring further
advantages.

When you change a group of data records, only thefieldspri ce and cur r ency are copied from the
work area.

For information about changing database tables (data consistency, authorization and locking issues),
refer to courseBC414 (Programming Database Updates) and the online documentation.

The hash algorithm calculates the address of an entry based on the key. This means that, with larger
tables, the access time is reduced significantly in comparison with a binary search. In aloop, however,
the hashed table has to search the entire table (full table scan). Since the table entries are stored
unsorted, it would be better to use a sorted table if you needed to run aloop through a left-justified
portion of the key. It can also be worth using a hashed table but sorting it.

A typica use for hashed tables is to buffer detailed information that you need repeatedly and can
identify using a unique key. Y ou should bear in mind that you can also set up table buffering for atable
in the ABAP Dictionary to cover exactly the same case. However, whether the tables are buffered on
the application table depends on the size of the databese table. Buffering in the program using hashed
tables also alows you to restrict the dataset according to your own needs, or to buffer additional data as
required.

In this example, we want to allow the user to enter the name of acity, and the system to display its
geographical coordinates.

First, wefill our "buffer table” ci ty | i st with values from the databasetable sgeoci ty.
Then, we read an entry from the hashed table, specifying the full key.

The details are displayed asasimple list.

At this point, it is worth repeating that you should only use this buffering technique if you want to keep
large amounts of data locally in the program. Y ou must ensure that you design your hashed table so
that it is possible to specify the full key when you access it from your program.

Y ou can define internal tables either with (W TH HEADER LI NE addition) or without header lines.
Aninternal table with header line consists of awork area (header line) and the actua table body.

Y ou address both objects using the same name. The way in which the system interprets the name
depends on the context. For example, the MOVE statement applies to the header line, but the SEARCH
statement applies to the body of the table.

To avoid confusion, you are recommended to use internal tables without header lines. Thisis
particularly important when you use nested tables. However, internal tables with header line do offer a
shorter syntax in several statements (APPEND, | NSERT, MCDI FY, COLLECT, DELETE, READ,
LOOP). Within ABAP Objects, you can only use interna tables without a header line.

Y ou can aways address the body of an internal table <i t ab> explicitly by using the following syntax:
<i tab>[] . Thissyntax is aways valid, whether the internal table has a header line or not.

Example
DATA itabl TYPE TABLE OF i W TH HEADER LI NE.

DATA itab2 TYPE TABLE OF i W TH HEADER LI NE.

itabl
itabl[]

i tab2. " Only header lines will be copied
itab2[]. " Copies table body

You can only use the COLLECT statement with internal tables whose non-key fields are all numeric
(typel , P,or F).

The COLLECT statement adds the work area or header line to an internal entry with the same type or, if
there is none, adds a new entry to the table. It searches for the entry according to the table type and
defined key. If it finds an entry in the table, it adds al numeric fields that are not part of the key to the

existing values. If thereis not aready an entry in the table, it appends the contents of the work area or
header line to the end of the table.

When you read atable line usng READ or aseries of table linesusing LOOP AT, you can assign the
lines of the interna table to afield symbol using the addition. .. ASSI GNI NG <<fiel d
synbol >>. Thefidd symbol <<f i el d synbol >> then points to the line that you assigned,

allowing you to accessit directly. Consequently, the system does not have to copy the entry from
the internal table to the work area and back again.

Thefield symbol <<f i el d_synbol >>must have the same type as the line type of the internal table.
However, there are also certain restrictions when you use this technique:
m You can only change the contents of key fields if the table is astandard table.

m You cannot use the SUMstatement in control level processing. (The SUM statement adds al of the
numeric fields in the work area.)

This technique is particularly useful for accessing alot of table lines or nested tables within aloop.
Copying values to and from the work areaiin this kind of operation is particularly runtime-intensive.

In this example, the user should be able to enter a departure city, for which al possible flights are then
listed.

To do this, we declare an innner table (cof | _I i st) and an outer table(t r avel _I i st)with
corresponding work aress.

A further internal table (conn_l i st) buffersand sorts dl of the flight connections.

Note

In order to allow loop access using field symbols, the buffer table and the inner internal table must have
the same type. Furthermore, we want to sort the table by various criteria later on. Consequently, we are
using standard tables, not sorted tables.

We also need to declare three field symbols with the line types of the internd tables.

Firdt, the flight connections starting in the city entered in pa_st ar t are assigned to the field symbol
<fs_conn>.

We are only interested in the arrival city of each flight connection. Thisisthe first entry in aline of the
outer tablet ravel _Ii st.

Before this can be entered properly sorted, the inner tablewa_t r avel - cof | _I i st must befilled
with the cities that can be reached from it. To do this, the program looks for the corresponding flight
connections and appends them to the inner table.

Next, thefield ci t yf r omisinitialized, sinceit is required for control level processing in the display.
The table isthen sorted by field ci t yt o and carri d.

Because of the control level processing used here, only new arrival cities are written in the list.

Note
It would have been possible to solve this problem using nested SELECT statements. However, thisis

not a realistic proposition because of the excessive load that we would then place on the database
server.

Index access (APPEND, | NSERT ... | NDEX,LOCP ... FROM TO andsoon)ispossblefor
standard and sorted tables. A possible consequence of thisis that you may cause a runtime error by
violating the sort sequence if you use | NSERT with an index or APPEND on a sorted table.

SORT can only apply to standard and hashed tables. It has no positive effect in a sorted table, and can
lead to a syntax or runtime error if the attempted sort violates the key sequence.

Y ou can use key access for any table type, but the runtime required varies according to the table type.
The runtime depends on whether the values are part of the key (so the sequence in which you pass them
is aso significant). | NSERT for a standard table or hashed table using the key has the same effect as
the APPEND statement.

The system supports control level processing for al table types. Hashed and standard tables must be
sorted beforehand.

Preview

If you want to process data records with different structures, you can use extracts. For further
information about control level processing and extracts, refer to course BC405 (Techniquesof List
Processing and ABAP Query).

Unit: Internal table operations
Topic: Filling internal tables
and accessing thelr entries

- At the conclusion of these exercises, you will be able to:
@ Fill internal tables
& Access their entries
Y ou are a programmer for an airline consortium, and it is your job to
: ~ write analysis programs for several airlines.
o,

1. Extend your program from task 1 of the previous exercises:
Y ou should fill the table with the list of airport names, and then the other table with the
assignment of airlines to airports and counter numbers. Y ou should then display the
second tablein alist.
isyour two-digit group number.
Model solution:
SAPBC402_TABS_COUNTERLI ST2

1-1

1-3

1-4

Copy your solution to exercise 1 from the last unit (or the model solution) to the
new program Z##_ BC402_COUNTERLI ST2.

Fill theinternal tablei t _ai r port _buf f er with the codes of the airports and
their names from the transparent table SAI RPORT.

Use aloop to select data from the transparent table SCOUNTER for al of the
arlines in the user’s selection. You can fill the fieldscar ri d, count num and
ai rport inthework areawa_count er directly. Tofill ai r p_nane, you must
use asingle-record access to theinternal tablei t _ai r port _buf f er . Onceyou
have filled the work area, append it to the internal tablei t _carr_counter.

Display theinternal tablei t _carr _count er sorted by thefieldsai r port and
carri d inascending order.

2. Extend your program from section 2 of the previous exercises:
Y ou should now run an authorization check to see if the user is authorized to see the data
for the airlines that he or she included in the selection on the selection screen.
Y ou should then place the airlines that the user chose and for which he or she has
authorization in a suitable internal table.
Y ou will then display the output in alist.
isyour two-digit group number.
Model solution:
SAPBC402_TABS FLI GHTLI ST2

2-1

2-2

2-4

Copy your solution to exercise 2 from the last unit (or the model solution) to the
new program Z##_ BC402_FLI GHTLI ST2.

Event block AT SELECTI ON- SCREEN:

Use aloop on the transparent table SCARR to fill the | ow field of work area
wa_al | owed_carr.

Now perform an authorization check against the authorization object S CARRI D
for thisairline and the activity ‘Display’ (use the Pattern function in the ABAP
Editor).

Only if the check is successful should you fill the si gn and opt i on fields of the
work area and append it to the selection table.

Event block START- OF- SELECTI ON:

Usetheview BC402_FLI GHTS to fill the elementary fields of the internal table

it _flights. However, at this stage, leave the inner internal tablei t _pl anes
initial.

Y ou cannot use the “array fetch” variant of the SELECT statement with nested
internal tables. Y ou must therefore program aloop with the target fields listed in
thel NTO clause, and insert the work area into the table in the correct sort order.

Then, display the contents of the internal tablei t _f | i ght s asalist. To do this,
use afield symbol <f s_f | i ght >, appropriately typed.

Display only those flights for which thereis at least one booking. When you
display the amount, remember the currency addition.

Maintain appropriate list headers.

~ 2~ You can run the program and then maintain the list headers from the
- ~ displayed list

Topic: Filling internal tables

/ Unit: Internal table operations
and accessing thelr entries

1 M odel solution SAPBC402_TABS_COUNTERLI ST2

*

*& Report SAPBCA02_TABS_COUNTERLI ST2
*&

*

*& solution of exercise 1 operations on internal tables
*&

*

REPORT sapbc402_tabs _counterlist2.
TYPES:

BEG N OF t_airport,
id TYPE sairport-id,
nanme TYPE sairport - nane,
END OF t_airport,

BEG N OF t _counter,
ai rport TYPE scounter-airport,
ai rp_nanme TYPE sairport - nane,
carrid TYPE scounter-carrid,
countnum TYPE scount er - count num
END OF t_counter.

DATA:
it _carr_counter TYPE STANDARD TABLE OF t_counter,

wa_counter TYPE t_counter,

it_airport_buffer TYPE HASHED TABLE OF t _airport
W TH UNI QUE KEY i d,

wa_airport TYPE t_airport.

SELECT- OPTIONS so_carr FOR wa_counter-carrid.
START- OF- SELECTI ON.

* puffer the airport nanes:

khkhkhkhkhkhkhkhkhkhkkhkhkkkkkkkkkhkhkhkxkxk

* % % % % kX

SELECT id nane
FROM sai r port
| NTO CORRESPONDI NG FI ELDS OF TABLE it_airport_buffer

* fill an internal table with all counters of the sel ected
* carriers:

kkhkkkkkhkkkk*

SELECT carrid countnum ai rport
FROM scount er
| NTO CORRESPONDI NG FI ELDS OF wa_count er
VWHERE carrid IN so _carr

READ TABLE it _airport_buffer

I NTO wa_ai rport

W TH TABLE KEY id = wa_counter-airport.
wa_counter-airp_name = wa_airport - nane.
APPEND wa_counter TO it _carr_counter.

ENDSELECT.

SORT it _carr_counter BY airport carrid ASCENDI NG AS TEXT.

* display list:
R R I b S b S I b
LOOP AT it _carr _counter | NTO wa_counter.
WRI TE: / wa_counter-airport,
wa_count er-airp_nane,
wa_counter-carrid,
wa_count er -count num
ENDL OOP

2 Model solution SAPBC402_TABS_FLI GHTLI ST2

*

*& Report SAPBC402 TABS FLI GHTLI ST2
* &

*

*& solution of exercise 2 operations on internal tables
*&

REPORT sapbc402_tabs _flightlist2.

TYPES:
BEG N OF t_flight,
carrid TYPE spfli-carrid,
connid TYPE spfli-connid,
fldate TYPE sflight-fldate,
cityfrom TYPE spfli-cityfrom
cityto TYPE spfli-cityto,

seat socc TYPE sflight - seat socc,

paynment sum TYPE sfli ght - paynent sum

currency TYPE sflight-currency,

it _planes TYPE bc402 typs_pl anet ab,
END OF t_flight,

t flighttab TYPE SORTED TABLE OF t _fli ght
W TH UNI QUE KEY carrid connid fldate.

DATA:
wa flight TYPE t flight,
it _flights TYPE t_flighttab.

SELECT- OPTIONS so_carr FOR wa_flight-carrid.
FI ELD- SYMBOLS <fs_flight> TYPE t _flight.

* for authority-check:

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkikhkikhk*k

DATA:
al lowed carriers TYPE RANGE OF t _flight-carrid,
wa_al l owed carr LIKE LINE OF all owed carriers.

* 0% % Xk ok X F

START- OF- SELECTI ON

* fill a range table with the allowed carriers:

R R I b b b S b b I b b I b Sk S Rk b b S b Sk b b e b b S b S Rk bk b b S b

SELECT carrid
FROM scarr
| NTO wa_al | owed_carr-1 ow
VWHERE carrid IN so_carr

AUTHORI TY- CHECK OBJECT 'S CARRI D
ID'CARRID FIELD wa_al |l owed_carr-1| ow
I D" ACTVT FI ELD ' 03'. " display
| F sy-subrc <> 0.
CLEAR wa_al | owed carr

ELSE.
wa_al | owed_carr-sign ="1".
wa_al |l owed_carr-option = 'EQ .
APPEND wa_al | owed carr TO al |l owed carri ers.
ENDI F.
ENDSELECT.
* fill an internal table with connection and flight data

* for the allowed carriers:
ER IR I b S b R S 0 S b R S R R R S Sk R I I
SELECT carrid connid fldate cityfromcityto
seat socc paynent sum currency
FROM bc402_flights
| NTO (wa_flight-carrid, wa flight-connid,
wa_flight-fldate,
wa_flight-cityfrom wa_flight-cityto,
wa_flight-seatsocc,
wa_flight-paynmentsum wa_flight-currency)
VWHERE carrid IN all owed carriers.

| NSERT wa_flight INTO TABLE it _flights.

ENDSELECT.

* display list, using field-synbol:
kkkkhkkhkkhkhkkhkhkhkhkkhkhkhkhkkhkikhkhkhkhkhkhkkkhkikkkhkikx*k
LOOP AT it_flights ASSIGNING <fs_flight>
WHERE seat socc > O.
WRITE: / <fs flight>carrid,
<fs flight> connid,
<fs_flight>fldate,
<fs_flight>cityfrom
<fs flight>cityto,
<fs flight>seatsocc,
<fs_flight> paynent sum
CURRENCY <fs _flight>-currency,
<fs flight>currency.
ENDL OOP.

Contents

Defining the interface
Calling subroutines

)
°
® Lifetime and visibility
[

Use

8 SAP AG 1999

A subroutineis an internal modularization unit within a program, to which you can pass data using an
interface. Y ou use subroutines to encapsulate parts of your program, either to make the program
easer to understand, or because a particular section of coding is used at severa pointsin the
program. Y our program thus becomes more function-oriented, with its task split into different
constituent functions, and a different subroutine responsible for each one.

As arule, subroutines aso make your programs easier to maintain. For example, you can execute them
"invisibly" in the Debugger, and only see the result. Consequently, if you know that there are no
mistakes in the subroutine itself, you can identify the source of the error faster.

Structure of a Subroutine
m A subroutine begins with the FORMstatement and ends with ENDFORM

m After the subroutine name, you program the interface. In the FORMstatement, you specify the
formal parameters, and assign them typesiif required. The parameters must occur in afixed
sequence - first the importing parameters, then the importing/exporting parameters. Within the
subroutine, you address the data that you passed to it using the formal parameters.

m You can declare local datain a subroutine.

m After any local data declarations, you program the statements that are executed as part of the
subroutine.

Y ou define the way in which the data from the main program (actual parametersdol, do2,do3, and
do4) are passed to the data objects in the subroutine (formal parameterspl, p2, p3, p4) inthe
interface. There are three possihilities:

m Call by reference (p1, p3)
The der eferenced address of the actual parameter is passed to the subroutine.
The USI NGand CHANG NG additions both have the same effect (in technical terms). However,
USI NG leadsto awarning in the program check.

m Call by value (p2)
A local "read only" copy of the actua parameter is passed to the subroutine. Do this using the form
USI NG val ue(<fornmal paraneter>).

m Call by value and result (p4)
A local changeable copy of the actual parameter is passed to the subroutine. Do this using the form
CHANG NG val ue(<fornmal paraneter>).
Y ou should use this method when you want to be sure that the value of the actual parameter is not
changed if the subroutine terminates early.

m When you use internal tables as parameters, you should use call by refer ence to ensure that the
system does not have to copy what could be alarge internd table.

The data objects that you pass to a subroutine can have any data type. In terms of specifying data
types, there are various rules:

m You may specify the type for elementary types.
If you do, the syntax check returns an error message if you try to pass an actua parameter with a
different type to the formal parameter. Not specifying atype is the equivalent of writing TYPE ANY.
In this case, the formal parameter "inherits' its type from the actual parameter at runtime. If the
statements in the subroutine are not compatible with this inherited data type, aruntimeerror occurs.
Datatypes| ,F, D, and T are dready fully-specified. If, on the other hand, you use P, N, C, or X, the
missing attributes are made up from the actual parameter. If you want to specify the type fully, you
must define a type yoursdlf (although a user-defined type may itself be generic). When you use
STRI NGor XSTRI NG the full specification isnot made until runtime.

m You must specify the type of structuresand refer ences.

m You must specify the type of an internal table, but you can use a generic type, that is, program the
subroutine so that the statements are valid for different types of internal table, and then specify the
type:

. Using the corresponding inter face specification:
TYPE [ANY| | NDEX| STANDARD| SORTED| HASHED] TABLE,
(TYPE TABLE isthe short form of TYPE STANDARD TABLE)

* Using auser-defined generic table type.

When you call a subroutine, the parameters are passed in the sequence in which they arelisted

The type of the parameters and the way in which they are passed is determined in the interface
definition. When you call the subroutine, you must list the actual parameters after USI NGand
CHANG NG in the same way. There must be the same number of parametersin the call asin the
interface definition.

The best thing to do is to define the subroutine and then use the Pattern function in the ABAP Editor to
generate the call. This ensures that you cannot make mistakes with the interface. The only thing you
have to do is replace the formal parameters with the appropriate actual parameters.

If you pass an interna table with a header line, the name is interpreted as the header line. To passthe

body of an internal table with header line, use the form <i t ab>[] . Inthe subroutine, the internal table
will not have a header line.

Example
DATA it _spfli TYPE TABLE OF spfli W TH HEADER LI NE.

PERFORM denpsub CHANGI NG it _spfli[].

FORM denpsub CHANG NG p_spfli LIKE it_spfli[].
DATA wa_p _spfli LIKE LINE OF p_spfli.

ENDFORM

Formal parameters and local data objects that you define in a subroutine are only visible while the
subroutine is active. This means that the relevant memory space is not allocated until the subroutine
iscalled, and isreleased at the end of the routine. The data can only be addressed during this time.
The general rules are asfollows:

m Y ou can address global data objects from within the subroutine. However, you should avoid this
wherever possible, since in doing so you bypass the interface, and errors can creep into your coding.

m You can only address formal parameters and local data objects from within the subroutine itsalf.

m |f you have aformal parameter or local data object with the same name as agloba data object, we
say that the global object islocally obscured by the local object. This meansthat if you address an
object with the shared name in the subroutine, the system will use the local object, if you use the
same name outside the subroutine, the system will use the global obj ect.

Summary

m Address global data objects in the main program and, if you want to use them in the subroutine, pass
them using the interface.

m |n the subroutine, address only formal parameters and local data objects.

m Avoid assigning identical names to global and local objects. For example, use aprefix suchas p_
for aparameter and | _ for locd data.

This example calls the subroutine denosub. It contains aloca data object with a starting value, and
aters the four forma parameters.

The system allocates two memory areas p2 and p4 for the two call by value parameters d2 and d4,
and fills them with the respective values. It also alocates memory for the local data object | _do, and
fillsit with the starting value.

Thereisno VALUE addition for p1 or p3, This means that changes at runtime affect the actual
parameters directly, and you can addressdo1 directly viapl.

Here, the change to pl directly affects the contents of do1.

The formal parameter p2 is declared as alocal copy with read access. This means that any changes will
not affect the actual parameter do2 at all.

The same appliesto p3 asto pl. If you do not use the VALUE addition, USI NGand CHANG NGhave
the same effect

The contents of do3 are affected directly by the changesto p3.

Asfor p2, we have created alocal copy for p4. Consequently, the changes to the formal parameter do
not affect the actual parameter while the subroutine is running.

The changes are not written back to the actua parameters until the ENDFORMstatement.

If denosub isinterrupted for any reason, do4 would have the same value afterwards as it had before
the call.

Now that denpsub has finished running, the memory occupied by its local data objects is released.

Y ou now cannot address these data objects any more.

Note that do2 ill hasitsold value, even though p2 was changed in the subroutine.

In the example here, the subroutine should work out the number of free seats on a plane based on the
arcraft type and the number of seats already occupied.

The parametersp_pl anet ype and p_seat socc are passed by reference to the subroutine
get _free_seats. Intheinterface, USI NGindicates that you can only access them to read them.
The result p_seat sf r ee, on the other hand, is returned by copying its value.

For smplicity, the main program has been restricted to a selection screen on which the user can enter
values, the subroutine call itself, and the list display.

It istechnicaly possible to call subroutines from other main programs. However, this technique is
obsolete, and you should use function modules instead. Function modules provide considerable
advantages, and are important components in the ABAP Workbench. For further information, refer to
the unit Function Groups and Function Modules.

Another typical use of subroutinesis recursive cals. Although al other modularization units can, in
principle, be called recursively, the runtime required is often excessive for small easily-programmed
recursions.

This example uses a recursive solution to find a connection between two cities. To find a connection
between A and Z, the program looks for a flight from A to B, and then from B to Z. The subroutine
find_conn cdlsitsf.

m If thereisno direct connection, the program uses the current city (p_pos) to compile alist of al
citiesthat can bereached (I _poss_|I i st), that are not yet in theroutelist (p_step_I i st). The
route list is defined as a standard table so that the sequence of the cities on the route is retained.

For smplicity, the system removes duplicate entries from the list of cities. This meansthat the
subroutine ends up with only one possible connection.
However, it would also be possible to suppress this, and examine al of the possible connections, for

example, for the number of stopovers, total distance, and so on.

m |f it isnot possible to reach any cities other than those aready visited on the same journey, the
current city on the route is marked as a"dead end"”.

m Otherwise, the citiesto which it is possible to travel are processed in aloop. Each city isincluded in
the route list, so that the program can continue searching from here. However, before that, the
program has to check whether the city has already been marked as a dead end in a previous search.

m Once the destination is reached, we can terminate the processing. Any further search from this point
would be unsuccessful anyway. The city is marked in the route list, and the search carries on with the
next reachable city.

m The processing logic for this subroutine is contained in the function group
LBC402_SURD RECURSI QN, include program LBC402_SURD_RECURSI ONFO1. The
subroutine is called from function module BC402_SURD TRAVEL_ LI ST, whichisitsaf caled
from the executable program SAPBC402_SURD_RECURSI ON. This program lists dl of the
possible flights in the flight data mode, and in particular those with stopovers.

E- Unit: Subroutines

Topic: I nterface, functions, and call

*e®

At the conclusion of these exercises, you will be able to:
Implement subroutines

Call subroutines

/

You are a programmer for an airline consortium, and it is your job to
write analysis programs for severa airlines.

)

1. Extend your program from section 2 of the previous exercises:
Use a subroutine to encapsul ate the code you use to display the flights on the list. Pass the
relevant internal table by reference to the subroutine.
isyour two-digit group number.
Model solution:
SAPBC402_SURS_FLI GHTLI ST3

1-1

1-2

1-4

1-5

Copy your solution to exercise 2 from the last unit (or the model solution) to the
new program Z## _ BC402_FLI GHTLI ST3.

At the end of the processing logic, define the subroutinedi spl ay_flights.
Declare a parameter for the internal table so that it is passed by reference. Specify
an appropriate type for it.

Remove the field symbol <f s_f | i ght > from the main program and declare it as
aloca data object in the subroutine.

Remove the statements used to create the list from the main program and insert
them (appropriately modified) in the subroutine.

From the main program, call the subroutine di spl ay_f | i ght s (usethe Pattern
function).

Unit: Subroutines
/ Topic: I nterface, functions, and calling

1 M odel solution SAPBC402_SURS_FLI GHTLI ST3

*

*& Report SAPBC402_SURS_FLI GHTLI ST3
*&

*

*& sol ution of exercise subroutines
* &

*

REPORT sapbc402 surs_flightlist3.

TYPES:
BEGA N OF t_flight,
carrid TYPE spfli-carrid,
connid TYPE spfli-connid,
fl date TYPE sflight-fldate,
cityfrom TYPE spfli-cityfrom
cityto TYPE spfli-cityto,

seat socc TYPE sflight - seat socc,

payment sum TYPE sfli ght - paynent sum

currency TYPE sflight-currency,

it_planes TYPE bc402_typs_pl anet ab,
END OF t _flight,

t flighttab TYPE SORTED TABLE OF t_flight
W TH UNI QUE KEY carrid connid fldate.

DATA:
wa_flight TYPE t_flight,
it flights TYPE t_flighttab.

SELECT- OPTI ONS so_carr FOR wa_flight-carrid.

* for authority-check:

kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkik kihkxk*%

DATA:
al lowed _carriers TYPE RANGE OF t _flight-carrid,
wa_allowed carr LIKE LINE OF allowed carriers.

L I R

START- OF- SELECTI ON

* fill a range table with the allowed carriers:
EE R I I I S S S S S I S S S S i S S S i i S S i S I S i S R I I S S S S A S A S
SELECT carrid
FROM scarr
| NTO wa_al | owed_carr-1 ow
WHERE carrid IN so_carr

AUTHORI TY- CHECK OBJECT 'S _CARRI D
ID'CARRID FIELD wa_al | onwed _carr-1 ow
ID"ACTVT" FIELD '03". " displ ay
| F sy-subrc <> 0.
CLEAR wa_al | owed_carr.
ELSE.
wa_al | owed_carr-sign B
wa_al | owed_carr-option "EQ .
APPEND wa_al | owed carr TO al |l owed_carri ers.
ENDI F.

ENDSELECT.

* fill an internal table with connection and flight
* for the allowed carriers:
ER IR I b S b R S 0 S b R S R R R S Sk R I I
SELECT carrid connid fldate cityfromcityto
seat socc payment sum currency
FROM bc402 _flights
| NTO (wa_flight-carrid, wa flight-connid,
wa_flight-fldate,

wa_flight-cityfrom wa_flight-cityto,

wa_flight-seatsocc,

dat a

wa_flight-paymentsum wa_flight-currency)

WHERE carrid IN allowed carriers.
| NSERT wa_flight INTO TABLE it _flights.
ENDSELECT

PERFORM di splay _flights CHANA NG it _fli ghts.

* ok ok * *

FORM di splay flights CHANG NG p_it _flights TYPE t_flighttab.
FI ELD- SYMBOLS <I _fs_flight> TYPE t_flight.

LOOP AT p_it_flights ASSIGNING <I _fs flight>
WHERE seat socc > O.
WRITE: / <I _fs_flight>carrid,
<| _fs_flight>connid,
<| fs flight>-fldate,
<| fs flight>cityfrom
<| fs flight>cityto,
<| fs_flight> seatsocc,
<| fs_flight> paynentsum
CURRENCY <I fs flight>currency,
<| _fs_flight>currency.
SKI P.
ENDL OOP

ENDFORM

Function Groups and Function Modules

Contents:

® Defining the interface
® Function modules in function groups
® Calling a function module

® Runtime behavior

8 SAP AG 1999

Function modules are more comfortable to use than subroutines, and have awider range of uses. The
following list, without claiming to be complete, details the essential role that function modules play
in the ABAP Workbench:

Function modules...

m Areactively integrated in the ABAP Workbench. You create and manage them using the Function
Builder.

m Can have optional importing and changing parameters, to which you can assign default values.
m Can trigger exceptions through which the return code field sy- subr c isfilled.

m Can be remote-enabled.

m Can be executed asynchronoudly, allowing you to run par allel processes.

m Can be enabled for updates.

m Play an important role in the SAP enhancement concept .

As an example, we are going to calculate the number of free seats on an aircraft. The following dides
illustrate the individua steps involved in creating a function module.

In the Attributes of a function module, you specify its general adminstrative data and the processing
type:

m Remote-enabled function modules can be called asynchronoudly in the same system, and can also
be called from other systems (not just R/3 Systems). To call afunction module in another system,

there must be a valid system connection. For further information, refer to the course BC415
(Communications Interfacesin ABAP).

m Update function modules contain additional functions for bundling database changes. For further
information, refer to the course BC414 (Programming Database Updates) and the online
documentation.

The online documentation a so details the interface restrictions that apply to remote-enabled and update
function modules.

When you exchange data with function modules, you can distinguish clearly between three kinds of
parameters.

m | mporting parameters, which are received by the function module
m Exporting parameters, which are returned by the function module
m Changing parameters, which are both r eceivedand retur ned.

By default, all parameters are passed by reference. To avoid unwanted side effects, you can only
change exporting and changing parameters in the function module. If you want to pass parameters by
value, you must select the relevant option when you define the interface.

Y ou can aso declare importing and changing parameters as optional. Y ou do not have to pass values
to these parameters when you call the function module. Where possible, you should use this option
when you add new parameters to function modules that are already in use. Y ou can assign a default
value to an optional parameter. If you do not pass a vaue of your own when you cal the function
module, the system then uses the default value instead. Export parameters are always optional.

Y ou may specify the type of an elementary parameter. Y ou must specify the type of a structured or
table parameter. Y ou can use either ABAP Dictionary types, ABAP Dictionary objects, predefined
ABAPtypes(l, F, P, N, C, STRING X XSTRING D, T)or user-definedtypes. Any
type conflicts show up in the extended program check.

Tables parameters are obsolete for normal function modules, but have been retained to ensure
compatibility for function modules with other execution modes.

When you save the interface, the system generates the statement framework together with the comment
block that lists the interface parameters:

FUNCTI ON <name>.

ENDFUNCT! ON.

The comment block is updated automatically if you make changes to the function module later on. It
means that you can always see the interface definition when you are coding the function module.

Y ou program the statements exactly as you would in any other ABAP program in the ABAP Editor.

In the function module, you can create your own local types and data objects, and call subroutines or
other function modules.

Y ou can make a function module trigger exceptions.

To do this, you must first declar e the exceptions in the interface definition, that is, assign each one a
different name.

In the source code of your function module, you program the statements that trigger an exception under
the required condition. At runtime, the function module is terminated when an exception is triggered.
The changes to exporting and changing parameters are the same as in subroutines. There are two
statements that you can use to trigger an exception. In the forms given below, <exception> stands for
the name of an exception that you declared in the interface. The system reacts differently according
to whether or not the exception was listed in the function module call:

m RAI SE <exception>.
If the exception islisted in the calling program, the system returns control to it directly. If the
exception is not listed, aruntimeerror occurs.

m MESSAGE <ki nd><nunp(<i d>) RAI SI NG <excepti on>.
If the exception is listed in the calling program, the statement has the same effect as RAISE

<exception>. If it is not listed, the system sends message <num> from message class <id> with type
<kind>, and no runtime error occurs.

Function modules differ from subroutines in that you must assume that they will be used by other
programmers. For this reason, you should ensure that you complete the steps listed here.

m Documentation (can be trandated)
Y ou should document both your parameters and exceptions with short texts (and long texts if
necessary) and your entire function module. The system provides atext editor for you to do this,
containing predefined sections for Functionality, Example Call, Hints, and Further Infor mation.

m Work list
When you change an active function module, it acquires the status active (revised). When you save

it, another version is created with the status inactive. When you are working on a function module,
you can switch between the inactive version and the last version that you activated. When you
activate the inactive version, the previous active version is overwritten.

m Function test
Once you have activated your function module, you can test it using the built-in test environment in
the Function Builder. If an exception is triggered, the test environment displays it, aong with any
message that you may have specified for it. You can aso switch into the Debugger and the Runtime

Analysis tool. Y ou can save test data and compare sets of results.

When you insert afunction module cal in your program, you should use the Pattern function. Then,
you only need to enter the name of the function module (input help is available). The system then
inserts the call and the exception handling (MESSAGE statement) into your program.

Y ou assign parameters by name. The formal parameters are always on the left-hand side of the
expressions:

m Exporting parameters are passed by the program. If a parameter is optional, you do not need to pass
it. Default values are displayed if they exist.

m | mporting parameters are r eceived by the program. All importing parameters are optional.

m Changing parameters are both passedand received. Y ou do not have to list optional parameters.
Default values are displayed if they exist.

The system assigns a value to each exception, beginning at one, and continuing to number them
sequentially in the order they are declared in the function module definition. Y ou can assign avdue
to al other exceptions that you have not specifically listed using the specia exception OTHERS.

If you list the exceptions and one is triggered in the function module, the corresponding value is placed
in the return code field sy- subr c. If you did not list the exception in the function call, a runtime

error or a message occurs, depending on the statement you used in the function module to trigger
the exception.

When you create a function module, you must assign it to afunction group. The function group is the
main program in which afunction module is embedded.

A function group is a program with type F, and is not executable. The entire function group is loaded
in aprogram the first time that you call a function module that belongsto it.

The system aso triggers the LOAD OF- PROGRAM event for the function group.

The function group remains active in the background until the end of the calling program. It is therefore
a suitable means of retaining data objects for the entire duration of a program. All of the function
modules in a group can access the group's global data.

The same appliesto screens. If you want to call one screen from several different programs, you must
create it in afunction group. Y ou then create the ABAP data objects with the same names as the screen
fields in the function group. The screen and data transport can now be controlled using the function
modules in the group.

Examples: Function groups SPOL to SPC6.

For further information about this technique, refer to course BC410 (Programming User Dialogs).

Let us return to our waiting list example from the Operations on Internal Tables unit. Maintaining a
waiting list using subroutines would be subject to errors, since the list would be a globa object and

could be changed within the main program.

Furthermore, waiting lists are a common agpplication, and it is likely that if you write a solution, it can
be used by other developers. Y ou should therefore make it available centraly in the ABAP
Workbench so that other programmers do not have to do the same work over again. If, for example,
they know that afunction modulewai t _get fi r st will return the name of the customer at the

top of the waiting list, they only need to worry about the required parameters and possible
exceptions.

In the example, the waiting list isimplemented as an internal table in the globa data declarations of the
function group. This means that it cannot be changed using any means other than the function
modules in that group. Y ou can call these from any program.

The implementation of the individual function modulesis similar to the examplesin the Internal Table
Operations unit. To save space, we have only listed the ABAP coding that is relevant for the actua
functions.

The types of the parameters and global data objects have been specified by referring to appropriate
typesin the ABAP Dictionary.

Screen 100 belongs to the function group. It is a container screen for list processing that is processed
invisibly. It allows the user to display the current contents of the waiting list in amodal dialog box.

For smplicity, we have not used a table control in the example. Had we done so, it would have been
possible to encapsulate the entire navigation in the function group. For further information about using
screen objects such as table controls, refer to course BC410 (Programming User Dialogs).

To move an entry in the waiting list, we first delete the existing entry. Then, we enter a new one at
positioni p_new_pos.

Thisisonly possible if the new index is positive, and not greater than the total number of linesin the
list (I ast _pos). We determine the value of | ast _pos using the DESCRI BE TABLE ... LI NES
statement. If you specify an index that istoo large, the entry is appended to the interna table.

As described in the ABAP Runtime Environment unit, the ABAP Workbench helps you to structure
your source code when you work with function groups and function modules.

Forward navigation ensures that you always enter the correct object. Include programs are named
automatically, and the relevant call statements are inserted automatically in the correct positions.

Y ou only have to observe the naming convention for function groups: { Y| Z} <r em_nane>.

The system then creates atype F program called SAPL{ Y| Z} <r em nane>. This contains
automatically-generated | NCLUDE statements. The include programs are aso named automatically:
L{ Y| Z} <r em_nanme><abbr evi at i on><nunber >. The abbreviation <abbr evi ati on>is
assigned according to the same principle as described on the Program Or ganization page.

Theinclude program L{ Y| Z} <r em nanme>UXX is dso inserted. This contains an include statement
for each function module in the form L{ Y| Z} <r em_name>U<nunber >.

Unit: Function Groupsand Function M odules
Topic: Creating and calling function groups and function
modules

n

At the conclusion of these exercises, you will be able to:

Create and implement function groups

*e®

Write function modules

Call function modules

Y ou are a programmer for an airline consortium, and it is your job to
write analysis programs for several airlines.

/2

1. Youwill create an internal table in a function group that buffers al of the aircraft type
available to each airline. For smplicity, thiswill have aflat structure, not a nested one.
isyour two-digit group number.

Model solution:
BC402_FNMDS_FLI GHT

1-1 Create afunction group Z##_BCA402_FLI GHT.

1-2 Assign the message classBC402 toit.

~ 1L~ Theprogram D isin the TOP include (LBC402_FLI GHTTOP).

1-3 Document your function group.

2. You are going to write a function module to fill internal tables for aircraft types. It should
only write a replacement aircraft type into the table for a particular airline if the aircraft
type has enough sests.

It should also calculate the average revenue per seat, based on the total revenue that you
will passtoit. Your function module should then sort the list of aircraft by thisvalue in
descending order before returning it to the calling program.

isyour two-digit group number.

Model solutions:

BC402_FNMDS_FLI GHT

BC402_FMDS_CREATE_PLANELI ST

2-1

2-2

2-3

2-4

Create the function module Z_##_BCA402_CREATE_PLANELI ST inyour
function group Z##_BCA402_FLI GHT.

Declarethelinetypet carr _pl ane asaglobal datatype in your function
group. It should have the following structure:

Component Type

carrid scarplan-carrid

pl anet ype scar pl an- pl anet ype
seat smax sapl ane- seat snmax

You will usethisfor the airline« aircraft type assignment.

Declare theinternal tablei t _carr _pl anes asaglobal data object in your
function group. It should have the linetype t _carr _pl ane . It should bea
sorted table with the unique key carri d and pl anet ype.

Fill theinternal tablei t _carr _pl anes using the “array fetch” method with the
view BC402_CARPLAN.

AL

= - Choose a suitable event. Remember that function groups cannot be
- — executed directly.
Implement the event block in a suitable include program. Observe

the naming convention for include programs in function groups.

Declare the following import parameters for your function module. They should be
passed by value.

i p_seat socc (optional, with default value 0),i p_carri d,

I p_paynment sumi p_currency.

Declare the export parameter ep_pl anel i st . It should be passed by value.
Specify its type by referring to your global table type Z## BCA402_PLANETAB.

2-9

2-10

2-11

2-12

2-13

Declare and document the exception no_pl anes.

In the fuction module, create the local structurel _wa_carr _pl ane with type
t _carr_pl ane.

From the global internal table, read the aircraft types that are available to the airline
that you have passed to the function module, and that have enough seats to
accommodate the number of passengers booked on the flight.

In this loop, calculate the average revenue per seat for each aircraft type. Declare
another work area—1 _wa_ pl ane —asalocal data object within the function
module. Specify its type by referring to your global structure

Z## BCA02_PLANE.

Once you have filled the structure fully, passit to the internal table that you are
going to export.

Before you export the table, sort it by the average revenue per seet.

If there are no suitable aircraft types, trigger the exception. When you raise the
exception, use error message 067. You need to pass the airline to the message.

Document your function module.

Test your function module.

3. Extend your program from task 1 of the previous exercises:
Y ou should now fill the inner internal table for the aircraft types for each flight, using the
function module you created in the last exercise.
Model solution:
SAPBC402_FMDS_FLI GHTLI ST4

3-1

3-2

Copy your solution from the last exercise, or the model solution.
New name: Z## BCA02_FLI GHTLI ST4.

Fill the inner internal table in its own step before the list display.

For each flight on which at least one seat is booked, call your function module

Z ## BCA02_CREATE_PLANELI ST (usethe Pattern function).

The current line should only be updated if no exception istriggered by the function
module.

Extend the subroutine in which you display the list:

If (and only if) thereis at least one replacement aircraft for aflight, display all of
the aircraft types, their maximum number of seats, and their average revenues
(along with the appropriate currency) on the list.

To do this, use an appropriately-typed field symbol.

If there is no replacement aircraft for a particular flight, display an appropriate text.

Topic: Creating and calling function groups and

/ Unit: Function Groupsand Function M odules
function modules

1-1, 2-4 M odel solution SAPLBC402_FNMDS_FLI GHT

EE R b b b I R R R R R I b I I A A I A I I b S b b b b b b S R R R b I b b I b I I I B b I S S S
* Systemdefined I nclude-files.
*

kkhkkkhkkhkhkkhkhkhkkhhkhkkhhkhkkhhkhhhkhkhhkkhhkhkhhkhkihkhkkhhkhkkhkkhkhkkhkhkhkihkhkhhkhkihkhkikkhkikkikkk*

| NCLUDE | bc402 _fmds_flighttop. " d obal Data
| NCLUDE | bc402_ frnds_flight uxx. " Function Mdul es

kkhkkkhkkhkhkkhkhkhkkhhkhkkhhkhkkhhkhhhkhhhkhhkhkhhkhkkihkhkkhhkhkkhhkhkhkkhkhkhkhhkhkhhkikkikkhkikkhkkhkkhkkk*

* User-defined Include-files (if necessary).
*

kkhkkkhkkhkkhkhkhkkhhkhkkhhkhkkhhkhkhkhkhhkhkhhkhkhhkhkkhhkhhhkhkhhkhhkhk hkhkkihkhkkhhkhkkhkkikikkikhkkikkk*

* | NCLUDE LBC402_FMDS_FLI GHTF. . . " Subprograns

* | NCLUDE LBC402_FMDS_FLI GHTO. . . " PBO- Mbdul es

* | NCLUDE LBC402_FNMDS _FLI GHTI . .. " PAl - Modul es
| NCLUDE | bc402_fnds_flighteOl. " Events

1-2,2-2,2-3 Model solutionLBC402_FNMDS_FLI GHTTOP

FUNCTI ON- POCL bc402_f nmds_f i ght MESSAGE- 1D bc402.

TYPES:
BEG N OF t _carr_pl ane,
carrid TYPE scarplan-carrid,

pl anet ype TYPE scar pl an- pl anet ype,
seat smax TYPE sapl ane- seat smax,
END OF t _carr_pl ane.

DATA:
it _carr_planes TYPE SORTED TABLE OF t_carr_pl ane
W TH UNI QUE KEY carrid pl anetype.

2-4 Model solutionLBC402_FNMDS_FLI GHTEO1

LOAD- OF- PROGRAM

SELECT carrid pl anetype seat snmax
FROM bc402_car pl an
| NTO CORRESPONDI NG FI ELDS OF TABLE it _carr_pl anes.

2-1,2-5-2-11 Model solutionBC402_FNMDS_CREATE_PLANELI ST

FUNCTI ON BC402_FMDS_CREATE_PLANEL| ST.
o

""] ocal interface:

*xn

*x n

*x "

*xn

*x n

*xn

*n

*xn

*xn

*x 1

| MPORTI NG
VALUE(| P_SEATSOCCC) TYPE SFLI GHT- SEATSOCC DEFAULT 0
VALUE(| P_CARRI D) TYPE SPFLI - CARRI D
VALUE(| P_PAYMENTSUM) TYPE SFLI GHT- PAYMENTSUM
VALUE(| P_CURRENCY) TYPE SFLI GHT- CURRENCY
EXPORTI NG
VALUE(EP_PLANELI ST) TYPE BC402_TYPS_ PLANETAB
EXCEPTI ONS

NO_PLANES
DATA:
| wa_carr_plane TYPE t_carr_pl ane,
| wa_pl ane TYPE bc402_typs_pl ane.

LOOP AT it_carr_planes INTO | _wa_carr_pl ane

WHERE carrid EQip_carrid

AND seatsnmax CE i p_seatsocc.
| _wa_carr_pl ane- pl anet ype.
| _wa_carr_pl ane- seat snax.

| _wa_pl ane- pl anet ype

| _wa_pl ane- seat smax

| _wa_pl ane-avg_price
i p_paynentsum/ | _wa_carr_pl ane- seat snax.

| _wa_pl ane- currency I p_currency.

APPEND | _wa_pl ane TO ep_pl anel i st.

ENDL OOP.

e T

| F sy-subrc NE O.

VESSAGE e067 RAI SI NG no_planes WTH i p_carrid.
ELSE.

SORT ep_planelist BY avg _price DESCENDI NG
ENDI F.

ENDFUNCT! ON.

3 M odel solution SAPBC402_FNMDS_FLI GHTLI ST4

*

*& Report SAPBCA02_FMDS_FLI GHTLI ST4
*&

*

*& sol ution of exercise 3 function groups
*& and function nodul es

*

REPORT sapbc402 frds _flightlist4.

TYPES:
BEG N OF t_flight,
carrid TYPE sflight-carrid,
conni d TYPE sflight-connid,
fldate TYPE sflight-fldate,
cityfrom TYPE spfli-cityfrom
cityto TYPE spfli-cityto,

seat socc TYPE sflight-seatsocc,

paynment sum TYPE sfli ght - paynent sum

currency TYPE sflight-currency,

it _planes TYPE bc402 typs_pl anet ab,
END OF t_flight,

t flighttab TYPE SORTED TABLE OF t _flight
W TH UNI QUE KEY carrid connid fldate.

DATA:
wa_flight TYPE t_flight,
it flights TYPE t _flighttab

SELECT- OPTIONS so_carr FOR wa_flight-carrid.

* for authority-check:

kkhkkkhhkkhkkhkkhkhkhkhkkhkhkkikkikk*k

DATA:
al lowed carriers TYPE RANGE OF t _flight-carrid,
wa_al l owed carr LIKE LINE OF all owed carriers.

* % % Xk X *

AT SELECTI ON- SCREEN

* fill a range table with the allowed carriers:

kkhkkkhhkkhkkhkhkkhhkhkkhhkkhkhkkhhkhkhkkihkhhkhkhhkhkkhkhkhhkkikkhkhkkikkikkikki*k*%x

START- OF- SELECTI ON

* fill an internal table with connection and flight data
* for the allowed carriers:

kkhkkkhhkkhkkhkkhhkhkkhkhkkhkhkhkkikkhkkhkkikkhkk*

* fill all the inner internal tables with alternate planetypes:

R R R I I b b S

LOOP AT it_flights INTO wa_flight WHERE seatsocc > O.

CALL FUNCTI ON ' BC402_FNDS_CREATE_PLANELI ST

EXPORTI NG
i p_seat socc wa_flight-seatsocc
ip_carrid wa_flight-carrid

i p_paynent sum
I p_currency

wa_fl i ght-paynment sum
wa_flight-currency

| MPORTI NG

ep_planelist = wa_flight-it_planes
EXCEPTI ONS

no_pl anes =1

OTHERS = 2.

| F sy-subrc = 0.
MODI FY TABLE it_flights FROM wa_fli ght
TRANSPORTI NG it _pl anes.
ENDI F.

ENDL OOP

PERFORM di splay _flights CHANA NG it _flights.

* ok ok * *
*

FORM di splay _flights CHANGA NG p_it _flights TYPE t_flighttab.

FI ELD- SYMBOLS:
<| fs flight> TYPE t_flight,
<| _fs_plane> TYPE bc402_typs_pl ane.

LOOP AT p_it_flights ASSIGNING <l _fs_flight>
WHERE seat socc > O.
WRITE: / <l _fs flight>carrid,
<| _fs_flight>connid,
<| fs flight>fldate,
<| fs_flight>cityfrom
<| fs flight>cityto,
<| _fs_flight> seatsocc,
<| _fs_flight> paynentsum
CURRENCY <I| fs_flight>currency,
<| fs flight> currency.

* * display filled inner internal tables only:
R R I b L S E S S b I S b b S S I S R R R I R R S I R I S S S
IF <I fs flight>-it_planes IS I NI Tl AL.
WRI TE: /29 '"no alternate planes avail abl e' (npa).
ELSE.
LOOP AT <l _fs flight>-it_planes ASSI GNI NG <I fs_pl ane>.
WRI TE: /29 <l| _fs_plane>-pl anet ype,
<| _fs_pl ane>- seat snmax,
<| fs_plane>avg _price
CURRENCY | _fs_pl ane>-currency,
<| _fs_plane>-currency.
ENDL OOP
ENDI F.

SKI P.
ENDL OOP

ENDFORM

Calling Programs and Passing Data

Contents:

Techniques for calling programs

o

® Memory model

® Techniques for passing data
[

Uses

8 SAP AG 1999

There are two ways of starting an ABAP program from another ABAP program that is aready running:

m By interrupting the current program to run the new one - the called program is executed, and
afterwards, processing returns to the program that caled it.

m By terminating the current program and then running the new one.

Complete ABAP programs within a single user session can only run sequentialy. We refer to this
technique as using synchronouscalls.

If you want to run functions in parald, you must use function modules. For further information about
this technique, refer to course BC415 (Communication I nterfacesin ABAP), and the
documentation for the CALL FUNCTI ON ... STARTI NG NEW TASK... statement.

The way in which main memory is organized from the program's point of view can be represented
eadly in the above modd. Thereis a distinction between interna and external sessions:

m Generally, an exter nal session corresponds to an R/3 window. Y ou create new external sessions by
choosing System® Create session or entering / o<t code> in the command field. Y ou can have up
to six external sessions open simultaneoudly in one terminal session.

m External sessions are subdivided into inter nal sessons. Each program that you run occupies its own
internal session. Each externa session can contain up to nine internal sessions.

The datain aprogram is only visible within that internal session, so it is only visible to the program.

The following pages illustrate how the stack inside an external session changes with various program
cals.

When you insert a program, the system creates a new internal session, which contains the new program
context.

The new session is placed on the stack The program context of the calling program also remains on the
stack.

When the called program finishes, its internal session (the top one in the stack) is deleted.
Processing is resumed in the next-highest internal session in the stack.

When you end a program and start a new one, there is a difference between calling an executable
program and calling a transaction.

If you start an executable program using its program name, the internal session of the program you
are ending (the top one) is removed.

The system creates a new interna session, which contains the program context of the called program.

The new session is placed on the stack. Any program contexts that already existed are retained. The
topmost internal session on the stack is replaced.

If you start a program using its transaction code (if one is assigned), al of the existing internal sessions
are removed from the stack.

The system creates a new internal session, which contains the program context of the called program.

After the call, the ABAP memory isreset.

When you call afunction module, the ABAP runtime system checks whether you have already called a
function module from the same function group in the current program.

m If thisis not the case, the system loads the relevant function group into theinternal session of the
calling program. Its global dataisinitialized and the LOAD- OF- PROGRAMevent istriggered.

m |f your program had already used a function module from the same function group before the cal,
the function group is already resident in the internal session, and the new call can access the same
global data. We say that the function group remains active until the end of the program that
called it.

The datais only visible in the corresponding program - each program can only address its own data,
even if there are identically-named objects in both programs. The same applies when the stack is
extended. If a program is added to the stack that calls a function module from a function group
aready called by another program, the function group is loaded again into the new inter nal session.
The system creates new copies of its data objects, initializes them, and, as before, they are only
visible within the function group, and only in the internal session in which the function group was
loaded.

The graphic shows the first call to a function module in a particular function group.

To start an executable (type 1) program, use the SUBM T statement.

If you usethe VI A SELECTI ON- SCREEN addition, the system displays the standard selection screen
of the program (if one has been defined).

If you use the AND RETURN addition, the system resumes processing with the first statement after the
SUBM T statement once the called program has finished.

For further information, refer to the documentation for the SUBM T statement.

When you usethe LEAVE TO TRANSACTI ON ' <T_CCODE>' statement, the system terminates the

current program and starts the transaction with transaction code <T__CCODE>. The statement is the
equivaent of entering / n<T_CCODE> in the command field.

CALL TRANSACTI ON ' <T_CODE>' dlowsyou to insert an ABAP program with a transaction
code into the call chain.

To terminate an ABAP program, use the LEAVE PROGRAMstatement. If the statement occursin a
program that you called using CALL TRANSACTI ON ' <T_CODE>' or SUBM T <pr og_nane>
AND RETURN, the system resumes processing at the next statement after the call in the calling
program. In al other cases, the user returns to the application menu from which he or she started the
program.

If you usethe ..AND SKI P FI RST SCREEN addition, the system does not display the screen
contents of the first screen in the transaction. However, it does process the flow logic.

If you started atransaction using CALL TRANSACTI ON that uses update techniques, you can use the
UPDATE.. addition to specify the update technique (asynchronous (default), synchronous, or local) that
the program should use. For further information, refer to course BC414 (Programming Database
Updates) and the online documentation.

There are various ways of passing data to programs running in separate internal sessions:
You can use

® Theinterface of the called program (usually a standard selection screen)

@ ABAP memory

® SAP memory

® Database tables

® Local files on your presentation server

The following pages illustrate methods @, @ and Q.

For further information about passinig data using database tables or the shared buffer, refer to the
documentation for the EXPORT and | MPORT statements.

For further information about transferring data between an ABAP program and your presentation
server, refer to the documentation of function modules W5 UPLQAD and W5 DOWNL QAD.

Function modules have an interface that the calling program and the function module use to exchange
data. Subroutines also use a similar technique. Certain restrictions apply to the interfaces of remote-
enabled function modules.

When you call ABAP programs that have a standard selection screen, you can pass data for the input
fieldsin the call. There are two ways to do this:

m By specifying avariant for the selection screen when you call the program.

m By specifying values for the input fields when you cal the program.

The W THaddition in the SUBM T statement allows you to assign values to the fields on a standard
selection screen. The abbreviations "EQ NE, ..., |, E" have the same meanings as with select-
options.

If you want to pass severa selections to a selection option, you can use the RANGES statement instead
of individua W TH additions. The RANGES statement creates a selection table, which you can fill as
though it were a selection option. Y ou then pass the whole table to the executable program.

If you want to display the standard selection screen when you call the program, use the
VI A SELECTI ON- SCREEN addition.

When you use the SUBM T statement, use the Patter n function in the ABAP Editor to insert an
appropriate statement pattern for the program you want to call. It automatically suppplies the names of
the parameters and selection options that are available on the standard selection screen.

The example shown above is an extract from transaction BC402_CALD_CONN. When the user
requests the coordinates of a city, the executable program SAPBC402 TABD_HASHED iscdled.
The parameters are filled with the city and country code from the transaction. The standard selection
screen does not appear.

For further information about working with variants and about other syntax variants of the W TH
addition, refer to the documentation for the SUBM T statement.

To pass data between programs, you can use either the SAP memory or the ABAP memory.

m SAP memory is auser-specific memory areathat you can use to store field values. It is only of
limited value for passing data between interna sessions. Vauesin SAP memory are retained for the
duration of the user's terminal session. The memory can be used between sessions in the same
terminal session. Y ou can use the contents of SAP memory as default values for screen fields. All
external sessons can use the SAP memory.

m ABAP memory is aso user-specific. Thereisalocal ABAP memory for each externa session. You
can use it to exchange any ABAP variables (fields, structures, internal tables, complex objects)
between the inter nal sessions in any oneexter nal session.

When the user exits an external session (/ i in the command field), the corresponding ABAP
memory is automaticaly initidized or released.

Usethe EXPORT ... TO MEMORY statement to copy any number of ABAP variables with their current
values (data cluster) to ABAP memory. The | D...addition (maximum 32 characters long) enables you
to identify different clusters.

If you use anew EXPORT TO MEMORY statement for an existing data cluster, the new one will
overwrite the old.

The | MPORT... FROM MEMORY | D.. statement allows you to copy data from ABAP memory into
the corresponding fields of your ABAP program. In the | MPORT statement, you can also restrict the
selection to a part of the data cluster.

The variables into which you want to read data from the cluster in ABAP memory must have the same
types in both the exporting and the importing programs.

To release adata cluster, use the FREE MEMORY | D.. statement.

Remember when you call programs using transaction codes that you can only use the ABAP memory to
pass data to the transaction.

Y ou can define memory areas (parameters) in the SAP memory in various ways.

m By creating input/output fields with reference to the ABAP Dictionary. These take the parameter
name of the data element to which they refer.
Alternatively, you can enter a name in the attributes of the input/output fields. Then, you can also
choose whether the entries from the field should be transferred to the parameter (SET), or whether
the input field should be filled with the value from the parameter (GET).
To find out about the names of the parameters assigned to input fields, display the field help for the
field (F1), then choose Technical info.

m You can dso fill amemory area directly using the statement
SET PARAMETER | D '<PAR I D>' FI ELD <var>.

and read it using the statement
GET PARAMETER I D '<PAR I D>' FI ELD <var>.

m You can aso define parameters using the Object Navigator and fill them with values.

The example shown hereis an extract from transaction BC402_CALD_CONN When the user maintains
the flight times, the program calls transaction BC402_TABD_SORT. The name of the airlineis
passed using parameter CAR (using a statement). The flight number is passed using parameter CON
(SET option selected for the field in the Screen Painter).

When you call atransaction using the statement CALL TRANSACTI ON ' <T_CCODE>" USI NG

<bi _i t ab>... you can run the transaction <T_CODE> using the values from <bi _i t ab> in the
screen fields. Theinternal table must have the structurebdcdat a.

The MODE addition allows you to specify whether the screen contents should al be displayed (" A -
the default setting), only when an error occurs (' E'), ornotat al (' N'). Y ou can use the MESSAGE
I NTO <ness_i t ab> to specify an internd table into which any system messages should be
written. The internal table must have the structure bdcnsgcol | .

You can find out if the transaction was executed successfully from the system field
sy-subrc.

Y ou might use this technique if

m You are processing in the foreground, but the input fields have not been filled using GET
parameters,

m Y ou want to process the transaction invisibly. In this case, you normally have to pass the function
codesin the table as well.

This technique is aso one of the possible ways of transferring data from non-SAP systems. When you
do this, the internal table with the structure bdcdat a must befilled completely.

Filling the internal table in batch input format:

m Each screen that you want to process automatically in the transaction must be identified by alinein
which only the fields pr ogr am dynpr o, and dynbegi n arefilled.

m After the record that identifies the screen, use a new bdcdata record for each field you want to fill.
These records use the fields fnam and fval. Y ou can fill the following fields:
* Input/output fields (with data)
+ Thecommand field bdc_okcode, (with afunction code)
e Thecursor positioning field, bdc_cur sor (with afied name)

For information about how to use this technique for data transfer, refer to course BC420 (Data
Transfer) or the online documentation.

The above example refersto transaction BC402_FNVDD_FG When the user creates a new customer
entry, the program calls transaction BC402_CALD_CRE_CUST. This transaction has not implemented
import from ABAP memory, and its input fields are not set as GET parameters. The customer datais

therefore passed using an internal table and processed invisibly.
If the operation is successful, the new customer record can be entered in the waiting list.

Thefilled internal table in bdcdat a format isillustrated above. At runtime, <cur r ent _nane>
stands for the customer name from the input field, <cur r ent _ci t y> stands for the city.

Y ou use the field BDC_OKCODE to address the command field, into which you enter the function code
that would have been triggered by the user choosing a function key, pushbutton, or menu entry in dialog
mode (or by entering a code directly in the command field).

Unit: Calling Programsand Passing Data:
Topic: Calling an executable program

At the conclusion of these exercises, you will be able to:

&
& call an executable program from another program
& Preassign values to its selection options
You are a programmer for an airline consortium, and it is your job to
: ~ write analysis programs for several airlines.
o,

1. Extend your program from task 3 of the previous exercises:
The user should be able to display alist of all sales counters of the airlines entered on the
selection screen, as long as he or she is authorized to see the data.
isyour two-digit group number.
Model solution:
SAPBC402_CALS FLI GHTLI ST5

1-2

1-3

Copy your solution from the last exercise, or the model solution.
New name: Z##_ BCA02_FLI GHTLI ST5.

For smplicity, the function should be triggered when the user double-clicks aline
or single-clicks it and presses <F2>. Add an appropriate event block to your

program.

Program a call to your executable program Z## BCA402_COUNTLI ST2 or the
model solution SAPBC402_TABS_COUNTLI ST2 (usethe Pattern function).

Ensure that the standard selection screen of the called program is not displayed.
Once the program has finished running, the user should be able to return to the
original program.

Unit: Calling Programsand Passing Data:
/ Topic: Calling an executable program

1 M odel solution SAPBC402_CALS_FLI GHTLI ST5

K o o o e o e e e e e e e e e e e e *
*& Report SAPBC402_CALS FLI GHTLI ST5 *
*& *
K R o o o e o e *
*& solution of exercise 1 *
*& calling prograns and transmtting data *
K R o o o e o e *
REPORT sapbc402 cals flightlistbs.
* for authority-check:
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkk*k
DATA:
allowed carriers TYPE RANGE OF t _flight-carrid,
wa_allowed carr LIKE LINE OF all owed carriers.
START- OF- SELECTI ON.
* fill a range table with the allowed carriers:
EE R I I I S S S S I I S I S I I I e I I A I S I I I S I I I S b b i e b b b b b b b S S
* fill an internal table with connection and flight data
* for the allowed carriers:
R I I I S S I I I I I I I I I I I I I I S I S
* fill all the inner internal tables with alternate pl anetypes:

kkkkkkhkkk*k*%

PERFORM di splay_flights CHANG NG it _flights.

AT LI NE- SELECTI ON.

* display list of counters for all allowed carriers:

EZR R I b S b S b S I S I S S I S R S S A S S S

SUBM T sapbc402 tabs counterlist?2
WTH so_carr IN allowed_carriers AND RETURN

* X * ¥ X

FORM di splay flights CHANG NG p_it _flights TYPE t_flighttab.

ENDFORM

