B TABC42 ABAP Programmiertechniken 1/2
TABC42 1/2

R/3 System
Release 46B
30.05.2000

TABC42 ABAP Programming TEChNIQUES L/2.........ccoceeueeeeiereccie sttt sssssssss s sss st ssssssssssnssssesaens 01

(0 o)/ o o) 50T 02
SECLION OVEIVIEW ... ser s e s sese s s s s es s E R R8s R b 0-4

Section: Techniquesfor List Creation and SAP Query
Content: Techniquesfor List Creation and SAP Query

FNEFOQUCTION....eet et R et bbb
COUSE ODJECLIVES. ..ottt bbb 2-2
COUISE OVEIVIEW DIBGIEIM ..ottt b b 2-3
BUSINESS SCENGITOoveevrieeeieeeieesi ettt p s 2-4
Demonstrations, Copy Templates, and SOIULTONS..........co et sssssssesssaens 2-5
EXEICISES AN UNITS.....coiuiiiiciiieitieiei ettt 2-6

QUICKV IBWET ...ttt sa s bbbt s s st R bt s e e A s e s e Re bt e e R b b s e e At es e ae b e b s e ae b et s es s an s s s aeae b s e anas 31
L@ 8 Lo QYA T= YT G = T oo o] = PR 32
QUICKVIBWET: TNITIAI ACCESS.....ciiieiieeeee ettt ae s s e s se e neans 33
Creating @ QUICKVIBWccucueueeieererieie e sessssteasssssssssse s st sesssssesssssssssssesssssessssssnsessssssssesessssnsesssesssnsassnssnsssnssssnsesens 34
Join DEfiNItION: GrapRiCal........ccuivceeircce s a ettt n s s s s s 35
BasiSMOAE: PriNCIPIE SITUCLUIE ...ttt sssstsesesssssesessssse e ssssssessssssssssssssssessesssssessenssssssssnssnsess 36
Structuring a QUICKVIeW iN the BaSiS MOUE. ..ot 37
USING thE QUICKV IBW ...ttt 38
R U 00]017= OO 39

SAP QUENY - CrEating LiSES.....cerieieeereeeriieirtieitiesssieser st s bbb 41
SAP QUENY - CrEating LiSES ...c.vcrieerrieeerieeeriesesisessesei et sss et 4-2
Overview: Programs and QUETYccoceeirieeriinesesessssessssssessns 4-3
L@ gor: a1z Lo g 1) O 11 1= YRR 4-4
L= 11 I 1 U= YRR 4-5
SAP QUENY - CrEatiNG LiSES...cuiiciueuririceeteiiicsietsisss e tse et sasss s ssss s st et s s s s s st sesessassssssssssssesanns 4-6
(1= 1T oo = N 1= o TR 4-7
Selecting the Work Areaand FUNCLIONAl ATEa..........ccceuririreininisesesesee et ssesssssssssssssssssssesssssesssssssssssssssssesens 4-8
L@ = (g To J o Tor= I = o (O 4-9
ASSIGNING SNOMT DESCIIPLIONS.....cevrieeeieeeiieesi et ese s ses s seae bbbt 4-10
DEfiNING LOCAl FHEIASveeieeiiee ettt s st 4-11
SEBEISEICS ... vereueueeeereeeeee st st sessas s st et e s st e e s s e eae b e e e se b e e e e e e e s e e e A A b £ e R A £ e R R A S e R b A e A A e e e e et e e e b e 4-12
RENMKEA LiISE..eteeeeieieereeie ettt sttt bbbt bbb et e bt ne et 4-13
BasiC LiSt: LAYOUL MOGE........ccciuerieeiirirerseeirees st e st 4-14
Designing @ BasiC List: EXAMPIE ...ttt ss st sa st sa st sa st ss s st ssnssssssnsnes 4-15
BasiC List: CONrol LEVE! PrOCESSING......cccivuiiiietreicieireicie e sessssssssesseesssssss e ssssssssessssssssessssssssessssssssesssssssessssnssess 4-16
I NEEIACHIVE FUNCLIONS.......couctiteeeieeseieeee ettt bbb bbbt 4-17
S (V7110 T = £ OO 4-18
Comparison: SAP QUETY = QUICKV IBW........cceurureeiririisesieiressssssesssssssssssssssesssssssssssssssssssssssssssessssssssessssssssssssssssesesns 4-19

ESTe] 110 1 4-23

OULPULEING DBEA TN LISES. .. vueuveeeeeereerreseereieirtiessi et eses s s bbb bbb 51
GBNEIBLING @ LISteuieeeuieeeset ettt bbb 52
SEtING thE LISt FOIMEL ...ttt e bbb 53
Page and COlUMN HEBOEY'Sc.vu ittt b 54
Defining Line and Field FOMMELS........cccuiiiiiienncessss s sssss s sssnns 55
WRITE Statement: GENEIal SYNLAX........cccccueuriiecieiriieeisessie s sssssssessssssssessssssssssessssssessssssssssesssssssessssssssesssssns 56
Outputting 1cons, SYMDOIS, AN LINES........ccccceecce ettt a s s 57
Scrolling iN ListS and Lead COlUMNS.........cccirieeeeireeste s sessastsssssssssssssssssssss st sssssssssssssssssessssssssssessnssssssssssssesens 58
Additional Statements fOr Page LAy OUL............cvireiruriieereresisssessssessssessesessss s ssesssssssssssssssssssssssessssssssssssssssesens 59
MUIEHINQUEI LISt EIEMENLScvovececeerecesie sttt sse ettt s ettt ns et essnsnsnsssesnsnen 510
SySteM FieldS in LiSt CrEALIONc.ovveeeeeerercieiriceir st sessss s sesss s ssse s sss s ssss s s snsessssssnssssesssssesnns 511
StANAArA LiSt FUNCLIONS. ..o ceciieeieeeiseireseiseetree ittt 512
R U001 7= ST 513
EXEICISES . ettt bR R R AR AR 514
SOIULIONS. ..ottt e e R bR bR 517

SEIECHION SCIEEN ...ttt b bbbt R bbbttt

Selection Screen: Overview
Declaring Fieldswith PARAMETERS. ..o,
Selections with SELECT -OPTIONS. ...

Selection Options and Multiple Selections..........cccovvveecvennnee
Syntax of the SELECT -OPTIONS Statement

Designing the SEIECHION SCIEEN | ...ttt a st s snses 6-7
Designing the SEIECHION SCIEEN [...ttt e sn s s s e nnsnses 6-8
[NitialiZiNg the SEIECLION SCIEENc.iv ittt 6-9
Input Checks: AT SELECTION-SCREENorrerrerecrrissses st esesesssesesessssssesesssssssssssssssessssssssssens 6-10
CALL SELECTION-SCREEN ..ottt st 6-11
SElECHION SCIEEN: VAITANES |...cvuieiieeietesetieeee et e e s 6-12
SElECtioN SCrEEN: VaITANES] ..o e 6-13
SUMIMIY .ttt ettt be e s e b e st e e st se £ b e s e e e e b e Re e e e b e e s e b e R e e e e A b et e b e b et ne b e Re et e b e b et st b e se e renbene s 6-14
B CISES . vteeeteeees ettt ettt es s E SRR 6-15
SOIULTONS.....tateeeeeeeeseesees et s s £ b 6-17
0T [or= I 7= -1 TP 7-1
LTS 0T = T T N O 7-2
Advantages of aL0giCal DatahaSE.........cccvereeiririieirerieesesess sttt a s 7-3
LOQiCal Datalase: OVEIVIEWccccueereeeceeirisiseeisisesssesesessssssssessssssssasssssssesssssessssssssessssssssessssssssesssssnssssessssssssessenssnsess 7-4
LOQiCal DataDase: FLS NOUESccuureerreerreeeiriecesei sttt et b e es e 7-5
Sample Program for aLogiCal DatahASE............ccecurieemnirerireiereeisee e ses s 7-6
L DB SUD-ODJECLS: SEIUCIUIE.......cutuevuiteecrreaerseses s seese st sss sttt b e r s r s 7-7
EVENtS in LOQICal DAIBINESES..........cctrecrieerieeer ettt 7-8
Program Flow and Termination AIEIMEBLIVES ... sssssssesssaens 7-9

Selection Screen for the LogiCal Dat@hase..........coueeererireerneeerneie e sssse s ssssssssens 7-11

Logical Datahase: DYNamiC SEIECHIONS........cocurieericirieieesi e b 7-12
LDB Sub-Objects: DatahaSe PrOgramS.........cvveeeeeerieceiieesieesisesssese e sesss s ssssesssssssssess s s ssssssssssssssssssens 7-13
Interaction: LDB @Nd PrOGIaIM.........cccuiierieeiereisesessees st ssssss s sessesssesaes 7-14
Checking Internal Program SElECHIONS.......covceeirtieeee et 7-15
RSl 0] 07 OO T S 7-16
B CISES . vttt ettt ettt R SRR 7-17
SOIULTONS.....vrteeeteeeeeeeseesees et es s £ 7-19
Programming Data REIHEVEL...........cviiuciriieccrcce sttt a sttt s s s s s anten 81
Data REIHEVAL: INTEINALcvevceeiee e n s 82
Reading Multiple Database TahIES........ccccviirieinirererrese st ss s s ssssssssssessesssssessssssssesssnssnsns 83
Reading Multiple Database TalES |ccvcerirecerreccsre sttt sse st s ssssessessssssssenssnsees 84
Reading Multiple Database TaDIES [18.........cccerrieeeeeie e 85
Reading Multiple Dataase TabIES [T ... 86
Reading Multiple Dataase TaDIES I ...t 87
Reading Multiple Database TaIES TV ...t ssans 88

SAP Query - AdmIiNiStration.........ccocveeeeeveneceenesenseeesessesssseeeens
ABAP Query - Administration
MaiNtAINING USEr GIOUPS......c.ceurierrereresestetresesssssssssssssssssssssssssssssssesssssssssssssssssessssssssesssssssessssssssesssssssnsesssssesesssssnsess
AUthorizationS aNd ABAP QUETYuveueurieeieiriresietsesesssssesesssssssssssssssssssssssssssssssessssssssesssssssssssssssssessssssssssssssssesens 94
ABAP QUENY = AQMINISLIALION.....cuvvevreiereeereseeceesesesseesesesssssesessssssesessssssassssssssesssssssessssssssessssssssessesssssesssssssssssesssssessens 95
DefiNiNG FUNCLIONAl ATEBScucviieeeireerreet ettt 9-6
Overview: Creating FUNCHIONEl ATEBS.........coiiiiieciieeiees e b e 97
Defining FUNCtional Areas: EXAMPIE ..ottt 9-8
DefiNiNG FUNCHIONEI ATEBSc.cuiieeireerrie sttt 99
ATTOCBEING FIEIAS. ... cocvieciieeiieeeieet e bbb 9-10
Additional INFOMMEBEION ..o 911
Allocating AdditioNal TADIESccviiceecce et bbbt ae s st b s s 912
Allocating AditionNal FIEIAS ..ot b b a s es s s s s 913
== 0 T o4 o LR 914
AlOCAING ABAP SEALEMENTS.......cccireceierisreie st se s s st ss s s se e st et s sn st esssnsessssesnsessns 9-15
SUMIMIBIY .ttt sttt st st s e ettt 9-16
EEXEICISES . vuveeeeeeesce ettt R SRR 917

Data Formatting and COoNntrol LeVEl PrOCESSING.........covueuiueeiieeiireserseses e ssesessessssessessssesssessssssssssss s sssesssssssessssesns 10-1
CONEIOl LEVEI PIrOCESSING.....ceteurereireeresesseessesesstseesieesss st sessssesesssse s seses st esss b enss bbb b s s 10-2
Creating an INEEMEl TADIE ... s s e 10-3
Filling @n INEErNEl TADIEc.cvieiie et 10-4

Sorting and Editing an INternal TADIE ... s 10-5

R U001 7= TP 10-8
EXEICISES . ettt bR R R AR 10-9
0] 111 (0] OO SE SO ST TSP 10-13
Saving Lists and Background PrOCESSING.........ueuirerreeereeemressmsessesesseessesessessssssessssssssssssssese s sssssssssssssssssssssssssssesns 11-1
Saving Lists and Background PrOCESSINGccucuvurrirereririreresisesesesesssesesssssesssnns 11-2
OPLiONS FOr SAVING LISES.....cuciiiicieiricccie ettt b e st a bbb s st bbb s s e bt en e nnbebnas 11-3
SAVING LISIS IN SAPOMICE .ttt bbbttt ettt tnas 11-4
S VL0 TS = S O =TT 11-5
SaAVEd LiStS TN the ATEAIMENUcuceeeeeececerece et 11-6
Saving Lists and Background PrOCESSING......c.cuwcurererrerieiiirisieisesssssssessssesssssesssssssssssssssssssssssessssssssesssssssssssssssssesenns 11-7
LISt PriNtinNg OPLiONS.......cuoiiiereerereseeiressissesessesesessssssssesssssessssessssssssessssssssssssssessssssssessssssssesssssssessssssssssssssssessssssssess 11-8
PN PAIAIMELET'S ...ttt s bbb 11-9
Program Controll@d PriNtiNG ..ot ses st snaes

Printing with GET_PRINT_PARAMETERS........o sttt ettt sesens s sse s
GET_PRINT_PARAMETERS: Applications
Saving Lists and Background PrOCESSINGccueireeerrieerieeerresessessesesseessesssstssssssessssesssessssssssssssessssessssessssssssnes
The Phases of Background Processing.......c.ccccceeueeeerevennnnnns

DEfINING SEEPS.....cccereectcterce ettt

ST 1101002 N
OPLIONGI EXEICISES......cvevrierieeieirisieiresessestsssesssssesssssssssssssssssessssesssssessssssessssssssesassssssssesassssssssssnssssesssssnssesasssnssessssssnsass 11-18
SOIULTONS......verererereeeeee s r s s s es s E R r AR AR RS E bR 11-19
ALY GEA CONIOL ...ttt 12-1
ALY GEil CONEIOLooevitietsietseseeesee et es s bbbt 12-2
Controls:TechniCal BACKGIOUNG |c.ccuieeiciriiciiicisesiee et 12-3
Controls:TechniCal BACKGIrOUNG 1cuiceieirieiiieesieesiee e sss s 12-4
ALV Example and Standard FUNCLIONS ..o ssssessssssssssss s sssesanes 12-5
ALYV Grid CONtrol: PHINCIPIE ...ttt s 12-6
Implementing the CONLIOl: SCIEEN.......cie ittt e st se st ss e et sne st s s e s 12-7
IMplementation iN the PrOgraM.........ccciciiie et ss s ss b st ss st s s s s s s snsesassnns 12-8
Generating and LinNKiNG ODJECLScciiicieiricceriec ettt ss bbb s st es st bnas 12-9
L (0T =0 0T 12-10
Displaying the Datain the CONLIOccciieirccrresss ettt nes 12-11
ALY GFd CONIOI ..ttt ses s s s R s 12-12
L= [0 = 7= o T 12-13
Selected FieldSin the Field CatalOg.........crueurirerireiieeiee et sses 12-14
Filling and Passing On the Field Cat@lOg..........ccvueeiireineeeeese e sesseses s ssssssssans 12-15
SAVING DISPIAY VAITANES.vucreeerieeireeireeeriee s es s 12-16
Filling and Passing On the LayOUL SLIUCLUIE ...t sessesessessssesss s ssssssssessssesssans 12-17

Interface to DiSPlay MEINOM.........c.c i 12-18

OULIOOK: HANAITNG EVENES ...t 12-21
0 0100101072 TS 12-22
AAPPENAIX ottt s s s b R R AR 13-1
GENErating AN EXIFACE: SEEPScvvuieierirerreerreerie ettt 13-2
Example: GeNnerating an EXIFACccccvceiiirieeeisiss sttt ss st st sa st sa sttt ss et s s et es s nees 13-3
Sorting and ProCeSSING @N EXITACE ..ottt bbb a et 13-4
Example: CONtrol LEVEl PrOCESSING.......ccociuiiuerrerieretreissietsssesssssssssssesssssssssessssssssesssssssssssssssessssssssessssssssessssssssess 13-5
Schema of Control Level Processing fOr EXEFaCES ..ottt ssssssssssssssssesnns 13-6
Comparing Internal TableS and EXIIACES ...t ssss s sss s ssssssssssssssssesnns 13-7
Section: TranSaCtion ProgramMiMing........ccccceurererseereeressssssesesssssessesssssessesssssessesssssessssssssessssssssessssssssesssssssessssssssesssssnss 14-1
Content: Transaction ProgramMiNgccerrereresseseeesessssseessssssssssessssssssssessssessssssssssssssssessssssssesssssssssssssssssesesns 14-2
COUISE OVEIVIBW.....vreeiaeeieteees ettt b s ses e s bbb 8 E e eEeEEeeaE e ee bbb bbbt 15-1
COUISE GOBIS ...ttt ese et s bR b bbb 15-2
USEE DiHBIOJYS. .. vreuereeresteressinessineee s sess s s e Rttt b s 15-3
Course Overview Diagram: BCALO ...t ssssssessssessssenns 15-4

Main Business Scenario
DataModelcocovevevveiiiiernns

Implementation in the ABAP Dictionarycccccoeveeeererennnen.
ABAP Program Types.......c.c.....
Program Organization.................

BaSICS FOF INTEIACHIVE LISES .o cvuereeeeeeiercerer e ser s ses s st ees e p et e
L@ Y= VT Y I =T | o TP 16-2
CrEating LiStS: OVEIVIEW ..c.cueveeeeeerereeceeiresessssesesesssssesessssssssesesssesssssssssssssssssessssssssssessssssssessssssnsessssssssesessssssessssssssesssns 16-3
SEIECLION SCIEEN......c.cteeettreectriee ittt a s bbb 16-4
ENEIiNG VAIUE RBNGES........cutiieeiieeireieieis ettt s s s 16-5
Defining and Calling SElECION SCIEENS........c.ouccuieeieciriieetieesieesr e et 16-6
EVENES. SEIECTION SCIEENvieiie ittt e et 16-7
Events: Executalle Program / BaSIC LiSt.........cccereieieisree e sssessssssssesenns 16-8
USEl DIi@lOQgS ON LISES.....cueicietiieieieieieisisteisis s tststs s tsasts s tss st s s sttt st bss sttt sssses st ss et ssssassesesesssasssssesssnsnsssnssasnsnsnes 16-9
EVENES DELAI LiSE....oucvuceerereretseinei ettt e 16-10
POLENLIAl PrODIEIMS ..ottt e 16-11
Placing Global Datain the HidE ATEa.........cccciricersecic sttt s st 16-12
Retrieving Data From the HIOE ATEa ..ottt ssssss s s st sssessssesnes 16-13
VAT LINE SEIECHION......cecereeereierer et ser s ses s ses s s bR 16-14
Interactive ListS: UNit SUMIMEIYcccccvieierricesissessesesesssessessssssesessssssssesssssessssessssssssssssssssssssssessssssssessssssesesen 16-15
BasiCS fOr INteraCtive LisStS: EXEICISESciireiriertieesi ettt 16-16
BasiCs for INtEraCtive LiStS: SOIULTONS ...ttt 16-18

THE Program INEEITACE. ..ot e 17-1
OVEIVIEW DIAGIAIM.....euireeerieereeesreses s sees sttt ees e ses Rt E bbbt bbb 17-2
USEr INTEITACES, OVEIVIEWcevieiieiete ettt e e et 17-3

LU I = OO 17-5
SLAUS; TECANICE! VIBW (1) .oreureeieeeireisesessees ettt bbb 17-6
SEAUS, TECHNICA! VIBW (2) coreereereeeereeresetseet ettt seae s 17-7
FUNCEIONS. ..t bbb 17-8
FUNCETON KBY SEIINGS.veetieeeiiee it et
MENUS BNG MENU BAI'Soceiieciiiiirieiseet et s st

User Interfaces: Creating @ GUI SEAUScccciriiccirisece ettt ss s s st es s sesssassssessssens
Creating @ GUI SLALUS........ccceieireeieererecie st s st s st s b s s e bt e s e s bbb es s ae s e s s s as b b s e aste s e s s ansesesnanaatas
AGJUSTING SEBLUSES.......cveeeceetrieceetetsesesessssessas s se st sssssssss s s ss st s sssssessssssssesss s st bes s s sesasssssesas s sssasesssssnsessnssesasaes
INCIUAIiNG EXIStING EIEMENES......cciiiiecerircts sttt e a st ss et s et s s snsessnsnsessaen
Creating a GUI Status: Function Key Settings.
Standard Toolbar: AUtOMELi C ASSIGNMIENES.......cccurriereeirerireeeresessseesesessssssesesssssessessssssssesssssessssssssssssssssssssssssssess
Creating a GUI Status: APPliCation TOOIDENcccureerreeerreeeirerei st ssss et sesees
Creating @ GUI SLALUS: MENU BT ..ot
User Interfaces: USING 8 GUI SEBLUS..........crvcrriecerieeiieeeiisesisessisess s ssess s ssssssesssssssssssessssesssssssssssssssssssssesssans
ACHVALING TItIQ BN SEALUScveereeecrreeereeerere et s s bbb
Event: AT USER-COMMAND ...ttt bbbt bbb bbb bbbt bbbt benes
User Interfaces: Unit Summary
The Program Interface; EXErCiSeS.......oovreveneeernereesessesenenns
The Program Interface: SolUtions...........cccceveveceeereneceeneseneens

Interactive List Techniques

L@ Y= VT Y I =T | o TP
FIOW CONLIOl iN DELAIS LiSIS ...couveeeeeeueeerrerreerersesses s ses s sss s sssssse s sssses s sessssessesss s ssssssessssnees 18-3
SEIECHNG MUILIPIE LINES ..ottt st ssss e sss et sssssse s snsesssesnsesnssssnsnsesesssesens 18-4
SEECHING MUIIPIE LINES ...ttt st 18-5
Reading From the LiSt BUFFEN ... 18-6
Changing the LiSt BUFEN ..o s 18-7
SOITING [ISES ...ttt e e Rt bbb 18-8
SOITING [ISES ...ttt e e Rt bbb 18-9
FiNding OUL the SO FIEIAccceiceceeese ettt bttt bttt bt et penee 18-10
SOMING LISES: PrOQIaIM......ccucieieeeetriiccietetsesssstessss st sssssss et ss st ssessssesssetesssssesesessssssessssssstessssssssesesssnssessssnssases 18-11
Controlling the List SEqUENCE aNd IMESSAJESc.cvurueieiririiieisesessessssesse st ssssssssessssssssesssssssssssssssssesssssssseses 18-12
LIS B V= (V7o - 1o PP 18-13
M ESSAGES iN INLEIACLIVE LISES....cuiiieeeisicecieirisisie st sttt s s s sttt ea s s st e nes 18-14
TOPIC SUMIMEIY ...uvcvevieeseeesesessseesesesssssssssssssssssssssessssesssesssssssesssssssssssesssesessssssesssssssnsessssssnsasssssesesssnssnsesssssesessssssess 18-15
Interactive List TEChNIQUES: EXEICISES.......cvvuiiierirerieeeereresssissessssssesessssssesesssssessssssssssssssssssssssssssssesssnssnsesssnssesesen 18-16
Interactive List TEChNIQUES: SOIULTONSc.cutririreerieerseeire et sese s 18-18
INtroduction tO SCreeN ProgramiMiNg...........ocreeereeeriseereseestsesssseessssesss s ssese s sseses s ssssssesssesssssssssssssassesssesssssssessssesns 19-1
OVEIVIEW DIAQIAIM.....ceuiveerieereeesreses s ses e st ees e ees R E bbb 19-2
Screen Programming: PrHINCIPIES ... s 19-3
SEIENGLNS OF SCIEENS.....oiecriee ettt es e 19-4

Screen Programs: SCIrEEN ODJECES. ..ottt ses s bbb 19-6

SCIEEN O ECLS......eeueeestireaet ettt bbbt 19-7
GENETEI ATITTDULES ..o s bbb 19-8
Attributes of SCreen ODJECES (KEY) . ..ot 19-9
Dynamically Modifiable StatiC AMITDULES ...t 19-10
Screen Programs. SCreen MOGifICALIONS ...t ss s sn s e 19-11
The System Tahle SCREEN ...ttt et b bbbt 19-12
Modifying Attributes Dynamically: EXAMPIE ..ottt sss s ses 19-13
Object Attributes; ModifiCation GrOUPS........ccvueeurirereeietiesesieisssssssessssesss st sssssssssssssssssessssssssssessssssssssssssseses 19-14
Modifying Attributes Dynamically: PrOgQram..........cccvrcriirinnensssssessssssssessssssssssssssssssssssessssssssssssssssssssssnses 19-15
Screen Programs: SCIrEEN PrOCESSING.......cocceurireeeririisiesessssstsssessssssssessssssssessssssssssssssssssssssessssssssssessssssssssssssess 19-16
SCIEENS......cuiiiiciit bbb bbb b bbb SRR 19-17
Screen: DEfiNItioN @GN0 USE........ccuierieiirieeiieesi e ses st 19-18
SCIEEN: ATLIIDULES. ...t 19-19
CIEALING SCIEEN......vutertteeer ettt s s s s bR s8Rt e e 19-20
Creating a SCreen: SCreen AtIHDULES ... 19-21
Creating & SCreen: EIEMENT LiSt:t 19-22

Creating a SCreen: LayOUL.........covveevevererenesesenesenesesesesesesesesessseens
Creating a Screen:; Flow Logic
Communication: Screen- ABAP Program..........cccoeeeeeveuninenns

Static SCreen SEQUENCE.........cvuireerereseetesessssiessessssessessassesseseas

Setting the Next Screen DYNAMICAIYcccricrrcseresesists st ssssssse s sssssesssssssssssssssnsns
Inserting a Sequence of SCreens DYNAMICAIYcvvcerreicierercsee et sensesenaes
Calling aDialog BOX DYNAMICAIIYceviierirerierririesie st sesssesesessssssssessssssssessssssssesssssessssesssssssssssssssssssssnses
WINAOW COOFTINGLEScvuvuerreaereserreseeseseeteeessisess s ses e ses e bbb s bbb bbb es s
Setting the Cursor PoSition DYNAMICAITYc.ceiireiirecieeeereie s nssees
Screen Programs. GUI SEELUS FOI SCIEENS.......ccvirrecrreeerieseirese et sesssssses
GUI SEBLUS FOr SCIEENS......veecteeerie ettt e s s bbbt
DiSPlay SEANAAITS........coreuieiecrrieeieie e es e es bbbt
Processing the FUNCLION COOE..........ccrueieiririeciniiees sttt ettt a bbb a et bbbttt s st benes
Screen Programiming: SUMIMIANYc.c.cueececierseneseessessstessssssssesesssssessssssssssessssssssesssssssessssssssessssssssesesssssesssssssseses
Introduction to Screen Programming: Exercises

Introduction to Screen Programming: Solutions

SCreen E1emMENtS FOr OULPULcvvcereceetresesie sttt sss ettt s st ss st es s nsesessnnnsessens
L@ Y= VT Y I =T | o OO 20-2
OUtPUL EIEMENLS: TEXE FIEIUS......ciieceeirriccirreeee ettt ans st sens 20-3
TEXE FTEIUS ...ttt bbb e 20-4
QLIS T o N 1 o1 =S 20-5
Creating TEXE FTEIUS. . ..ot eb s 20-6
Hiding aText Field DYNAMICAITYcouiiiieiccciciesses e 20-7
Dynamically Modifiable Attributes: TEXE FIEId ..o 20-8

OULPUL EIEMENES. SEALUS ICONS ... ettt 20-10
B2 L1 o0 o TSR 20-11
SEALUS ICONS. ATEITDULES.... ..ottt e 20-12
CrEaLING SEALUS ICONSco.vuireacrieree et es bbbt 20-13
FilTING 8 SEALUS 1CONcoiutiieciieeitieter sttt st 20-14
Output EIemMENtS. GrOUD BOXEScviviieeeieireririsisirisisesess st s sess s sessssssssssssssssssss s ssnsnns 20-15
L] (01U T =0 =TT 20-16
GrOUP BOX: ALIIULES ...ttt bbb bbbt s st en s antetas 20-17
Creating GrOUD BOXESccciiiicieiriseciete sttt ssss et s sttt s s s e st b s e s et et s nnsesesnanantas 20-18
Output EIemMents. UNIt SUMIMEIYcccviiirieirireseeisessiesesessssssssesssssssessssssssssssssesssssssssssssssssessssssssesessssssssssssssseses 20-19
Screen Elements for INPUL/OULPULc.c.veceirrececeeseseetse st sesssssssesssssessesssssessssssssesssssssssssssssssessssssssssssssssesssens 21-1
OVEINVIEW DIBOIAM....ectevieiiirieiriresseeresesee s sessssssasessssssesesssssessesesssesssssssssssssesssessssesssnsesssnssnsessssssnsesssssssesesnssssnsssssssesesns 21-2
Input/Output Elements: INPUL/OULPUL FIEIAS ...t 21-3
[NPUL/OULPUL FTEIAS ...t 21-4
INPUL/OULPUL Fi€lAS: ATLIIDULES ..ot 21-5
Creating INPUE/OULPUL FIEIAS.........cuivireercreeere e e s 21-6
Default ValUES 1N SAP MEIMOIY ..ottt
Defining SET/GET Parameter Attributes..........cccccoevvvevrveene.
Automatic Field Input Checks.........cccevveecnneneeeereee s
Field Input Checks with Error Dialog.......cccccevevevecererreseceennn,
Checking Groups of Fields
CONLIOIING EFTOr DIGlOGS.....cuevireeererirsenirisisssssesssssssessesssssessessssssssssssssssssssssssessssssssessssssssssssssssessssssssssesssssessssssssass
Dialog Message Categories
The FIELD Statement and Dat@ TraNSPOITc.ovreirireeererereeseesesesssesesessssssessssssssssesssssssssssssssssesssssesssssssssssssssnses
CoNditioNal MOAUIE CaIIS ..ot
EXECULION ON TNPUL ..ottt bbb
EXECULION ON CREINGE. ..ottt st
Avoiding the Field INPUE CRECKS ...t e
NBVIGATON = TAIGELS....ceeuieeecrieereee st e es bbbt
N E= V2 To = 0 g T D T= o SRS
Input/Output E1emMents: INPUL HEID ...ttt s st se s s
00T Lo = o O
DIrOPAOWN LISt BOXES.....cocuiiierieireceeteisisestesssssssstssssssssssssesssessssssssssssssssssssssssssssessssssssessssssssessssssssesasssnssssessnssessssnses
REQUITEMENES OF FA HEIP ...ttt sttt ea st ne e
ABAP Dictionary Object: SEarCh HEIPcvccveiiicerecereseste vttt sas s ssssssssnses
LU LS 1o RSS2 ot o I o 1= 0T
Search Help Assignment in ABAP DIiCHIONAIYccvverreeerneieieeeireissenees e ssssessssssssses

Overview: INPUt HEIP MEChENISIMS ..ot

Input/Output Elements: Checkboxes and Radio Button Groups
Checkboxes and Radio BUITON GIOUPS.........cuuirreireeereeeresessesessessesessessssesssssssssssessssesssesssssssssssssssssessssessssssssnes
Radio Buttons and CheCKDOXES: ATIITDULESccririrceeee e

Creating 8 Radio BULLON GIOUP.......c.vcuiureieeeiieesisesessess e sese s ses st ssssessssen 21-33

Input/Output Elements: PUSNDULTONS..........cou it 21-34
PUSNIDULLONS.........ceeeeies sttt bbb 21-35
PUShDULIONS: ATLIIDULES ... 21-36
Creating PUSNDULTONS.........coiiiicreeec et 21-37
PUSNDULLON PrOCESSING.....cvctiveieieieieieieietsieie ettt sttt ss et se st s bbb e setebebesetebebesabebebesntebebesesebebesnsebebesnsatesnsaes 21-38
INPUL/OULPUL ODJECES. SUMIMEAIYcucuieeecieteirecee ettt et s sttt s s bbbt s s s ae s s s st senaen 21-39
Screen Elements for INPUL/OULPUL: EXEICISES.......c.cvvicieiriicieie sttt s s sss st ss s sessssssesesssssnses 21-40
Screen Elements for INPUE/OULPUL: SOIULIONS.........c.ccecieiiiiicieinisissseesesesse st sssssssssssesssssessssesssssesssssssssssssssnses 21-43
Screen Elements: Subscreens and TalStriP CONLIOIS ...t sessssssssssssssesssenss 22-1
L@ VT T A T = o 1Y TR 22-2
SUDSCIEEN........cvevreeeeeeeseesses e s es s ss s R 2-3
SUDSCIEEN (L) c11evrteeesreeesersese s s ssese et ses et s et s s R8s bbbt 22-4
SUDSCIEEN (2) c.1uvrteeerteeessiresessese s ses st ee s s8R b bbb 22-5
SUDSCIEEN ATEA ATLIIDULES ... s 22-6
Creating @ SUDSCIEEN ATE8L.......ccuieeeeereretreesree sttt eea e ses e st es e 2-7
CalliNG 8 SUDSCIEEN........coeucrieeteee ettt e e e s et eb e
Subscreens From External Programscceevenenenenenenessnenens
Subscreens: Encapsulation in Function Groups.............ccce.e.
Subscreens in Function Groups: Call Sequence..........cccccvuuee.

Subscreens in Function Groups: Data Transport
QLI 01T o T 11 | OO
Screen Element: TabSEriP CONEIOl ...ttt ss st essnansnses
QLI 01] =) OO
Tah Page: TECANICAl VIBW ...ttt
TabStriP CONLIOI: ALIITDULES........cceieceieeecieet e bbb
Creating @ TaDSLIP CONEIOL ..o s
Creating a Tabstrip CONtrol: TADSLIIP ATEAccuveirecieeeierere e
Creating a Tabstrip CONtrol: Tab TItl ..o
Creating a Tabstrip Control: TabsStrip SUDSCIEENS.........cveueiirereriirerer st sssssssnenes

Scrolling Locally in @ Tabstrip CONEIOLccuiccecce ettt ss s anaenes
Scrolling Locally inaTabstrip Control: COiNG........cccceiiieinneieeneece st ssesssss st ssssssessssssssssssssnses
SCrolling iN TaDSLHP CONIOIScvvcecicteiricrietriee ettt s st s s st s s st es s anantas
Scrolling in Tabstrip CoNtrolS: COUING.......covrierrreririeresssesessesssssse s sssssessessssssssesssssessssesssssesssssssssssssssnses
Tabstrip Control 0N the SElECLION SCIEEN.........ccc e se st s s essnsnsnees
SElECHION SCIEENS 8S SUDSCIEENS.......coucveeeeeeeereererrerrer s s ses s eesessesses s s s s sesessessessesses s s s ess s essessensesennes
Defining A Tabstrip Control on the Selection Screen
Selection Screen as a SUDSCIEEN 0N thE SCIEEN...........cc e
Subscreen and Tabstrip Control: UNit SUMIMAIY ..o ssesessesessssesssssssssnes
Subscreen and Tabstrip CONLrol: EXEICISES..... ..ot sssees

Subscreen and Tabstrip CONLIOl: SOIULIONS........cccurureriurueirireeieirereseeeseseees e sesses e be e ssas s sessasssesessaneas

OVEIVIEW DIAGIAIM.....cvuiteuerieeresesseseesesse et s et b s ae b ses bbb e bbb bbb bbb 23-2
TaDIE CONIOI: OVEIVIBW......coueeeeeciieeiee ettt es e e bbbt 23-3
TADIE CONLIOL.....cetieieee ettt a s b bbbt 23-4
TaADIE CONLIOI: FEALUIESceeecectreectrei et e bbbt 23-5
Table Control: Tale SEIINGS.......cvceereeee e 23-6
ACLIONS IN TADIE CONLIOIS ...t e 23-7
Creating @ TablE CONLIOL ...ttt a bbbt es s st en e anbebnas 23-8
TaAhle CONLIOL: ALITTDULES ..ottt
Creating @ TablE COMNLIOL ..ottt s st s st s s s s s e s s b b s s s s et e s s s aesesnanantas
Creating a Table Control: Table CONIOl ATEa........ccvereiririreirrersesesesss st ssssesssssssssssssssnses
Creating a Table CONtrol: FIEIAS.......ciiiriiceirecsrsees sttt ns st a st esnnnsnses
Creating a Table Control: SElECtioN COIUMNc.cvicierrerer st ssssse s ssssssssessssssesssssnses
Table Control AttriDULES 8 RUNMIIMEcoviirieireeieeeet et

Table Control AttriDULES (SEFUCLUIE) ..ottt
Processing @Table CONEIOLucureuerreerieer et res bbbt
Processing a Table CONntrol (PriNCIPIE) ...t ses s ssss e
Table Control: Applications (PrINCIPIE)ciiiicriecererer e
Filling aTable CoNtrolcoccvveennvesssessssesessseeesssesees

Table Controls: Field Transport in the PBO
Coding: Filling a Table Controlccoevveeeneneceesereeenenenns

Changing the Contents of a Table Control.........cccccveveveurinnee

Table Controls: Field Transport iNthe PAL....... st ses s essssssnses
Coding: Changing the Contents of a Table CONLIOcccerreieerreserressse s sssesseees
Table Control: FUrther TEChNIQUEScccviierierirerierisesises et sesssesesessss s sessss s ssassssssssssesssssessansssssssssssnses
Changing & TabIE CONLIO ...t
Changing the Attributes of @ Table CONIOl (L) ..o
Changing the Attributes of a Table CONIOl (2)cvverreerreeireerere e sees
Table Control: Changing Field Attributes Temporarily

Table Control: SOrting (EXAMPIE) ..ot
Table Control: Scrolling Page By Page (EXAMPIE)cccouiiiiriirninsessnes
Table Control: Cursor POSition (EXAMPIE) ..ottt ssssss s s sessssssesss s st sssssssessssssnses
Table Control: UNIt SUMMEIYcocvirireirecstcresisie st ssssssste s sesssssssssssessssssssssesssssssssssssssesessssssssesssssesesssssseses
TaADIE CONIOI: EXEICISEScuvuereeererersessessesseseesess s ee s st es s bbb
Tahl@ CONIOL: SOIULIONScuvreeerrerrerererseesesees e s s bR
CONLEXE MENUS ON SCIEENS ..ottt bbb bbb b bbb 24-1
OVEINVIEW DIBOIAM.....cueiierierieiriseseetsesesee s sessssesesessssssssesssssessesasssesssssssssssesssssesassesssnsessssssnsessesssnsesssssssesesssssessssssssesasns 24-2
L0001 a1/ = USSP 24-3
Creating @ CONTEXE IMENUcueuiireieirereiseet et st 24-4
Creating a Context Menu: ASSIgNIiNG FUNCLIONS ..o sese s 24-5
LiNKiNg SCreeN ODJECEScuivieciieeeieireie e e st 24-6

USING the CONLEXE IMBNU ...coveeiieieeciersses ettt st 24-7

ConteXt MENU: UNIT SUMMEIYcuvviereereeireereieesi et sese s sess bbb ss e 24-9

Context MENUS ON SCrEENS: EXEITISESceuiirerireeireie ettt 24-10
Context MenuUS 0N SCrEENS: SOIULTONSc.ciurerireerreeeineee s ses st nssees 24-12
LiStSiN SCreen PrograMiMingcoceeeeeserseserseessesesressssesessssessssessssssss s sses s ssesssssssssssssssssessssssssssssssssessssessssssessssesns 25-1
OVEIVIEW DIAQIAIM.....cutieeerieeriererreres st s sttt eee e ees et R b 25-2
o == T] o=t S I 25-3
Creating @ LISt BUFEN ...ttt bbbttt 25-4
EVENES FOF TNE LIS ..ottt 25-5
List Display at the FIrONTENGcccueiieceiei ettt a et s st es s nnaee 25-6
LiSt DiSPlay ON thE SCIEENcucveecceesecete sttt s st e e st s e st s e nnseee 25-7
LisStSiN MOdal DIialOg BOXES......ccveurireierieiierisieisescsistsessssts s sessssssssssssssssssss s s sssssesssssssssssssssssessssssssesssnssssesssssssnss 25-8
LISES: UNIt SUMMIBIY ..ocvveececeereeecesesesie s sessssesessssssssessssse s s ssssasessssssssssssssessssssnsessssssssssssssssssssnssnsssnssnsessssssssnss 25-9
Listsin Screen Programming: EXEICISES.......cveeieriieitiresiress e ses et sess sttt ssss e 25-10
Listsin Screen Programming: SOIULIONS.......c.cceeieeeieresinesisessssese s ssessssessssss st sessssessssssssessssssssssssesnsaes 25-11
AAPIENTIX ..ottt bR AR 26-1
OSSOSO 26-2

ABAP Programmlng
Techniguies

Part 1 oifi2

m R/3 System

= May 2000
M number 50039584

Copyright 2000 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may

be copied or reproduced in any form or by any means,

or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

a4 SAPAG 1999

Trademarks:

Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®,
Multimedia Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ®
areregistered trademarks of Microsoft Corporation.

Lotus ScreenCam ® is aregistered trademark of Lotus Development Corporation.

Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.

ARIS Toolset ® is aregistered Trademark of IDS Prof. Scheer GmbH, Saarbrticken
Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.

TouchSend Index ® is aregistered trademark of TouchSend Corporation.

Viso ® isaregistered trademark of Visio Corporation.

IBM ®, OS2 ®, DB2/6000 ® and AlX ® are aregistered trademark of IBM Corporation.
Indeo ® is aregistered trademark of Intel Corporation.

Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.

OSF/Matif ® is aregistered trademark of Open Software Foundation.

ORACLE ® isaregistered trademark of ORACLE Corporation, California, USA.
INFORMIX ®-OnLine for SAP is aregistered trademark of Informix Software Incorporated.
UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.
ADABAS® isaregistered trademark of Software AG

m The following are trademarks or registered trademarks of SAP AG; ABAP/4, InterSAP, RIVA, R/2,
R/3, R/3 Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript,
SAPtime, SAPtronic, SAP-EDI, SAP EarlyWatch, SAP ArchivelLink, SAP Business Workflow, and
ALE/WEB. The SAP logo and al other SAP products, services, logos, or brand names included
herein are also trademarks or registered trademarks of SAP AG.

m Other products, services, logos, or brand names included herein are trademarks or registered
trademarks of their respective owners.

Section Overview !’
DA

Section Basis Technology Overview

Section ABAP Workbench Concepts and Tools
Section Managing ABAP Development Projects
Section ABAP Dictionary

Section ABAP Programming Techniques

Section Techniques for List Creation and SAP Query
Section Transaction Programming

Section Programming Database Updates

Section Enhancements and Modifications

Section Data Transfer

a4 SAPAG 1999

Section: Techniques for List Creation and SAP Quer

8 SAP AG 1999

Content:

Techniques for List Creation and SAP Query ..|!_l_|'

Unit
Unit
Unit
Unit
Unit
Unit
Unit

Introduction

Quick Viewer

SAP Query - Creating Lists
Outputting Data to Lists
Selection Screens

Logical Databases

Programming Data
Retrieval

Unit

Unit

Unit

Unit

SAP Query
Administration

Data Formatting and
Control Level Processing

Storing Lists and
Background Processing

ALV Grid Control

Appendix

a4 SAPAG 1999

Introduction

Course Goals

Course Objectives
Course Content

Course Overview Diagram

Main Business Scenario

Getting Started

8 SAP AG 1999

Course Objectives !’
DA

In this course, you will learn how to:

® Use utilities to create lists

® Create print lists
® Create both simple and interactive lists

a4 SAPAG 1999

Course Overview Diagram

Connections of airline LH 1 AZ ROME TOKYO g IEI ? HWTE %S E B
CAR Id Departure Arrival fé S ROl I I I |]
DL
AA 0017 New York San Francisco Eh 0789
AA 0064 San Francisco New York LH 12/29/2000 2,667,445 ITL
ILiz! @400 [FE [NEWAYO LH 12/09/2000 2,667,445 ITL
LH 0402 Frankfurt Berlin LH .
Tools Simple lists Interactive Lists ALV Grid Control

a4 SAPAG 1999

Business Scenario !’
DA

I ® You are an employee of a very large tour company
The tour company wants to increase its offerings

To allow for the increased number of tours, the
company needs a list of the most current flight data

® You are assigned the task of writing a program that
outputs the required flight data to a list

a4 SAPAG 1999

Demonstrations, Copy Templates, and Solutions H’

® Development class BC405 with the following naming conventions:
m Demonstrations SAPBC405_xxxD_...
m Copy templates SAPBC405_ xxxT_...
m Solutions SAPBC405_ xxxS_...

B XXX Individual unit code

a4 SAPAG 1999

m Abbreviations for individua units:
-QUV Unit2: QuickViewer
-AQL Unit3: SAPQuey - Creating Lists
-FOL Unit4: Outputting Datain Lists
-SSC Unit5: Selection Screen
-LDB Unit6: Logica database
- GDA Unit 7: Interna Data Collection
-AQA Unit8 SAP Query - Administration
- DAP Unit9: DataFormatting and Control Level Processing
- STL Unit 10: Saving Lists and Background Processing
-ILB Unit 11: Basic Techniquesin Interactive Lists
- ALV Unit 12: ALV Grid Control

Exercises and Units

® Without LDB (with copy template) ® With LDB (F1S)

m Outputting Data in Lists m Logical database
m Selection Screen m Data Formatting and Group
m Internal Data Collection Level Processing (Extracts)
m Data Formatting and Group m Saving Lists and

Level Processing (Internal Table) Background Processing

m Basic Techniques in Interactive Lists

m ALV Grid Control

® QuickViewer
® SAP Query (Lists, Administration)
® ALV Grid Control

a4 SAPAG 1999

m The exercises stretch across several units. Each intermediate step has a sample solution that can be
used for the subsequent exercise.

QuickViewer F'
A

Contents:

® Generating QuickViews

8 SAP AG 1999

QuickViewer: Principle

Data source Structure list Execute

» Field sequence

» Sort 1]
» Selections

I
> ...

Table Basis or Save list

Database view layout mode Interface to Word, ABC analysis
Table join representation in the ALV Control
Functional area and so on

Logical database

a4 SAPAG 1999

m The QuickViewer isatool for developing ad hoc reports that is new in Release 4.6A. Y ou can start
the QuickViewer using the menu path QUV-1.

m The QuickViewer can use a database table or a database view as a data source. Lists can be
generated using the fields in the data source specified. Two modes are available for this: basis mode
and layout mode

m The QuickViewer provides interfaces, for example, to the EIS, ABC analysisor the ALV Grid
Control. The list can aso be processed further in external programs, such as Word.

m The generated list can be saved and then displayed again in the QuickViewer. Selection criteria are
also saved along with the list, and can be queried again at any time.

QuickViewer: Initial Access H'
-

A
Welcometothe QuickViewer QuickView DEMO V4 Change [Create
1. Please enter your name and
select [Create
2. Choose a titleand 'r'“' SAP Query & Execute

comments.
3. Name adata source. It can ; _
join, or afunctional area of the

SAP query. m || || s

4. Choose layout mode [H to :
design the QuickView graphics | | BC405_D1 Demo in BC405

Choose basic modelfjj to []
directly export the selected []
fieldsin thereport L]
<4 <

Help subjects: Selection fields; Output options in
list: Width of list

< |»] ¥

a4 SAPAG 1999

K

m Each user defines their own user-specific QuickViews which only they can display. This means that
you cannot copy other users QuickViews. Y ou can, however, compile an SAP Query from a
QuickView, if the QuickView uses afunctiona area from the standard system as a data source (see
unit 'SAP Query - Cresating Lists). The query isthen visible to the user group.

m QuickViews are not connected to the correction and transport system.

Creating a QuickView !’
DA

[Create QuickView DEMO: Determine Data Source

QuickView DEMO
Title Example in BC405
Comments Join via tables SCARR and SPFLI

1. Data source: /

Table join

® [Basis... O [H Layoutm...

a4 SAPAG 1999

m You must name a data source in order to generate a QuickView. The data source can be a database
table, a database view, alogica database, atable join, or even afunctiona area of SAP query. The
functional areamust lie in the (client-specific) standard area.

m Y ou can access the specified data, but you cannot extend it with additional fields (also see Local
fieldsunder SAP Query).

Join Definition: Graphical H’
-

Join definition

Check Add table Delete table Alias table

INNER or LEFT OUTER link

< shortID... B— - ShortID..

Name of a ... ;C Code...
Local currency ... > Country code
URL ... Departure city

Departure airport
Country code
Arrival city

a4 SAPAG 1999

m When you specify atable join as the data source, you have to define the join before you can structure
thelist in Query Painter.

m You define the table join graphicaly. Y ou have to specify the links between the tables, and you can
have the system propose a value. It does this using information from the Dictionary .

m You determine the resulting quantity by deciding on either Inner or Left Outer Join logic. For
example, if you only want to output airlines from table SCARR in a list when these airlines have
flights in table SPFLI, this corresponds to the Inner Join logic. In contrast, if you want to output all
the airlines regardless of whether flights exist in table SPFLI, then you would link both tables using
Left Outer Join logic. In this case, the l€eft table is SCARR.

m Alias tables enable you to use the same (database) table severa times when defining the join

Basis Mode: Principle Structure

Data source . :
QuickView
Setup
Information
Online Documentation

a4 SAPAG 1999

m |n basic mode, the screen is divided into four areas. The available fields (data source) are displayed
to the left in tree form. Further information on how to work in the basic mode is displayed in the
lower left window. Y ou can maintain the title and comments and contral the output (list or Excdl) in
the upper right area. Thisis aso where you control the list structure, set the sort sequence and define
the selection criteria. Y ou can branch to the online documentation from the lower right window.

Structuring a QuickView in the Basis Mode

QuickView DEMO

Title Example in BC405

Comments Join via tables SCARR and SPFLI
List field selection Sort sequence Selection fields Data source
List fields Available fields
I | |
L] | -

] .

L L

[] M

L] g L

a8 SAP AG 1999

m You can structure your QuickView using two table controls. Select the fields you want in your list in
the right table control and use the transfer functions to move them to the | eft table control (‘List
fields). You can also control how many lines the list should have (using the '‘Add line function) in
the left table control ('List fields).

m Follow the same procedure for the sort and selection fields: select the fields you require in the right
table control and copy them to the Ieft control.

Using the QuickView !’
DA

User ad hoc reports

Each user defines their own QuickViews which only they
can display

Uses existing data
No administrative effort (user group, functional area)

QuickView can be converted to a SAP query

Interface to internal (EIS, ABC, ALV) and external
applications

Less functionality than SAP Query

® No transports

a4 SAPAG 1999

z-!‘ zl '-'
.' You are now able to:

® Use the QuickViewer to generate ad hoc reports

a4 SAPAG 1999

SAP Query - Creating Lists

® OQverview

® Generating Queries

8 SAP AG 1999

SAP Query - Creating Lists Hr
A

, Overview
Queries

a4 SAPAG 1999

Overview: Programs and Query

REPORT . . . %
ABAP START- OF- SELECTI ON. —_—
program .
WRI TE ...
BPememeem—————

Describe list

Query Painter] _

TINCLE

Title
Format

Classic

Output

options Output options
Line 3 Field

a4 SAPAG 1999

m When you create alist with areport, the datais usually retrieved viaalogica database, processed by
the report and then output as alist.

m Queries evaluate data and can be created without any prior programming knowledge using the SAP
Query toal.

m The query results in a sequence of screen fields which you use to describe the line structure and list
layout. Starting in Release 4.6A, you can use the Query Painter to add graphics to query lists.

m When the query is Started, an internal report generator creates a program that corresponds to the list
definition. That program then reads the data, processes it, and outputs the data as a list. The program
is named A Qmmbbbbbbbbbbbbggggaggaagaagg. Y ou can display the report names with the menu
path displayed in appendix documentation AQL-1.

mm - encoded client (standard area) or ZZ (global area)
bbbbbbbbbbbb - Name of user group (12 places)
00aqaoaaqaoaaq - Name of query (14 places)

Spaces in query program names are replaced with '='.

Organization of Query

Creates Distributes

Functional area @ @ m
\M v) .
’
Functional area -
\522/ User group
] UG1
Assigns

Functional area
\sy Generate |
Queries \ Queries | Queries
for for for
~_ FA1 SG2 SG3

User group
uG2

a4 SAPAG 1999

The administrative tasks in the query environment include creating functional areas and user groups,
aswell as assigning the functional areasto the user groups.

The functiona area determines the tables (and the fields of those tables) to which a query can refer.
Functiona areas are frequently based on logical databases.

m Users may create and start queries only when they belong to at least one user group. A given user
can belong to several user groups. Usersin auser group al have the same privileges.

Functional areas are alocated to a user group; the members of a group can access the functiona area
to which the group is alocated.

A functional area can be allocated to several user groups.
m Severa functional areas can be alocated to a user group.

Queries are always created for a specific user group and a specific functional area. Usersin a user
group have access to dl the queries allocated to that group.

Creating a Query Hr
A

User group Changes User group
UGl uG2

Functional area ‘ Functional area
) FA1 : FA1)

wjar)) emjem))
‘ Copy Creates Copy ~

New query
in FA1

a4 SAPAG 1999

m |f you have been allocated to severa user groups, you can switch within these groups.

m A query isaways created from a specific functional area. The functional area must be alocated to
the user group in which the query was created.

m You can access al queries that have been allocated to your user group.

m |f you are authorized to define a query with afunctional area, you can list al the queries for that
functional area.

m You can only copy aquery from adifferent user group to your user group when the functional area
of the query to be copied has aso been alocated to your user group.

SAP Query - Creating Lists Hr
A

Overview
, Queries

a4 SAPAG 1999

Defining a Query H’
DA

Type of list

Functional groups —
Functional BaSI.C list
area (Optlpnal) .

(sorting, summation)
J Vv Statistics
(optional, poss. multiple)

Field Selection

* A Ranked list

: : (optional, poss. multiple)
Local fields

Layout of list:
Arrangement of fields
Sorting, summation
Output options (formats, masks, output lengths ...)
Texts (headings)

a4 SAPAG 1999

The query results in a sequence of screen fields in which you use

* Selection (checkboxes)

* Number assignment (sequence, sort, ...)

* Texts (headers, group level texts)

to determine the line structure and the list layout.

Starting in Release 4.6A, you can use the Query Painter to add graphicsto basic lists.

Y ou can use SAP Query to generate different types of lists (partia lists):

* Basic List: Single line or multiline. Multiline basic lists can be compressed.

» Statigtics, ranked lists: Require a numeric field. Data can be compressed.

* You can combine different partial listsin asingle query. Starting in 4.6A, you can also print the
individua partid lists.

Y ou can aso define local fields within a query, which means you can calculate new values from the

collected data.

While you cannot generate interactive lists you have defined yourself, some standard interaction
functions are available. For example, you can pass on the generated lists for further processing
(Excdl, EIS, ABC analysis), display them in graphical form (SAP Graphics), save them, or edit them
in table form (table control and ALV grid control).

Selecting the Work Area and Functional Area

Query of User Group BC_TRAINER

Work area Global area (client-independent)
Query DEMO f Change D Create
J= Quickviewer | {5 Execute & Display | [Description
[Z7 Functional Areas of User Group BC_TRAINER V
Name Logical database Description of functional area
BCS1 F1S Flight connections (LDB: F1S)
BCS3 Table join SPFLI, SFLIGHT
BCS4 Connections

a4 SAPAG 1999

Y ou can use the menu paths displayed in appendix documentation AQL-2 to create, change, and
execute queries with the ABAP Workbench.

Queries are created either in the standard area or the global area. A query area covers a set of query
objects that are internally complete and consistent - this means objects with the same name but with
adifferent meaning can exist in the various query areas. The global and standard areas have separate
namespaces.

The standard areaiis client-specific and is not linked to the Workbench Organizer (WBO). The query
objectsin the global area are available in al clients and linked to the WBO. If you create a query in
the global area, you have to assign it to a development class.

When creating a query, you must first choose afunctional area. The system displays al the
functional areas that have been assigned to your user group. Once you have chosen afunctional area,
you cannot modify your choice: the functional areais the basis for data retrieval.

SET/GET parameters AQW and AQB are available and can be used in your user parameters to
define default settings for the query area (globa area: AQW = G) and your user group.

Creating Local Fields !’
DA

H2

Functional 1111 |

HHEHHENI _
UM 1oca fietas
el
Field
Selection E@
Selection fields
Basic list ’ ‘ Ranked list 1 ‘ Statistics

a4 SAPAG 1999

m When selecting fields, the system leads you through the following screens.
- Title, format:

Used to assign the query title Y ou can set the page layout by making entries for the format. Y ou
can aso set additional characteristics for the query with specid attributes.

- Functional area

Functional areas are divided into functiona groups. These form logica groups of data. You
choose the required functional groups here.

- Fidd Sdlection

Here you choose the required data fields of the previously selected functional groups. If you
require local fields, you can aso define them here.

- Sdlection fields:
Y ou can define fields to add to the selection screen and further limit the selection criteria.

m Depending on which type of list you want to generate, edit the screen fields or use layout mode
(Query Painter) for the basic list. You always have to use the Field selection screen field to create

local fields.

m By defininglocd fields, you can generate additional information from the fields that are available in
afunctional area

m |f pre-existing fields are required for the definition of alocd field, short descriptions must be
provided (see the menu path displayed in appendix documentation AQL-3).

m A short description can be assigned for each field.
m Short descriptions are also used to retrieve values of the corresponding fields in the list headers.

m You can define local fields for a query (menu path AQL-4)

m Loca fields are defined with calculation rules. In the smplest case, calculation rules consist of a
single formula formed with norma mathematical rules and consisting of operands and operators.

m The calculation of afield's value can be made condition- dependent. In this case, values are calculated
according to certain rules only when a particular condition is met. If the condition remains unmet,
the field receives a default value. Multiple conditions are allowed.

Y ou can sort the values of key columns of statistics in ascending or descending order.
Numerical fields in statistics are accumulated. Statistics only make sense with numerical fields.

Statistics allow you to display the average value, the percentage breakdown, and the number of
records read for each numerical field.

Y ou can define up to 9 statistics individually or as a supplement to abasic ligt.

If you work with different currency or quantity fields within statistics, you must enter a reference
currency or areference unit for each field, so that the system can convert it into that currency or unit.

The list displays the conversions processed by the system. In the event of an error, the system logs
any conversions that did not take place. In addition, the system highlights the affected currency or
quantity fields within the statistics.

With the appropriate definition, subtotal lines can also appear within statistics. If you compress the
statistics, the system displays only the subtota lines and the grand total.

Ranked lists are specid forms of datistics. However, they are aways sorted based on one numerica
value. Thisvaueisreferred to as the ranked list criterion. In addition, the system only outputs a
certain number of records. As aresult, ranked lists are appropriate for tasks like: "Which 10 flight
connections have the highest sales'?

Ranked lists are sorted according to only one field, and the number of output linesis limited.
Y ou can define up to 9 ranked lists individually or as supplements to a basic list.

Y ou can aso define each ranked list as statistics.

The rules for conversions of currency and quantity fields also apply to ranked lists.

To create basic lists, use the Query Painter. In the Query Painter, the screen is divided into four
areas. The available fields (data source) are displayed to the left in tree form. The list structure is
displayed with sample data in the upper right area. Information for the currently active element is
displayed in the lower left portion of the window. Links to documentation and any warnings that are
output while formatting the list are displayed in the lower right section of the window.

You can edit list characteristics (frame, width) by selecting a field, right-clicking with the mouse and
choosing 'List options from the menu. While editing, you are working in the lower left window. If
you have created new characteristics, then you need to confirm the values you have changed using
the APPLY function.

Y ou can edit list line characteristics (color, separators, and so on) by selecting afield, right-clicking
with the mouse and choosing ‘Line options from the menu. While editing, you are working in the
lower left window. If you have created new characteristics, then you need to confirm the values you
have changed using the APPLY function.

Y ou can edit field characteristics in the lower left window by selecting the appropriate field. Further
field characteristics are available in the menu displayed with the right mouse button.

Y ou can move column and list headers to a mode that is ready for input by double-clicking.

Selecting afield in the upper left window automatically adds that field to the list (is appended at the
end of the current line). The individual fields are represented by field values. Sample data records are
read from the source. If thisis not possible, field values are simulated. The structure of the layout
determines the structure of the subsequent list - that is, it contains the order of the fields, the headers,
the colors, totals lines, and so on. To display the list structure for multiline hierarchy lists, severa
sample records are read and displayed.

In addition, tools are available in the Query Painter to design the list. Y ou can change the
arrangement of the tools with drag and drop. Select the tool, such as the trash (aframe is displayed),
with the left mouse button. Y ou can now drag the selected area to the new position as long as you
keep pressing the left mouse button.

Y ou can aso use drag and drop to edit the list. Example: Y ou want to change the field sequence. To
do this, point the mouse at the field you want to move, click and hold the left mouse button (the
cursor changes), drag the field to the desired location, and rel ease the mouse button. To delete a
field, just dragit to the trash.

Y ou can aso change the output position and output length with entriesin the lower left window.
Press Apply to apply your values to the list structure.

You can set up control level lists. To do this, you have to determine the sort fields. The sort sequence
can be defined in either ascending or descending order separately for each field. To create a sort
field, drag afield from the list to the Sort tool.

Y ou can define control levels with or without atotal at the end of the control level (subtotal). Y ou
can change the text accompanying the subtotals.

If you total afield, thetotal is output to the same column as the field, with the same output length.
Accordingly, the output length may be too short and result in an overflow (an asterisk appearsin the
first position of the value). To prevent overflows of totals, you can smply increase the output length
of the field you wish to total.

Y ou can output blank lines and/or force a page break before outputting control levels.
Y ou can hide and change introductory and concluding texts for control levels.
The system automatically creates a currency distribution for currency totals.

List overview: If your list consists of several partiad lists, for example a basic list, two statistical lists
and aranked ligt, the system offers you the ability to display the partid lists individually. The partia
lists can also be printed separately.

Report/report interface (RRI): You can use this interface to call query programs (receiver) and
other reports (sender). Additional information is available in the online documentation.

Tabledisplay: Thelist isdisplayed as atable control or using the ALV grid control. Starting in
Release 4.6A, you can also display multiline lists. The different lines are summarized in oneline.

Graphics: The information contained in alist can be displayed with SAP Presentation Graphics.

Filestorage, private storage: Saves the data as afile on the presentation server or in the private
folders. For more information, please refer to online documentation QDO2.

Word processing and spreadsheets. Transfer datato MS Word or Excel (for example)
ABC analysis, EIS: Additiona information is available in appendix documentation QDO02.
Selection: Indicates which selections were input in the selection screen.

Drilldown functions: For expanding and collapsing the list.

Totaling: Totals for numeric fields.

m You can save alist generated by a query using the menu path AQL-5 and re-display it later.

m Subsequent display of a saved list does not require database access to retrieve data. Such adisplay is
therefore much quicker than restructuring the data running the query again.

m Saving alist stores the list itself and supplemental information. Storage of additional information is a
specia function of saving lists that is supported only by query. This makes it possible to perform
interactive functions in the saved list.

m When aquery isintegrated in an area menu (not the AQ... query program), then al the saved lists are
automatically passed on to the area menu, and can be displayed there. All interactive functions
remain available.

m |f you save thelist 'normally’ (using menu path AQL-6), then no interactive functions are available in
the saved list.

Unit: SAP Query - Creating Lists
Topic: Creatinga Query List

*e e

When you have completed these exercises, you will be able to:
Create a multi-line query list with locdl fields

1-1

2-1

Create a query QE1-## in user group BC_STUDENTS using functional area
BCSL in the global work area. Note: ## stands for your group number. The sample
solution, EXERS 01, is available in the global work area under user group

BC TRAINER.

Maintain the short texts for the query and set the column width to 90 columns.

Create aloca fied.

1-3-1 Assign short names for the fields Occupied seats (OCC) and Maximum
occupancy (MAX).

1-3-2 Create alocal field, Empty seats with short name FREE and header Free in
functional group Flights. The field should have the same attributes as the
Maximum occupancy field.

1-3-3 Usethisfield to calculate the number of available seats as the difference
between the maximum occupancy and the number of occupied seats.

Create a multi-line basic list in the Query Painter (layout mode).
Linel Airlineand flight code

Line2 Departure city, Arrival city, Departure time, Distance, Distance unit of
measure

Line3 Flight date, Occupied seats, Available seats, Maximum occupancy,

Percentage occupancy of the flight, Price, Current total revenue for the
flight

List format

3-1-1 Output the list with frames.

3-1-2 Line1: Color Header(intensify), one blank line before the line
Line2: Color Header
Line3: Color Normal
Field Available seas: Color Positive

3-1-3

3-1-4

Modify the standard length for the following fields:
Occupied seats to 8 places

Available seats to 8 places

Maximum occupancy to 8 places

Percentage occupancy to 6 places

Current total revenue for the flight to 15 places

Flight price to 10 places
Change the header of field “Percentage occupancy” to “%".

Optional (sample solution EXERS_01_OPT, see above)

4-1

Copy query QE1-## to QE1-## OPT.

4-1-1

4-1-2

4-1-3
4-1-4

Instead of outputting the number of available seats, you can use atraffic
signal icon to display the information.

Now assign property Icon to local field Available seats and use the complex
calculations to determine the logical conditions under which
ICON_RED_LIGHT (red light) or ICON_GREEN_LIGHT (green light)
will be displayed. Y ou can reduce the output length of the field to 6 places,
and make the field color identical to the line color.

Specify the Flight connection code as a sort field. Sort in descending order.

Display the group level header in a frame. Do not total or count at the end of
the group level.

/ Unit: SAP Query - Creating Lists

Topic: Creatinga Query List

2-1

31

Start SAP Query from the Workbench. Use menu Environment -> Query areas to
switch to the global query area. Press the Change user group button and change to
user group BC_STUDENTS. Create a query named QEL-## (## stands for the
group number). Create a query using functional area BCSL.

1-1-1 Maintain the short text and list width in the initial screen.

1-1-2 Pressthe Next screen pushbutton and scroll forward to screen FIELD
SELECTION.

1-1-3 Activate the short names under menu Edit -> Short names and enter short
names for all specified fields.

1-1-4 Use menu item Edit -> Local field to create the required field. Enter short
name MAX in fiedd Same attributes as field. Model the difference between
MAX and OCC in the calculation formula. Save the local field.

Now press the Basic list pushbutton. Start the Query Painter.

2-1-1 Select the required fields in the upper left corner of the Query Painter (data
fields). Make sure that you set up the list in the order in which you selected
the fields. Otherwise you will have to re-sort the fields accordingly.

2-1-2 To change the attributes of afield, select the field. This displays the field in
the lower left window, and you can now change its attributes. Press APPLY
to activate your changes.

2-1-3 Choose item Line options from the context menu (right mouse button).
Choose Line options from the context menu.

2-1-4 Double-click on a header text to change it. The text field is displayed ready
for input.

2-1-5 Save the Query.

Optional

3-1-1 Branch to the maintenance of the local fields (see above). Change the
attribute of the local field to Icon. Press the Complex calculations
pushbutton. Enter MAX = OCC under the first condition and enter
ICON_RED_LIGHT under the corresponding formula. Enter OCC < MAX
under the second condition and enter ICON_GREEN_LIGHT under the
corresponding formula.

3-1-2 Start the Query Painter. Select the required sort field and drag it to the Sort
fields box. When you select afield in the Sort fields box, the attributes of the
selected control level appear in the lower left window. Press APPLY to
activate your changes.

3-1-3 Save the Query.

Outputting Data in Lists

Simple Lists
List Formats
Page Layout
Output Design

Tools

8 SAP AG 1999

Generating a List !’
DA

REPORT sapbc405 fold |ist creation .
DATA: wa_spfli LIKE spfli.
SELECT carrid connid cityfromcityto

| NTO CORRESPONDI NG FI ELDS OF wa_spfl i
FROM spfli.

==/ wa_spfli-carrid, wa_spfli-connid,
wa_spfli-cityfrom wa_spfli-cityto.

ENDSELECT.

DEMO: Generating a list 1
AA 0017 NEW YORK SAN FRANCISCO
AA 0064 SAN FRANCISCO NEW YORK

AZ 0555 ROME FRANKFURT

AZ 0788 ROME TOKYO

/\/

m Thefirst WRITE statement in an ABAP program triggers list generation. The system first writes the
data intended for output to alist buffer. Once all the data has accumulated in the list buffer and the
system has processed all events, the system generates the screen image from the list buffer.

m By default, the list consists of a " continuous’ page (maximum 60,000 lines).

m The maximum length of alineis 1,023 characters. To support maintenance and improve
performance, lists should be only as long as necessary.

m Asastandard function, the system generates two header lines (standard header). The first header line
contains the program title in the upper left corner and the page number in the upper right corner. The
second header line consists of an unbroken line. Both header lines remain in the window when you
scroll.

m When you print aligt, thefirst line of the header appears as follows: Upper left: System date Center:
Program title Upper right: Page number

a4 SAPAG 1999

Setting the List Format H’
DA

REPORT <name> LI NE- SI ZE <s> LI NE- COUNT <ni (n)] >.

=0l sapbc405 fol d_|ist_|ayout REEN=SSIVA=NST]
LI NE- COUNT 12.

WRI TE: ... 50
DEMO: List format design 1
12
DEMO: List format design 2

/\/

a4 SAPAG 1999

m Use the additions LINE-SIZE <s> and LINE-COUNT <m> with the REPORT statement to
create global definitions for column and line length for all list levels. The different list levels
are created during interactive reporting.

m Within a list level, you can use NEW-PAGE LINE-COUNT <s> to change the number of
lines on a page - this value overrides the definition in the REPORT statement. The width of
a list can only be changed by creating a new list level. If you want to use the default values,
then set <s> and/or <m> to zero.

® You cannot use variables for <s> or <m>.

m An optional addition in the REPORT statement, n, reserves a line for the footer. To create a
footer, you have to program the END-OF-PAGE event.

Page and Column Headers !’
DA

REPORT sapbc405 fol d top_of page

Goto System TOP- OF- PAGE.

d/ \l/ VNTE / ' %% %% *k*,*****x*%
Text elements List
START- OF- SELECTI ON.
Title/Headings List headers

ﬁ FREEEHIEEARE ARSI A IR AR A IS

List header

|
Column header

Rk Sk S o b o I R Rk ko b

a4 SAPAG 1999

You can maintain a list header (page header) and up to four column headers for a list. You
can maintain the headers with the Editor or from the list itself. Maintenance from the list
itself offers an advantage: since it is displayed on the screen, positioning of elements,
especially column headers, is simpler. Headers appear automatically the next time the
program is started in that list. If you have not maintained a list title, the system uses the
program name as a default (system field SY-TITLE).

The addition NO STANDARD PAGE HEADING in the REPORT/PROGRAM statement
suppresses the output of list/column headers. You can override this global setting with
NEW-PAGE NO-TITLE/WITH-TITLE and NO-HEADING/WITH-HEADING. All texts that
you enter in the standard list headers are saved language-specifically, and can be
translated later.

The TOP-OF-PAGE event can be used to generate any page headers. TOP-OF-PAGE is
especially useful when you want to output variables in the headers. All texts should be
written as text elements, to allow them to be translated later.

TOP-OF-PAGE is triggered whenever a new page is created (WRITE, ULINE, and so on).

If you do not suppress the standard list headers, they appear above the lines generated by
TOP-OF-PAGE. Lines generated by TOP-OF-PAGE remain in the window during vertical

scrolling.

Defining Line and Field Formats

REPORT sapbc405 fol d_for mat

TOP- OF- PACE.
FORMAT COLOR COL_HEADI NG | NTENSI FI ED ON.
VIR
FORMAT C(]_(R COL_HEADI NG | NTENSI FI ED CFF.
VRl TE:
START- OF- SELECTI ON.
SELECT carrid connid cityfromcityto deptime arrtime
I NTO CORRESPONDI NG FI ELDS OF wa_spfli FROM spfli .
I XMI=E wa spfli-carrid CO.OR CO._KEY | NTENSI FI ED ON,
wa_spfli-connid CG_(R COL_KEY | NTENSI FI ED ON.
FORVAT COLOR X [
WRI TE: V\aspfll-mtyfrom HOTSPOTO\I
wa_spfli-cityto,
wa_spfli-deptime HOTSPOT ON,
wa spfli-arrtine.

FORMAT RESET.
\DS

a4 SAPAG 1999

m You can use any of the following FORMAT options.
COLOR <n> [ON|OFF] Colors the line background
INTENSIFIED [ON|OFF] Intensify colors YESINO
INVERSE [ON|OFF] Inverse: Background/text color

HOTSPOT [ON|OFF] Display mouse pointer as hand and single
click with mouse button (see
AT LINE-SELECTION)

INPUT [ON|OFF] Input field
RESET Resets dll formats to their default values
m Theformats set with FORMAT take effect with the next WRITE statement.

m Youcanusedl FORMAT optionswith the WRITE statement, but the options will affect only the
one field in which they appear.

m FORMAT optionsin aWRITE statement change the globa formatting instructions (set with a
FORMAT statement) for the field.

m At each new event, the system resetsal FORMAT optionsto their default values.

WRITE Statement: General Syntax H’
DA

VWRI TE [AT] [/<pos(len)>] <f> <optionl> <option2> ...

REPORT sapbc405 fold wite ...
* constants for positions of outputs
CONSTANTS: POS2 TYPE | VALUE 12,

VR TERIBM/ sy-vline,
EVIANRCI MO Wa_sflight-fldate COLOR COL_KEY,

LEN_FDT TYPE |I VALUE 10, "sflight-fldate

(len_pri) wa_sflight-pricef@Uax=\®@wa sflight-currency,
(l'en_cur) wa_sflight-currency.

a4 SAPAG 1999

NO-GAP Suppresses output of spaces after the <f> field.
Fields output directly after each other appear without gaps.

NO-ZERO If the contents of field <f> are equal to zero, only spaces are output.
If f is of type C or N, spaces replace leading zeros.

DD/MMIYY If <f> is a date field (type D), its contents are not processed according to
user parameters (and according to the option).

CURRENCY <key> determines the number of decimal places for currency amounts in
the list output. The specified key is used to read the number of decimal places in table
TCURX.

UNIT <key> determines the number of decimal places for quantities in the list output.
The specified key is used to read the number of decimal places in table TO06.

USING EDIT MASK <mask> Outputs according to the formatting template<mask>.
UNDER <g> The output begins at the column in which field <g> was output.
LEFT-JUSTIFIED Left-justified output (default for types C, N, D, T, X).
CENTERED Centered output within the output length.

RIGHT -JUSTIFIED Right-justified output (standard for all number fields: I, P and F)

m You can find a complete list of all WRITE options in the online documentation.

Outputting Icons, Symbols, and Lines

REPORT sapbc405_fol d_i con_synbol | i ne.
* | NCLUDE <i con>

* | NCLUDE <sinbol >,

* state of free seats
| F SEATSEREE < 1.
2N | CON_RED LI GHT AS | CON.
ELSElI F SEA Ri > 1.
JaRfa | OV GREEN LI G S 1 G
ENDI F.
* state of booked seats

I F WA_SFLI GHT- SEATSOCC < 10.
lAaiS SYM LEFT_HAND AS SYMBOL.
ENDI F. o000
©00
H
o000
oe0

a4 SAPAG 1999

m You can usetheAS SYMBOL option of the WRITE statement to include symbolsin lists. The
symbolic names of these characters are defined in include program <symbol>.

You can dso insert iconsinto the list with WRITE <f> ASICON. To do this, you have to link the
include program <icon> in your program.

You can link the include program <list> to use both symbols and icons in the list.

Y ou can find an overview of available symbols and icons in the online documentation or in the
statement examples for WRITE.

To generate a horizontal line, use the ULINE statement, system field sy-ulinein aWRITE
statement, or severa minus signsin a WRITE statement

m To generate avertica line, use system field sy-vlinein aWRITE statement
m To generate specia lines, like the upper-right corner, use line_top_right_corner ASLINE .

m You can use these elementsto frame alist, to separate titles from alist with horizontal lines, to
separate columns with vertical lines, and to create table and trees.

Scrolling in Lists and Lead Columns

SCROLL LI ST [TO PAGE <p>] [TO COLUW <c>] [TO LAST PAGE]
[<option>]...

SET LEFT SCROLL- BOUNDARY [COLUWN <c>] . ‘

REPORT sapbc405 fold scroll _boundary ...
DATA: |sb_colum TYPE i VALUE 10.

TOP- OF- PAGE. 9 —
SET LEFT SCROLL- BOUNDARY
COLUW' | sb_col um.

START- OF- SELECTI ON.

SCROLL LI ST TO LAST PAGE

a4 SAPAG 1999

m Youcanuse SET LEFT SCROLL-BOUNDARY to set hard lead columns for alist: the lead
columns remain in place during horizontal scrolling. Without an additional parameter, the system
uses the current write position (SY -COLNO) as the left margin. The margin (limit) must be reset for
every new page (at TOP-OF-PAGE for example).

m You canuse NEW-LINE NO-SCROLLING to prevent shifting the next list line during horizontal
scrolling. For example, you can use this function to ensure that the comment lines are lways visible.

m You can use the SCROLL statement to scroll to any placein thelist at runtime; for example, the
system could automatically display the last page of the list.

Additional Statements for Page Layout

NEW LI NE.

SKIP [TO LI NE] <n>.

RESERVE <n> LI NES.

BACK.

PCSI TI ON <n>.

SET BLANK LI NES ON| OFF} .

a4 SAPAG 1999

m NEW-LINE new line, correspondsto "/ in the WRITE statement.

m RESERVE <n> LINES If the current page does not have space for at least <n> more lines
in the list structure, a page feed is generated.

m SKIP<n> <n> blank lines are output
SKIP TO LINE <n> Next output in line n (you can also skip backwards in the list)

BACK without RESERVE Return to thefirst line in the current page after TOP-OFPAGE
With RESERVE: Return to the first line output after RESERVE

POSITION <n> Next output position in column <n> of the current line
SET BLANK LINESON Any blank lines created through the output of blank fields are output
SET BLANK LINESOFF No blank lines are output (default setting)

Text elements include the standard headers, text symbols, and selection texts. The text elements are
saved language-specificaly, separate from the source text. This alows subsequent trandation. The
logon language determines the language in which the system displays text elements.

Y ou should define the output length of the text symbols as large as possible, as this determines how
much space is available for the trandations.

Text symbols can be addressed in programs in the following ways:
e TEXT-XXX (xxx is athree-character string)
o'string’ (Xxx)

Y ou can reconcile the text symbols and the program when you use the second method of creating the
text symbols. If atext symbol has been maintained, it is dways output in the list. The extended
syntax check returns an error if you forgot to maintain the text symboals.

m During generation of alist, the ABAP runtime system fills the following system fields:

SY-LINCT
SY-LINSZ
SY-SROWS
SY-SCOLS
SY-PAGNO
SY-LINNO
SY-COLNO

Number of lines from REPORT statement (LINE-COUNT)

Line width from REPORT statement (LINE-SIZE)

Number of linesin the display window

Number of columnsin the display window

Page number of the current page

Line number of the current line of the current page (SY -PAGNO)
Column number of the current column

m During generation of thelist, the system fills the last three system fields continuoudly.

m A number of standard list functions are available in the standard list interface.

*e e

Unit: Outputting Data in Lists
Topic: Formatting

When you have completed these exercises, you will be able to:
Define list formats
Set headers
Set Hard Lead Columns
Create a page break

Copy program template SAPBC405 FOLT_1to Z##FOL1 ... Sample solution for
exercise: SAPBC405 FOLS 1.

The following functionality has been implemented in the template: A selection
screen is displayed with a selection for the airline codes. The data is read from the
database to an internal table, it_flights using a database view at START-OF-
SELECTION, and should be output in subroutine DATA_OUTPUT at END-OF-
SELECTION.

The objective of this exercise is to insert the data output in subroutine
DATA_OUTPUT in the LOOP ... ENDLOORP loop.

1-1-1

1-1-2

1-1-3

In the TOP include, define the list width as 100 columns and suppress the
standard list header.

Output the following datain the list:

Airline code wa_flights-carrid

Flight number wa flights-connid

Flight date wa_flights-fldate

Departure city wa_flights-cityfrom

Arrival location wa flights-cityto

Flight price wa flights-price

Local currency of airline wa_flights-currency
Display the data according to the template.

Output the list header in color COL_HEADING with intensive display, and
the column headers in color COL_HEADING with aless intensive display.
Output the key information (CARRID, CONNID) in color COL_KEY with
intensive display and the list body in COL_NORMAL with intensive
display. Use horizontal lines to separate the headers from the list body.
Output the price as a currency amount.

Optional: Add a frame (sy-vline) as shown in the template.

1-2

1-1-4 Flag the internationa flights (wa flights-countryto <> wa flights-countryfr)
with an icon (ICON_BW_GIS).

1-1-5 Set the page break so that the data for one flight connection fits on exactly
one page. To do this, use the control structure: ON CHANGE OF ...
ENDON.

Implement event TOP-OFPAGE.

1-2-1 Output the list and column headers there. Refer to the template for details.
Use text elements to allow your texts to be trandated. To position the
elements, use constants that you declare in the TOP include.

1-2-1 Make sure that the airline code and connection number are fixed during
horizontal scrolling. Ensure that the statement SET LEFT SCROLL-
BOUNDARY isonly valid for asingle page.

Template (Displaying Data in Lists):

Flight data
Flight Date Departure city Arrival location Price

@ AZ 0555 30.09.1999 ROME FRANKFURT
360.202 ITL

@ AZ 0555 19.11.1999 ROME FRANKFURT
360.202 ITL

@ AZ 0555 22.11.1999 ROME FRANKFURT
360.202 ITL

@ AZ 0555 29.11.1999 ROME FRANKFURT
360.202 ITL

@ AZ 0555 19.12.1999 ROME FRANKFURT
360.202 ITL

Flight data

Flight Date Departure city Arrival location Price

@ LH 0400 30.09.1999 FRANKFURT NEW YORK
672.50 DEM

@ LH 0400 19.11.1999 FRANKFURT NEW YORK
672.50 DEM

@ LH 0400 22.11.1999 FRANKFURT NEW YORK
672.50 DEM

@ LH 0400 29.11.1999 FRANKFURT NEW YORK
672.50 DEM

@ LH 0400 19.12.1999 FRANKFURT NEW YORK
672.50 DEM

@ LH 0400 21.12.1999 FRANKFURT NEW YORK
672.50 DEM

@ = ICON_BW GIS

Unit: Outputting Data in Lists
/ Topic: Formatting

*& ___ *
*& Event TOP-OF-PAGE

*& ___ *
TOP-OF-PAGE.

* Title

FORMAT COLOR COL_HEADING INTENSIFIED ON.
ULINE.
WRITE: / sy-vline,
'Flight data'(001),
AT line_size sy-vline.
ULINE.

* Column header
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary
SET LEFT SCROLL-BOUNDARY.
WRITE: 'Date'(003),
'Departure location'(004),

'Price’'(006),
AT line_size sy-vline.

ULINE.
*& ___ *
*& Event START-OF-SELECTION
*& ___ *

START-OF-SELECTION.

* Filling internal table with flight data using a DDIC view.
SELECT * FROM dv_flights INTO TABLE it_flights
WHERE carrid IN so_car.

*& ___ *
*& Event END-OF-SELECTION
*& ___ *

END-OF-SELECTION.

SORT it_flights BY carrid connid fldate.

* Data output
PERFORM data_output.

*& ___ *
*& Form DATA OUTPUT

*& ___ *
* List output of flight data

* *

FORM data_output.

* Loop at the internal table for writing data
LOOP AT it_flights INTO wa_flights.

* Get a new page if CONNID has changed.
ON CHANGE OF wa_flights-connid.
NEW-PAGE.

ENIDNDMNNI

* Mark international flights
FORMAT COLOR COL_KEY INTENSIFIED ON.
IF wa_flights-countryfr EQ wa_flights-countryto.
WRITE: / sy-vline, icon_space AS ICON CENTERED.
ELSE.
WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.
ENDIF.

* Data output
WRITE: wa flights-carrid,
wa_flights-connid.

FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

WRITE: wa_flights-fldate,
wa_flights-cityfrom,
wa_flights-cityto,
wa_flights-price CURRENCY wa_flights-currency,
wa_flights-currency,

AT line_size sy-vline.

ENDLOOP.
ENDFORM. "DATA_OUTPUT
*& ___ *
*& Include BC405_FOLS_1TOP *
*& *
*& ___ *

REPORT bc405_fols_1top LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons
INCLUDE <icon>.

* Constants for writing position

CONQTANTR nne ~1 TVDE I V/AILTIF R

line_size TYPE i VALUE 100.

* Internal table like DDIC view DV_FLIGHTS
DATA: it flights LIKE TABLE OF dv_flights,
wa_flights LIKE dv_flights.

* Selection screen
SELECT-OPTIONS so_car FOR wa_flights-carrid.

Selection Screen F'
DA

Generate

[

® Design
® Input checks
[

Variants

8 SAP AG 1999

Selection Screen: Overview !’
oA

— [|48
Log. DB d

Default selection screen Variant 1

NODES: . .. Screen: 1000

Version 1

Default selection screen

Program-internal |

PARAMVETERS: ...
Screen: 1000]
SELECT- OPTI ONS: ... Variant 1

SELECTI ON- SCREEN Ez{=e R NIN® Ss{e === Wk {0 [0}

PARAVETERS: e Selection Screen

SELECT- CPTIONS:
SELECTI ON- SCREEN N=NpNe sie == \WK{[o} 1100

Screen:
CALL SELECTI ON- SCREEN 1100.

a4 SAPAG 1999

Selection screens serve as the interface between the program and the user, and alow, for example,
limitation of the amount of data to be read from the database.

Logical databases supply selection screens whose concrete appearance is dependent on the specified
node name (NODES<name>). Selection screen versions (if supplied by the logical database) offer a
subset of default selection screens.

Y ou can use the declarative language elements PARAMETERS and SELECT-OPTIONSto
generate a default selection screen (screen 1000) with input-ready fields.

In addition to the default selection screen, you can generate additional selection screens with
SELECTION-SCREEN BEGINand cdl themwith CALL SELECTION-SCREEN.

Y ou can create variants of a selection screen. A variant is a user-specific selection variant. You
would cregte a screen variant if you frequently start a program with the same selection variants or
start in background processing.

Declaring Fields with PARAMETERS H’
DA

PARAMETERS: <f >[TYPE <type>] [DECI MALS <n>] [LI KE <f 1>] [MEMORY | D <pi d>]
[OBLI GATORY] [DEFAULT <wert >]
[AS CHECKBOX]
[RADI OBUTTON GROUP <gr p>]

REPORT sapbc405_sscd_checkbox_radi obut t on.

PARAMVETERS: pa_carr LIKE sflight-carrid, ﬁ

pa_name AS CHECKBOX DEFAULT ' X',

pa_curr AS CHECKBOX DEFAULT ' X', Airline AA
pa_lim1l RAD OBUTTON GROUP |im .
pa_lim2 RADI OBUTTON GROUP |im v~ Output name

pa_lim3 RAD OBUTTON GROUP | im

OONSTANTS mark VALUE ' X' . v Output local currency

. . °
* Check, if any checkbox has been sel ected FEe (oee] SUTEnEE L) i Sl

IF pa_nane EQ mark. ENDDIF. 500 to 1000
IF pa_curr EQ mark. ENDDIF.

1000 to 1500

* Check, which radi obutton has been sel ected
CASE mar k.

WHEN pa_|lim1.

WHEN pa_lim2.

VWHEN pa_lim3.
ENDCASE.

a4 SAPAG 1999

m The PARAMETERS statement is a declarative language element. Asin the case of the DATA
statement, you can declare the fields with TYPE or L IK E. The system generates input-ready fields
in the selection screen. The names of PARAMETERS fields can be up to 8 characterslong. You can
maintain selection texts (parameter names) with the function Text elements/Selection texts.

m You can set adefault value with the DEFAUL T <value> addition. If you assgnaMEMORY ID
<pid>, the system uses SAP Memory and the SET/GET parameter to set the default value. If you
declare mandatory fields with the OBLIGATORY addition, users cannot |eave the selection screen
until values have been entered in these fields.

m You can aso define parameters as checkboxes (AS CHECK BOX). Doing so creates a one-character
field that can contain a" "(SPACE) or an "X". Y ou can eva uate the contents of checkboxes using
IF/ENDIF control structures.

m You can aso define a series of radio buttons for the selection screen with the addition
RADIOBUTTON GROUP <grp>. The maximum length name for a RADIOBUTTON GROUP
<grp> is 4 characters. Only one radio button in a group can be active and can be evaluated during
program processing. Y ou can evaluate the contents of radio buttons usng CASE/ENDCA SE control
structures.

Selections with SELECT-OPTIONS

SELECT- OPTI ONS: <sel tab> FOR <f >. ‘

REPORT sapbc405_sscd_sel ect _options .

SELECT- OPTIONS: so_carr FOR sflight-carrid DEFAULT ' AA',
so_fldt FOR sflight-fldate.

Internal Table

so_carr
Airline AA to T
Sign | Option| Low High Flight date to T
I EQ AA

a4 SAPAG 1999

m The SELECT-OPTIONS statement is a declarative language element. In contrast to the
PARAMETERS statement, it allows complex selections instead of just one input-ready
field.

m SELECT-OPTIONS generates an internal table <seltab> with a standard structure. This
consists of 4 fields: seltab-sign, seltab-option, seltab-low, and seltab-high. The name of

selection table <seltab> can contain up to 8 characters. You can maintain selection texts
(name of the selections) with the function Text elements/Selection texts.

m Use the addition FOR to specify the field against which the system should check the
selection entries. This field must be declared in a DATA or TABLES statement. The fields
seltab-low and seltab-high possess the same field characteristics as the check field.

m Each line of the selection table <seltab> formulates a condition using one of the following
relational operators. The following values are possible:

SIGN: | (Include), E (Exclude)
OPTION: EQ, NE, LE, LT, GE, GT, BT(Between), NB (Not Between),
CP (Contains Pattern), NP (Contains Pattern not)

m The selection set is the union of all includes (I1,..., In) minus the union of all excludes (E1,
..., Em). If the table remains empty, selection is performed using the total selection set, if
you are working in the SELECT statement with WHERE IN <seltab>.

P> v = e

Single value

Airline to e

Greater than or equal

z Less than or equal

Multiple selections |&

<%
| |4
] Select

@g1E. ©011. @OcE. 90 ..
AA

Sign | Option Low High

s CIEEE]

a4 SAPAG 1999

m When you make entries on a selection screen, the system populates the interna table <seltab>.
Standard entries for the fields seltab-sign and seltab-option are | and EQ for individual selections,
and | and BT for ranges.

m To change the default entries for seltal-sign and seltab-option, choose Selection options (double
click on the appropriate entry field or activate the pushbutton). The system offers al the aternatives
for fields seltab-sign and seltab-option that are appropriate for the selection. If the traffic signal icon
isgreen during Select, thereisan | in seltab-sign; ared light indicatesE.

m To delete atable entry, use the appropriate pushbutton (Del ete selection).

m Every selection criterion can be used to make multiple selections unless defined otherwise. If
multiple selections are present, the color of the arrow changes from white to green.

Syntax of the SELECT-OPTIONS Statement H’
DA

SELECT-OPTIONS <seltab> FOR <f>

DEFAULT <value>

OPTION <xx> SIGN <x>
DEFAULT <valuel> TO <value2>

MEMORY ID <pid>

LOWER CASE

OBLIGATORY

NO-EXTENSION

NO INTERVALS.

a4 SAPAG 1999

m Additions to the SELECT-OPTIONS statement:

- DEFAULT enables you to set default values for seltab-low (single value) or seltab-low
and seltab-high (interval). You can use OPTION and SIGN to set default values for
seltab-option and seltab-sign that differ from the normal defaults.

- MEMORY ID <pid> allocates a SPA/GPA parameter. The value stored in SAP Memory

with the ID <pid> is placed in seltab-low (lower interval limit) when you call the
selection screen.

- LOWER CASE suppresses conversion of the entry into upper-case. This addition is

not permitted for Dictionary fields, since the attribute set in the Dictionary takes
precedence.

- OBLIGATORY generates a mandatory field. A question mark appears in the entry field
in the selection screen, and the user must enter a value.

- NO-EXTENSION suppresses multiple single or multiple range selections.

- NO INTERVALS suppresses the seltab-high (upper interval limit) entry on the selection
screen. You can use the additional screen, Multiple selection, to enter ranges.

m |f you entered a logical database in the attributes of the type 1 program, the selection
screen of the logical database is processed. If you have programmed additional
SELECTION-OPTIONS or PARAMETERS statements, the system displays them after the
selections of the logical database.

Designing the Selection Screen |

SELECTION-SCREEN BEGIN OF BLOCK <block>

WITH FRAME | TITLE <text>

SELECTION-SCREEN END OF BLOCK <block>

Price ... /

REPORT sapbc405 sscd_sel screen_i.

SELECTI ON- SCREEN BEG N OF BLOCK carr W TH FRAME.
SELECT- OPTI ONS: so_carr FOR wa_sflight-carrid.
SELECTI ON- SCREEN END OF BLOCK carr.

seLecCT! oN SCREENEZe e Moo d i ni Wtext—OOl.
PARAVETERS: pa_lim RADI OBUTT! I m

pa_lim2 RAD OBUTTON GROUP |im

pa | im 3 RADI OBUTTON GROUP | im
SELECTI ON- SCREENR=\BDRe M= Ne® @l i it .

a4 SAPAG 1999

m You can use the SELECTION-SCREEN statement to design the layout of the selection screen. You
can group selections that belong together logically with the supplemental BEGIN OF BLOCK
<block> and place aframe around them using WITH FRAME. Y ou can assign atitle to the block,
but you can only use the addition TITLE <text> together with aframe.

m You can nest framed blocks to a maximum of 5 frames.

m Before designing a selection screen, you should orient yourself to the screen design guidelines found
in the sample transaction BIBS.

Designing the Selection Screen |l

SELECTION-SCREEN: |

BEGIN OF LINE

COMMENT pos(len) <text>[FOR FIELD <f>]
POSITION pos Output ... /

END OF LINE Seats .. /

REPORT sapbc405 sscd_sel screen_ii.

* Paraneters displayed in one line

SELECTI ON- SCREEN BEG N OF LI NE.
SELECTI ON- SCREEN COMMENT 1(20) text-s03.
SELECTI ON- SCREEN COMMENT pos_| ow(8) t ext - s04.
PARAMETERS pa_col AS CHECKBOX.
SELECTI ON- SCREEN COMMENT pos_hi gh(8) text-s05.
PARAMETERS pa_i co AS CHECKBOX.

SELECTI ON- SCREEN END OF LI NE.

a4 SAPAG 1999

m You can display multiple parameters and comments in one output line. To do so, you must enclose
them between the SELECTION-SCREEN BEGIN OF LINE and SELECTION-SCREEN END
OF LINE gstatements. The COMMENT parameter enables you to include text in the line.

m Comment texts must aways have aformat (position and output length). The position can be set with
adatafield, pos_low or pos_high. These are the positions for fields seltab-low and seltal-high on the
selection screen.

m Adding COMMENT ... FOR FIELD <f> ensures that the F1 Help for field <f> is displayed for the
comment text and for the parameter itsdlf. If you hide the parameter (selection variant: attribute
invisible) the comment text is also hidden.

m You can use POSI TION <pos> to set the cursor for the next output position (only within ... BEGIN
OF LINE ... END OF LINE).

Initializing the Selection Screen

I' NI TI ALI ZATI ON. ‘

REPORT sapbc405_sscd_initialization.

I i

MOWE: mark TO pa_all.

Airline AA to LH ks
MOWE: 'I' TO so_carr-sign, :
"BT" TO so_carr-option, Flight date e L
"AA" TO so_carr-| ow,
"LH TO so_carr- high. output ... /
APPEND so_carr .
CLEAR so_carr. Seats ... /
MOVE: 'E' TO so_carr-sign, Occupied
'"EQ TO so_carr-option, Available
‘DL' TO so_carr-| ow. All A
APPEND so_carr.
Selection Colors Icons

a4 SAPAG 1999

m The INITIALIZATION event is processed exactly once in an executable program. You can
supply default values to the selection screen fields of the logical database during this event.
You can use F1 Help (Technical help) to determine the names of the selection fields.

m You can use the addition DEFAULT <value> to supply additional report-specific default
values to selection screen fields in a selection-option statement. The value sets are entered
in the internal table <seltab> during this event.

m The selection screen can generally be initialized during event AT SELECTION-SCREEN
OUTPUT. This event corresponds to event Process Before Output (PBO) of the selection
screen, and therefore may be passed several times. A typical task for the selection
screen's PBO event is dynamic screen modification (LOOP AT SCREEN), that is, showing
or hiding fields, enabling or preventing input, and so on.

Y ou can perform an error dialog check of the selection screen fields within the AT SELECTION-
SCREEN processing block. The event belongs to the PAI (Process After Input) processing of the
selection screen. In case of errors (MESSAGE Exxx or MESSAGE Wxxx), dl fields are made
ready for input again.

Y ou can refer to individual selections with the parameters ON <f> or ON <sdltab>. In case of errors,
only these selections are made input-ready again.

To check the entry combinations of alogical group, you can use the event AT SELECTION-
SCREEN ON BLOCK <block>. Fields in this block are made ready for input when an error
message is issued.

The event AT SELECTION-SCREEN ON END OF <field> belongs to the PAI processing of the
selection screen for M ultiple selections.

Y ou can perform entry checks for selection criteria of the logical database and for your own
program-specific selections.

You can work with several selection screens in one program. The default selection screen
always has the screen number 1000.

You can also define a selection screen with SELECTION-SCREEN BEGIN OF SCREEN
<nnnn> ... END OF SCREEN <nnnn>. Between the BEGIN ... END ... statements, you
declare the required selections with SELECT-OPTIONS and PARAMETERS. The
selection screen is assigned the screen number <nnnn> and is called with CALL
SELECTION-SCREEN <nnnn>.

The system takes care of the return from the selection screen, which means you do not
have to program it yourself with LEAVE SCREEN (as is the case with CALL SCREEN).

The program is continued immediately after the call. However, you must use system field
sy-subrc to query whether the user chose Execute (F8) or Cancel (green and yellow
arrows, red X). Execute (F8) returns sy-subrc = 0; Cancel returns sy-subrc = 4.

You can supply the selection screen with default values at INITIALIZATION.

You can determine which selection screen is currently processing with the AT
SELECTI ON- SCREEN event. You can do so with a CASE control structure and evaluate
the system field sy-dynnr.

Y ou can create any number of selection sets (variants) for a program. The variants are allocated to
the program uniquely.

Creating variants makes sense when you frequently start a program with the same selection default
values.

You can mark Start with variantsin the program attributes. Users (system, services, reporting) can
then start the program only with a variant.

If the program uses several selection screens, you can choose to create a variant for al the selection
screens or individually for each selection screen.

Naming conventions and transporting variants
- "SAP&xxx" are supplied by SAP
- "CUS&xxx" are created by customers (in client 000)

Variants that follow these naming conventions are client-independent and will automatically be
trangported along with the report. If these naming conventions are not followed, an entry for a
request (task) must be added to the object list: LIMU VARI <variant_name>.

You have to assign a name and a description to each variant. By default, variants are
available for both online and background processing. You can also define a variant
exclusively for use with background processing.

You can protect the variant itself and the individual selection criteria and parameters
against unauthorized changes. If you select Display only in catalog, this variant will not be
displayed in the general value help (F4).

The type of a selection is determined in its declaration: Type s for SELECT-OPTIONS, type
p for PARAMETERS. If you select Selections protected, then the field(s) will not be ready
for input. You can use the hide attribute to suppress selection criteria and parameters on
the screen, if required, resulting in a less cluttered selection screen.

When you use selection variables, there are three basic ways of supplying your selections
with values at runtime:

- From table TVARYV (type T)
- Date fields using dynamic date calculation (type D), such as today's date

- User-specific variables (type B); Prerequisite: The selection must be declared with the
MEMORY ID <pid> addition.

Unit: Selection Screen
Topic: Designing, initializing (optional) and

checking (optional) a selection screen

*e e

When you have completed these exercises, you will be able to:
Use the SELECT-OPTIONS statement
Use the PARAMETERS statement

1-2

Design a selection screen
Initialize and check (optional)

Copy or enhance your program Z##FOL1 ..., or copy the sample solution,
SAPBC405 FOLS 1, to program Z##SSC1 Sample solution for exercise:
SAPBC405 SSCS 1.

Extend the selection screen with selections (SELECT-OPTIONS) for the
connection number and the flight date, as well as parameters for output control.

1-1-1 Extend the selection screen with one salection each for the connection
number and the flight date.

1-1-2 Suppress the multiple selection option for the flight date.

1-1-3 Group the selections for the codes of the airline and the connection number
to ablock. Create a frame with atitle around the block.

Group the flight date into a block. Create a frame with atitle around the
block.

1-1-4 Maintain the salection texts.

Implement a group of parameters for output control
1-2-1 Generate a set of radio buttons with three possible settings

all flights are read
domestic flights only are read

inter national flights only are read

1-3

The standard setting is that international flights are read.

1-2-2 Allow the user to enter a country code for domestic flights in an additional
parameter. To do this, use field wa_flights-countryfr.

1-2-3 Create aframe without atitle around the radio button set. Create aframe
around the complete display parameters and assign atitle and selection
texts. Arrange the frames and texts as shown in the template.

Make sure that only the data records requested are read from the database.
1-3-1 Todo this, supplement the WHERE clause of the SELECT statement with

[P DR PSS PR PR NS S —— R

1-3-2 Implement the logic for the radio button group.

Note: You need three separate SELECT statements with different WHERE
conditions. Y ou can map the national/international condition directly on the
database:countryto = dv_flights~countryfr or countryto <>
dv_flights~countryfr. Y ou use the tilde (~) to address the database field.

OPTIONAL

2-1-1 Initialize the selection table for the airline name such that the flights of
airlines AA through QF will be displayed, but not AZ.

2-1-2 Output error message 003 in message class BC405 if the user has selected
“domestic flights ” and the input parameter for the country isinitial. In case
of error, only the radio button group and the country parameter should be

ready for input.

Unit: Selection Screen
/ Topic: Designing, initializing (optional) and

checking (optional) a selection screen

*& ___ *

*& ___ *
*& Event TOP-OF-PAGE

*& ___ *
TOP-OF-PAGE.

* Title

FORMAT COLOR COL_HEADING INTENSIFIED ON.
ULINE.
WRITE: / sy-vline,
'Flight data'(001),
AT line_size sy-vline.
ULINE.

* Column header
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary
SET LEFT SCROLL-BOUNDARY.
WRITE: 'Date'(003) ,
'‘Departure location'(004),

'Price'(006),
AT line_size sy-vline.
ULINE.

khkhkkkkhkhhhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhhhhhdhhhhdhddhdhhdhhddditixx

Optional parts: Initializing and checking a selection screen

kkhkhkkkhkhkkkhhkkkhhkhkkhhkhkhhhkhhhkhhhkhdhhkhhhkhdhhkhdhhkhkhhkhkhhkhkhhhkhhhkhhhkddhhkhdhhkddkkrdkxkx*x

*& ___________________________________ *
*& Event INITIALIZATION

*& ___ *
INITIALIZATION. " OPTIONAL

* |nitialize select-options for CARRID
MOVE: 'AA' TO so_car-low,
'QF TO so_car-high,

‘BT TO so_car-option,
'I' TO so_car-sign.
APPEND so_car.

CLEAR so_car.

MOVE: 'AZ' TO so_car-low
'EQ' TO so_car-option,
'E' TO so_car-sign.
APPEND so_car.

CLEAR so_car.

*& ___ *
*& Event AT SELECTION-SCREEN ON BLOCK PARAM
*& ___ *

AT SELECTION-SCREEN ON BLOCK param. " OPTIONAL

* check country for national flights is not empty
CHECK national ='X' AND country = space.
MESSAGE e003(bc405).

*2, Fuvont CTADT_.NE_QEI ECTINNI

START-OF-SELECTION.

* Checking the output parameters
CASE mark.
WHEN all.
* Radiobutton ALL is marked
SELECT * FROM dv_flights INTO TABLE it_flights
WHERE carrid IN so_car
AND connid IN so_con
AND fldate IN so_fdt.

WHEN national.
* Radiobutton NATIONAL is marked
SELECT * FROM dv_flights INTO TABLE it_flights

WHERE carrid IN so_car
AND connid IN so_con
AND fldate IN so_fdt
AND countryto = dv_flights~countryfr
AND countryto = country.

WHEN internat.
* Radiobutton INTERNAT is marked
SELECT * FROM dv_flights INTO TABLE it_flights
WHERE carrid IN so_car
AND connid IN so_con
AND fldate IN so_fdt
AND countryto <> dv_flights~countryfr.

ENDCASE.

*& ___ *
*& Event END-OF-SELECTION

*& ___ *

END-OF-SELECTION.

CNDT it flinhte DV ~arvid ~rAannid fldatA

* Data output
PERFORM data_output.

*& ___ *
*& Form DATA_OUTPUT

*& ___ *
* List output of flight data

* *

FORM data_output.

* Loop at the internal table for writing data
LOOP AT it_flights INTO wa_flights.

* Get a new page if CONNID has changed.
ON CHANGE OF wa_flights-connid.
NEW-PAGE.
ENDON.

* Mark international flights
FORMAT COLOR COL_KEY INTENSIFIED ON.
IF wa_flights-countryfr EQ wa_flights-countryto.
WRITE: / sy-vline, icon_space AS ICON CENTERED.
ELSE.
WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.
ENDIF.

* Data output
WRITE: wa_flights-carrid,
wa_flights-connid.
FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
WRITE: wa_flights-fldate,
wa_flights-cityfrom,
wa_flights-cityto,
wa_flights-price CURRENCY wa_flights-currency,
wa_flights-currency,

AT linA cizn ovvlinA

ENDLOOP.

ENDFORM. " DATA_OUTPUT

*& ___ *

*& Include BC405_SSCS_1TOP *
*& *

*& ___ *

REPORT bc405_sscs_1top LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons
INCLUDE <icon>.

* Constants for writing position
CONSTANTS :pos_cl TYPE i VALUE 6,
line_size TYPE i VALUE 100.

* Constant for CASE statement
CONSTANTS mark VALUE 'X'".

* Internal table like DDIC view DV_FLIGHTS
DATA: it_flights LIKE TABLE OF dv_flights,
wa_flights LIKE dv_flights.

* Selections for connections
SELECTION-SCREEN BEGIN OF BLOCK conn
WITH FRAME TITLE text-tl1.
SELECT-OPTIONS: so_car FOR wa_flights-carrid,
so_con FOR wa_flights-connid.
SELECTION-SCREEN END OF BLOCK conn.

* Selections for flights

QFI FATINN_-QPREEN RFINI NE RI NCK flinht

WITH FRAME TITLE text-t2.
SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.
SELECTION-SCREEN END OF BLOCK flight.

* Qutput parameter
SELECTION-SCREEN BEGIN OF BLOCK param
WITH FRAME TITLE text-tl3.

SELECTION-SCREEN BEGIN OF BLOCK radio WITH FRAME.
PARAMETERS: all RADIOBUTTON GROUP rbg1l,

national RADIOBUTTON GROUP rbg1,

internat RADIOBUTTON GROUP rbgl DEFAULT
X'
SELECTION-SCREEN END OF BLOCK radio.

PARAMETERS country LIKE wa_flights-countryfr.
SELECTION-SCREEN END OF BLOCK param.

Logical Database F'
A

® Advantages and Uses of Logical Databases
® Sub-Objects of the Logical Database

® Data Retrieval with Logical Databases

8 SAP AG 1999

Generating Lists !r
DA

»
ABAP Program
GET <node>
ABAP program — ABAP program
OPEN SQL NATIVE SQL
Logical
database

< >

Database

8 SAP AG 1999

m In genera, the system reads data that will appear in alist from the database.
®m You can use OPEN SQL or NATIVE SQL statements to read data from the database.

m Theuse of alogical database provides you with an aternative to having to program database
accesses individually. Logical databases retrieve data records and make them available to ABAP

programs.

Advantages of a Logical Database H’
DA

Program 1 ’
Query 1 ’
Program 2
Query 2
Query 3 ‘
Logical database Program 3
B & ‘ - Provides a selection screen
- Input and authorization QuickView 1‘
checks
Program 5 ‘ - Reads data records
Query 4
QuickView 2‘

Program 6

a4 SAPAG 1999

m The samelogica database can be the data source for several QuickViews, queries, and programs. In
the QuickView, the LDB can be specified directly as a data source. A query works with the logical
database when the functional area that generated the query is defined with alogical database. In the
case of type 1 programs, the LDB is entered in the attributes or called using function module
LDB_PROCESS. See appendix for information on how to use the function module.

m Logica databases offer severa advantages:

* The system generates a selection screen. The use of selection screen versions or variants provides
the required flexibility.

* The user does not have to know the exact structure of the tables involved (especially the foreign
key dependencies); the data is made available in the correct order at GET events.

* Performance improvements within logical databases directly affect al programs linked to the
logical database, without having to change the programs themselves.

* Maintenance can be performed at a central location.
* Authorization checks can also be performed centraly.

Logical Database: Overview

ABAP Dictionary

Multilevel
view

SPFLI

T
SFLIGHT H H

[1nin
SBOOK | i 3 i
8 SAP AG 1999 v

m A logica database is an ABAP program that reads predefined data from the database and makes it
available to other programs.

m A hierarchical structure determines the order in which the data is supplied to the programs. A logical
database also provides a selection screen that checks user entries and conducts error dialogs. These
can be extended in programs.

m SAP provides some 200 logical databasesin Release 4.6. The names of logical databases have been
extended to 20 places in Release 4.0 (namespace prefix max. 10 characters).

Logical Database: F1S Nodes

Timetable

¢>== MANDT

{C== CARRID
{C== CONNID

COUNTRYFR
CITYFROM
AIRPFROM
COUNTRYTO
CITYTO
AIRPTO
FLTIME
DEPTIME
ARRTIME
DISTANCE
DISTID
FLTYPE

a4 SAPAG 1999

Flights
== MANDT

(== CARRID
{t>== CONNID
(= FLDATE

PRICE
CURRENCY
PLANETYPE
SEATSMAX
SEATSOCC
PAYMENTSUM

Flight booking
{C== MANDT

{C=>= CARRID
(== CONNID
= FLDATE

("= BOOKID
{C== CUSTOMID

CUSTTYPE
SMOKER
LUGGWEIGHT
WUNIT
INVOICE
CLASS
FORCURAM
FORCURKEY
LOCCURAM
LOCCURKEY
ORDER_DATE
COUNTER
AGENCYNUM
CANCELLED

m The demo programs and exercises for SAP courses and ABAP documentation refer to SAP's
BC_TRAVEL flight data model, which is found in development classBC_DATAMODEL .

m Thetables

SPFLI: Hight connections

SFLIGHT: Hights

SBOOK: Bookings

form the nodes of logical database F1S.

Sample Program for a Logical Database

[Z ABAP: Program Properties

Logical database F1S

Selection screen version

REPORT sapbc405_| dbd_si npl e_exanpl e.

NODES: spfli, sflight.

* Processing of SPFLI records
GET spfli FIELDS ...

* Processing of SFLIGHT records
GET sflight FIELDS ...

a4 SAPAG 1999

m In the case of executable programs, you can enter a logical database in the attributes.

m Use the NODES <node> statement to specify the nodes of the logical database that you
want to use in the program. NODES allocates the appropriate storage space for the node -
that is, a work area or a table area depending on the node type.

m The logical database makes the data records available for the corresponding GET events.
The sequence in which these events are processed is determined by the structure of the
logical database.

LDB Sub-Objects: Structure

Name of node Node type Short text

Vil sprLI Table Timetable
v [l sFLiGHT Table Flight table

v SBOOK Table Bookings

Establishes a data hierarchy (read sequence)

Possible node types:

Database table Table or structure from the DDIC Name must be
identical to the node name
DDIC type DDIC type: Table or structure. Name can

differ from node name; deep structures
are possible.
Data type Type that was defined in a type group
Dynamic type Type is specified in program

a4 SAPAG 1999

m Logica databases are made up of several sub-objects. The structure determines the hierarchy, and
thus the read sequence of the data records.

m Node names can contain up to 14 characters. There are four different node types.

* Table (type T): The node name is the name of atransparent table (this type corresponds to the
concept prior to Release 4.0A). The table name must be identical to the node name. Deep types
(complex) are not allowed.

» DDIC type (type S): Any node nameis possible. It is assigned a structure or a table type from the
Dictionary. The node name can differ from the type name. Deep structures are possible.

* Type groups (type C): The node type is defined in atype group. The name of the type group must
be maintained in the "Type group” field. Y ou should generally prefer DDIC types, as the other
applications that use the logical database (such as SAP Query) can access them (short texts, and so
on).

* Dynamic nodes (type A): These nodes do not have afixed type; they are not classified until the
program runtime. Which types are generally alowed is determined when the structure is created.

m Nodes are declared using language element NODES.

Events in Logical Databases H'
-

REPORT sapbc405_| dbd_events.

START-OF-SELECTION

® ocevseru DL 1699
| START-OF-SELECTION | ® GETSFLIGHT 25.02.2000
[3) GET SBOOK 00002568
@ serui | O | @ GET SBOOK 00002569
\ [3) GET SBOOK 00002570
“ I © g GET SFLIGHT LATE
'\ GETSFLIGHT 27.03.2000
2 Sruer) (2 Jund = Kl [4) [3) GET SBOOK 00002590
| | [3) GET SBOOK 00002501
SBOOK | SBOOK | SBOOK SBOOK | SBOOK ® GETSELIGHTLATE
© -0 0 ©—0©0 ©® GETsPRLILATE
® oGceTseru DL 1984

| END-OF-SELECTION |

END-OF-SELECTION

a4 SAPAG 1999

Processing blocks are always allocated to an event. A processing block is closed by the
next event key word, the start of form routines, or by the end of the program.

The START-OF-SELECTION event is triggered before control is given to the read routine
of the logical database. The END-OF-SELECTION event is triggered after all GET events
have been processed - that is, all data records have been read and processed.

The GET <node> event is triggered whenever the logical database supplies data for this
node. This means that GET events are processed several times, and that data has already
been read from the database for these events. The sequence in which the GET events are

processed is determined by the structure of the logical database.

The GET <node> LATE event is triggered when all subordinate nodes of node <node>
have been processed, before the data is read for the next <node>; that is, whenever a
hierarchy level has been completed.

At the start of the event, the system automatically adds a line feed and configures the
default formats (for example, INTENSIFIED ON).

Program Flow and Termination Alternatives

Program Flow Event Block Termination

START-OF-SELECTION | CHECK | STOP | EXIT |

GET<node>| \ ; ;

Ends Ends
event block. event block.
END-OF List
END-OF-SELECTION | -SELECTION Display

is performed

Display list

a4 SAPAG 1999

CHECK statements end the current processing block.

STOP statements end program processing. However, in contrast to the EXIT statement, the
processing block END-OF-SELECTION is processed first (if it exists).

If there is a STOP statement within the END-OF-SELECTION processing block, program
processing ends immediately and a list is displayed.

The EXIT statement exits the program and displays the list.

You can also use the REJECT statement. The data record is not processed further.
Processing continues on the same hierarchy level when the next data record is read.
REJECT, unlike the CHECK statement, can also be used within a subroutine.

Use the selection include db<name>sel to define selection screens for logical databases.
The addition FOR NODE assigns selections to individual logical nodes. The appearance of
a selection screen thus directly depends on the NODES statement contained within your

program.

Afield selection can be defined for the individual nodes. To do this, you have to specify
the addition FIELD SELECTION FOR NODE in the SELECTION-SCREEN statement. You
can then use GET <node> FIELDS <field list> to restrict the amount of data returned.

You can designate individual nodes for dynamic selection using the addition DYNAMIC
SELECTIONS FOR NODE. The Dynamic selection pushbutton then appears on your
selection screen. You can determine which selection fields can be set by choosing a
particular selection view yourself (type: CUS) or by using the selection view delivered by
SAP (type: SAP).

With large logical databases you can define several selection screen versions. Each
selection screen version contains a subset of your selection criteria (language element:
EXCLUDE). Specify the name of a selection screen version in the program attributes.

m When you enter a logical database in the attributes of your type 1 program, the system
processes the selection screen of the logical database. The concrete characteristics of the
selection screen depend upon the node specified in the NODES statement. If you specify a

node of type T (table), you can also declare the table work area with the TABLES
statement.

m |f you address only subordinate nodes (in the hierarchy) of the logical database in the
program (for example sflight), the selection screen criteria for the superior node in the

hierarchy (spfli) also appear. You can thus restrict the dataset to be read so that it meets
your specific requirements.

m Note: A logical database always reads in accordance with its structure. This means that
if you only need data from a node deep in the hierarchy, you will achieve better
performance by programming the access yourself. This avoids unnecessary reading of the
database.

m If thelogical database supports dynamic selections, the pushbutton for Dynamic selections appears
on the selection screen. When the user presses this button, a second selection screen is displayed.
This screen alows the user to select additional database fields. The system transfers the selections
directly to the logical database program and therefore to the database (dynamic selections).

m The selection view determines which fields are displayed on the selection screen. Create your own
view with type CUS, and have it override the view with type SAP.

Database program sapdb<Ildbname> for logical database <ldbname> is a collection of
subroutines, each of which is performed for specific events. For example, subroutine <init>
is processed once at the start of the database program. This program can be used to define
default values for the selection screen of the LDB.

Other subroutines also exist that are processed during events PBO (Process Before
Output) and PAI (Process After Input) of the selection screen. Checks, such as
authorization checks (AUTHORITY-CHECK), are usually performed during event PAI.

The database accesses (SELECT statements) are programmed in the put_<node>
subroutines. These subroutines may be processed several times, depending on which
selection criteria the user specifies. The sequence in which these subroutines are
processed is determined by the structure of the logical database.

Database access (SELECT statements) should be programmed with optimal performance
in mind. When creating a logical database you generate the corresponding database
program after first having determined its structure and selection attributes. You can find
performance tips in the comment lines.

When a program that has been assigned a logical database is started, control is initially
passed to the database program of the logical database. Each event has a corresponding
subroutine in the database program - for example, subroutine init for event
INITIALIZATION. During the interaction between the LDB and the associated program, the
subroutine is always processed first, followed by the event (if there is one in the report).

Logical database programs read data from a database according to the structure declared
for the logical database. They begin with the root node and then process the individual
"branches" consecutively from top to bottom.

The logical database reads the data in the put_<node> subroutines. During event PUT,
control is passed from the database program to the GET event of the associated report.

The data is made available in the corresponding work areas in the report. The processing
block defined for the GET event is performed. Control then returns to the logical database.

PUT activates the next form subroutine found in the structure. This flow is continued until
the report has collected all the available data.

The depth of data read in the structure depends upon a program's GET events. A logical
database reads to the lowest GET event contained within the structure attributes. Only
those GET events for which processing is supposed to take place are written into the report
program. Logical databases read all data records found on the direct access path.

m |f you specify a logical database and declare additional selections in the program attributes
that refer to the fields of a node not designated for dynamic selection, you must use the
CHECK <seltab> statement to see if the current data record fulfills the selection criteria.

m |f the data record does not fulfill these selection criteria, current event block processing
ends.

Unit: Logical database
Topic: GET Events

*e e

When you have completed these exercises, you will be able to:
Create a list whose data is read from alogical database

1-1

Note:

Create program Z##L.DB1 ... with TOP include (Z##LDB1_...TOP) and enter
logical database F1S in the program attributes. Make sure you specify Executable
program as the program type. Sample solution for exercise: SAPBC405 LDBS 1.

1-1-1 Thelogica database should supply the program with data for nodes SPFLI,
SFLIGHT, and SBOOK.

1-2-2 Create alist that displays the following data:
Table SPFLI: CARRID, CONNID, CITYFROM,
AIRPFROM, CITYTO, AIRPTO.
Table SFLIGHT: FLDATE, SPRICE, CURRENCY,

PLANETYPE, SEATSMAX,
SEATSOCC,

FREE_SEATS.
Table SBOOK: BOOKID, CUSTOMID, SMOKER,
LUGGWEIGHT, WUNIT.

Field FREE_SEATS is not atable field — it has to be calculated in the
program. The price and luggage weight should be output with the
appropriate units.

1-2-3 Formatting the list (optional)

Create athree-line list in which each line outputs the information for one
node (see above).

Output the first line in color COL_HEADING not intensified, the second
linein COL_NORMAL intensified, and the third linein COL_NORMAL
not intensified. The list should have 83 columns and have a frame. Maintain
the column headers (standard list header).

Y ou will have to program the events GET spfli, GET sflight, GET sbook, and
END-OF-SELECTION. To output the fields, use the pattern functions available in
the ABAP Editor.

Exercises

Unit: Logical database

Topic.: GET LATE Eventsand Checksfrom Internal
Program Selections

When you have completed these exercises, you will be able to:
Create alist whose data is read from alogical database
Check internal selections for their validity

*ee

1-1 Copy program Z##.DB1 ... or the sample solution, SAPBC405_LDBS 1, from
exercise 1 to program Z##.DB2_... . Sample solution for exercise:
SAPBC405_LDBS 2.

1-1-1 Add aSELECT-OPTIONS statement for the posting date (table SBOOK) to
the salection screen. Frame the selection and maintain the selection text.

1-2-2 Make sure that only bookings that meet the specified selection criteria are

output in the list. Include the booking date in the list output. Maintain the
column header (standard list header).

1-2-3 Inthelist, output a solid line when al the bookings for a date have been
output, and when a flight has been completely output. Output each flight on
anew page.

Optional: Sample solution for exercise: SAPBC405 LDBS 2 OFPT.

2-1 Enhance your program.

2-1-1 Add aradio button group with two radio buttons to the selection screen.
Draw aframe around the group and maintain the selection texts.

The group has to model the following functionality: The user can select
between charter flights only and regular flights only in the list. Whether a
flight is a charter or not is determined in field SPFLI-FLTY PE: Charter
flight: SPFLI —-FLTYPE ="X".

2-2-2 Make sure that only dates and bookings that meet the specified selection
criteriaare output in the list. You will need an auxiliary variable to evaluate
the radio button group.

Unit: Logical database
/ Topic: GET Events

*& Report SAPBC405_LDBS_2
*& *

*& ___ *
*& *

*& *

*& ___ *
*& Event GET SPFLI

*& ___ *
GET spfii.

* Data output SPFLI
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: / sy-vline, spfli-carrid,
spfli-connid,
spfli-cityfrom,
spfli-airpfrom,
spfli-cityto,
spfli-airpto,
AT line_size sy-vline.

*& ___ *
*& Event GET SFLIGHT

*& ___ *
GET sflight.

* Calculate free seats

* Data output SFLIGHT
FORMAT COLOR COL_NORMAL INTENSIFIED ON.
WRITE: / sy-vline, sflight-fldate,
sflight-price CURRENCY sflight-currency,
sflight-currency,
sflight-planetype,
sflight-seatsmax,
sflight-seatsocc,
free_seats,
AT line_size sy-vline.

*& ___ *
*& Event GET SBOOK

*& ___ *
GET shook.

* Check select-option
CHECK so_odat.

FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
WRITE: / sy-vline, shook-bookid,

sbook-customid,

sbook-smoker,

sbook-luggweight UNIT sbook-wunit,

sbook-wunit,

sbook-order_date,

AT line_size sy-vline.

GET spfli LATE.
ULINE.
NEW-PAGE.

*0. LChvnnt CECT CCI ICHT I ATE

GET sflight LATE.

ULINE.
*& ___ *
*& Include BC405_LDBS_2TOP *
*& *
*& ___ *

REPORT sapbc405_ldbs_2 LINE-SIZE 83.

* Used nodes of the structure of the logical database F1S
NODES: spfli, sflight, sbook.

* Additional selections

SELECTION-SCREEN BEGIN OF BLOCK order WITH FRAME.
SELECT-OPTIONS: so_odat FOR sbook-order_date.
SELECTION-SCREEN END OF BLOCK order.

* Variables

DATA: free_seats LIKE sflight-seatsocc.

* Constants
CONSTANTS: line_size LIKE sy-linsz VALUE 83.

/ Unit: Logical database

Program Selections

L *
*& Report SAPBC405_LDBS_2_OPT *
*Q *

K) e *
*Q *

*Q *
L S *

*& ___ *
*& Event GET SPFLI

*& ___ *
GET spfii.

*++++++++++++H+ 4> Optional
* Check radio button group using a help variable
* Flight type charter or scheduled)

CLEAR check_negative.
IF pa_ftyl = 'X'.
IF NOT spfli-fltype = pa_fty1.
check_negative = 'X".
ENDIF.
ELSEIF pa_fty2 = 'X.
IF NOT spfli-fltype = space.
check_negative = 'X'".
ENDIF.

Solutions

Topic.: GET LATE Eventsand Checksfrom Internal

ENDIF.

CHECK check_negative = space.
e optional

* Data output SPFLI
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: / sy-vline, spfli-carrid,
spfli-connid,
spfli-cityfrom,
spfli-airpfrom,
spfli-cityto,
spfli-airpto,

AT line_size sy-vline.

*& ___ *
*& Event GET SFLIGHT

*& ___ *
GET sflight.

* Calculate free seats

free_seats = sflight-seatsmax - sflight-seatsocc.

* Data output SFLIGHT
FORMAT COLOR COL_NORMAL INTENSIFIED ON.
WRITE: / sy-vline, sflight-fldate,
sflight-price CURRENCY sflight-currency,
sflight-currency,
sflight-planetype,
sflight-seatsmax,
sflight-seatsocc,
free_seats,
AT line_size sy-vline.

*& Event GET SBOOK

X R *

GET sbook.

* Check select-option
CHECK so_odat.

FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
WRITE: / sy-vline, sbook-bookid,

sbook-customid,

sbook-smoker,

sbook-luggweight UNIT sbook-wunit,

sbook-wunit,

sbook-order_date,

AT line_size sy-vline.

*& ___ *
*& Event GET SPFLI LATE
*& ___ *
GET spfli LATE.

ULINE.

NEW-PAGE.
*& ___ *
*& Event GET SFLIGHT LATE
*&__ ___ *
GET sflight LATE.

ULINE.
*& ___ *
*& Include BC405_LDBS_20PTTOP
*& *
*& ___ *

REPORT sapbc405_Idbs_2_ opt LINE-SIZE 83.

* Used nodes of the structure of the logical database F1S
NODES: spfli, sflight, sbook.

* Additional selections

SELECTION-SCREEN BEGIN OF BLOCK order WITH FRAME.
SELECT-OPTIONS: so_odat FOR shook-order_date.
SELECTION-SCREEN END OF BLOCK order.

* Additional selections (optional part)

SELECTION-SCREEN BEGIN OF BLOCK type WITH FRAME.

PARAMETERS: pa_ftyl RADIOBUTTON GROUP ftyp,
pa_fty2 RADIOBUTTON GROUP ftyp.

SELECTION-SCREEN: END OF BLOCK type.

* Variables
DATA: free_seats LIKE sflight-seatsocc.
DATA check_negative.

* Constants
CONSTANTS: line_size LIKE sy-linsz VALUE 83.

Programming Data Retrieval !’
DA

8 SAP AG 1999

Data Retrieval: Internal

ABAP program

GET | PUT

Logical Database Open SQL

Native SQL

e >, £

Database

a4 SAPAG 1999

m Whenever alogica database cannot supply your program with all necessary data, you must program
database access directly into the program itself. This can be done using either Open SQL or Native
SQL statements.

m Open SQL statements offer several advantages. These include being able to program independent of
your underlying database, access to a syntax check, and the use of alocal SAP buffer.

m Native SQL statements are bound into a program using
EXEC SQL [PERFORMING <form>].
<Native SQL statements>.

ENDEXEC

m Pay attention to the following when programming Native SQL :
- Try not to use update operations (INSERT, DELETE, UPDATE)

- Group EXEC SQL statements together (in an include) in order to be able to ater them centrally
for different database systems

- Redtrict yoursdlf to Standard SQL (1S09075:1992)

m In order to optimize performance, choose your SQL statements carefully when accessing severa
(dependent) tables at atime.

Reading Multiple Database Tables

[

Database View in the ABAP Dictionary

INNER JOIN, OUTER JOIN

FOR ALL ENTRIES

Nested SELECT Statements

a4 SAPAG 1999

m To insure optimal database performance:

m Follow these general rules:

Keep the amount of selected data as small as possible (use WHERE conditions, for
example)

Keep data transfer between the application server and the database to a minimum (use
field lists, for example)

Reduce the number of database inquiries if possible (use table joins instead of nested
SELECT statements, for example)

Reduce search size (this optimizes your database index)

Minimize database server load (use SAP buffers, for example).

m Always subject programs containing SQL statements to an SQL trace. Which processing
sequence is chosen by the Optimizer? Are indices used? If so, are the right ones used? Is a
FULL TABLE SCAN performed? Based on the results of this analysis, you should
reprogram your SQL statements (WHERE) conditions, create a database index, or buffer
the tables better. To start the SQL trace, use menu path GDA-1.

Reading Multiple Database Tables |

Database View in the ABAP Dictionary Vr

REPORT sapbc405_gdad_db_vi ew. Dictionary: Database view sv_flights

SELECT carrid carrnane connid Table Join conditions
cityfromcityto fldate
seat smax seat socc
I NTO TABLE itab flights
FROM
WHERE cityfrom so_cityf
AND cityto IN so_cityt
AND seat socc < sv_flights~seat snmax
ORDER BY carrid connid fldate.

View fields

a4 SAPAG 1999

m You can create database views in the ABAP Dictionary. Views (aggregate objects) are application
specific and alow you to work with multiple database tables. The link is mapped in an INNER JOIN
LOGIC (see dide on INNER JOIN).

m From Release 4.0 you can buffer database views. Y ou can then read from views using the SAP
buffer on the relevant application server. The same rules apply when buffering views as when
buffering tables.

m Database view advantages.

- Central maintenance

- Accessible to all users

- Only one SELECT statement is required in the program
m One disadvantage of the view isits low flexibility.

Reading Multiple Database Tables lla

INNER JOIN Vr

REPORT sapbc405_gdad_i nner _j oi n_2t ab. =R Sl

. \ 2K / vy _ v

SELECT spfli~carrid spfli~connid A lB C A B D
spfli~cityfromspfli~cityto 2 | o1 | et 21l b1l a1

sflight~fldate sflight ~seat smax
sfli ght ~seat socc a2 | b2 | c2 a3 | b2 | d2

I NTO TABLE itab flights = 1 o3 | o3 =3 63| a3
Fmspflimsflight
@spfl% ¥ i ght ~carrid

spfli~connid = sflight~connid
WHERE spfli~carrid IN so_carr bl | c1| d1
AND spfli~connid IN so_conn. a3 | b3 | c3| g3

=

a4 SAPAG 1999

m In ajoin, the tables (base tables) are combined to form one results table. The join conditions are
applied to this results table. The resulting composite for an inner join logic contains only those
records for which matching records exist in each base table.

m Join conditions are not limited to key fields.

m |f columns from two tables have the same name, then you have to ensure that the field |abels are
unique by prefixing the table name or atable alias.

m A tablejoin is generally the most efficient way to read from the database. The database is

responsible for deciding which table is read first and which index is used (DB Optimizer).

Reading Multiple Database Tables Ilb

OUTER JOIN Vr

REPORT sapbc405 gdad_out er _j oi n. LEFT OUTER JOIN

SELECT scarr~carrid scarr~carrname v
spfli~connid spfli~cityfrom |A |B |C | |A ||D |E |
spfli~cityto al | b1 | c1 al | d1 | e1

I NTO TABLE itab flights > 1 . P R >
gEscarhcarrl = sptli~carrid a3 | b3 | c3 a3 | d3 | e3

R BY scarr~carrid spfli~connid.

|A|B|C|D|E|
al bl cl] di el

a3 b3 c3 | d2 e2
a3 b3 c3 1 d3 e3

a4 SAPAG 1999

m At LEFT OUTER JOIN, results tables can also contain entries from the designated left-
hand table without the presence of corresponding data records (join conditions) from the

table on the right. These table fields are filled by the database with null values and are then
initialized according to ABAP type.

m |t makes sense to use a LEFT OUTER JOIN when data from the table on the left is needed
for which there are no corresponding entries in the table on the right. Example:
sapbc405 _gdad_outer_join: not all airlines (table scarr) have flights listed (table spfli), but
all airline names are supposed to be displayed in the list.

m The following limitations apply for the Left Outer Join:

* you can only have a table or a view to the right of the JOIN operator, you cannot have
another join statement

* Only AND can be used as a logical operator in an ON condition.
* every comparison in the ON condition must contain a field from the table on the right.

« if the FROM clause contains an Outer Join, then all ON conditions must contain at least

one 'true’ JOIN condition (a condition that contains a field from tab1 and a field from
tab2).

Reading Multiple Database Tables Il

FOR ALL ENTRIES 6/[

REPORT sapbc405_gdad_for_al |l _entri es. itab_spli
LH | 0400

SELECT carrid connid ...
| NTO TABLE itab_spfli FROMspfli LH L 0402
WHERE cityfrom IN so_cityf

AND cityto IN so cityt.

Executed according to:
* Check, if at |east one dataset is found

| E sy-subrc ne 0. EXIT. ENDIF. where (- carrid = 'LH'

and connid ='0400')
SELECT carrid connid fldate ... or (carrid
| NTO TABLE i tab sflight FROM sflight and connid
WHERE carrid = itab_spfli-carrid
AND connid = itab_spfli-connid.

L
'0402')

a4 SAPAG 1999

m FOR ALL ENTRIESworks with a database in a quantity-oriented manner. Initially al datais
collected in an interna table. Make sure that this table contains at |east one entry (query

sy-subrc or DESCRIBE), otherwise the subsequent transaction will be carried out without any
restrictions).

m SELECT..FORALL ENTRIESIN <itab> istreated like a SELECT statement with an external
OR condition. The system only selects those table entries that meet the logical condition (WHERE
carrid = itab_sflight-carrid), replacing the placeholders (itab_spfli-carrid) with vaues from each
entry in the internd table itab_spfli. Note that itab_gpfli-carrid is a placeholder, and not a

component of the internal table. Duplicates are not alowed. The internal table can, in principle, be as
large as you want it to be.

m Using FOR ALL ENTRIES isrecommended when data is not being read from the database, that is,

it is already available in the program, for example, if the user has input the data. Otherwise ajoin is
recommended.

Reading Multiple Database Tables IV

Nested SELECT Statements ‘4

REPORT sapbc405_ gdad_nest ed_sel ect s.

carri d connid cityfrom. ..
I NTO wa_spfli FROM spfli
WHERE cityfrom I N so_cityf
AND cityto IN so_cityt.
APPEND wa_spfli TO itab_spfli .
carrid connid fldate ...
wa_sflight FROM sfli ght
WHERE carrid = wa_spfli-carrid
AND connid = wa_spfli-connid.
APPEND wa_sflight TOitab_sflight.
booki d customi d custtype cl ass
wa_sbook FROM sbook
VWHERE carrid = wa_sflight-carrid
AND connid = wa_sflight-connid
AND fldate = wa_sflight-fldate.
APPEND wa_shbook TO it ab_sbhook.
ENDSELECT. §
| ENDSELECT. §
ENDSELECT.

a4 SAPAG 1999

m The easiest technical option for reading from multiple (dependent) tablesis to use nested SELECT
statements. The biggest disadvantage of this method is that for every data record contained in the
external loop a SELECT gatement is run using the database. This leads to a considerably worse
performance in client/server systems.

m From Release 4.0 you can aso work with sub-queries. For more information, refer to the online
documentation.

Z ® \When datain the database is read from several
independent tables, it is important to optimize the

performance of the database accesses.

a4 SAPAG 1999

Unit: Internal Data Collection
Topic: Inner Join

*e e

When you have completed these exercises, you will be able to:

Use an ABAP join to read data from several different DB
tables

1-1

Copy or enhance your program Z##SSC1 ..., or copy the sample solution,
SAPBC405 SSCS 1, to program Z##GDA1 Sample solution for exercise:
SAPBC405_GDAS 1.

1-1-1 Replace the data collected through database view dv_flightswith an interna
INNER JOIN performed on the database.

Deactivate (mark with "*") the three SELECT statements at START-OF-
SELECTION. Program INNER JOINSs that fill internal table it_flights with data
from tables SPFLI and SFLIGHT in the database.

Note:

The structure of the internal table it_flights does not correspond exactly to the
combination of tables SPFLI and SFLIGHT. Y ou must ensure that the fields are
copied to the fields of the same name in the target table.

Unit: Programming Data Retrieval
/ Topic: Inner Join

*& ___ *
*& Report SAPBC405_GDAS 1 *
*& *

*& ___ *
*& Solution: Exercise 1, Internal Data Collection

*& *

*& ___ *

*& ___ *
*& Event TOP-OF-PAGE

*& ___ *
TOP-OF-PAGE.

* Title

FORMAT COLOR COL_HEADING INTENSIFIED ON.
ULINE.
WRITE: / sy-vline,
'Flight data'(001),
AT line_size sy-vline.
ULINE.

* Column header
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary
SET LEFT SCROLL-BOUNDARY.
WRITE: 'Date'(003) ,
'‘Departure location'(004),

'Price'(006),
AT line_size sy-vline.

ULINE.
*& ___ *
*& Event INITIALIZATION
*& ___ *
INITIALIZATION. " OPTIONAL

* Initialize select-options for CARRID
MOVE: 'AA' TO so_car-low,
'‘QF' TO so_car-high,

‘BT TO so_car-option,
' TO so_car-sign.

APPEND so_car.

CLEAR so_car.

MOVE: 'AZ' TO so_car-low,
'EQ' TO so_car-option,
'E' TO so_car-sign.

APPEND so_car.

CLEAR so_car.

*& ___ *
*& Event AT SELECTION-SCREEN ON BLOCK PARAM
*& ___ *

AT SELECTION-SCREEN ON BLOCK param. " OPTIONAL

* check country for national flights is not empty
CHECK national ='X" AND country = space.

MESSAGE e003(bc405).
*& ___ *
*& Event START-OF-SELECTION
*& ___ *

START-OF-SELECTION.

* Checking the output parameters
CASE mark.
WHEN all.
* Radiobutton ALL is marked
SELECT * FROM spfli INNER JOIN sflight
ON spfli~carrid = sflight~carrid
AND spfli~connid = sflight~connid
INTO CORRESPONDING FIELDS OF TABLE it_flights
WHERE spfli~carrid IN so_car
AND spfli~connid IN so_con
AND sflight~fldate IN so_fdt.

SORT it_flights BY carrid connid fldate.

WHEN national.
* Radiobutton NATIONAL is marked
SELECT * FROM spfli INNER JOIN sflight
ON spfli~carrid = sflight~carrid
AND spfli~connid = sflight~connid
INTO CORRESPONDING FIELDS OF TABLE it_flights
WHERE spfli~carrid IN so_car
AND spfli~connid IN so_con
AND sflight~fldate IN so_fdt
AND spfli~countryfr = spfli~countryto
AND spfli~countryfr = country.

SORT it_flights BY carrid connid fldate.

WHEN internat.
* Radiobutton INTERNAT is marked
SELECT * FROM spfli INNER JOIN sflight
ON spfli~carrid = sflight~carrid
AND spfli~connid = sflight~connid
INTO CORRESPONDING FIELDS OF TABLE it_flights
WHERE spfli~carrid IN so_car
AND spfli~connid IN so_con

ANID cflinht—fldata INl en fAt

AND spfli~countryfr NE spfli~countryto.

SORT it_flights BY carrid connid fldate.

ENDCASE.

* Additional solution: dynamical WHERE condition
* PERFORM get_data.

*& ___ *
*& Event END-OF-SELECTION
*& ___ *

END-OF-SELECTION.

* Data output
PERFORM data_output.

*& ___ *
*& Form DATA OUTPUT

*& ___ *
* List output of flight data

* *

FORM data_output.

* Loop at the internal table for writing data
LOOP AT it_flights INTO wa_flights.

* Get a new page if CONNID has changed.
ON CHANGE OF wa_flights-connid.
NEW-PAGE.
ENDON.

* Mark international flights
FORMAT COLOR COL_KEY INTENSIFIED ON.
IF wa_flights-countryfr EQ wa_flights-countryto.
WRITE: / sy-vline, icon_space AS ICON CENTERED.

Cl crC

WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.

ENDIF.

* Data outp ut
WRITE: wa_flights-carrid,
wa_flights-connid.
FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
WRITE: wa_flights-fldate,
wa_flights-cityfrom,
wa_flights-cityto,
wa_flights-price CURRENCY wa_flights-currency,
wa_flights-currency,
AT line_size sy-vline.

ENDLOOP.
ENDFORM. "DATA_OUTPUT
* G ADDITIONAL --------=-=--- > *
*& ___ *
*& Form GET_DATA
*& ___ *

* Instead of programming three different SELECT statements, these

* SELECTs can be combined in one dynamical WHERE condition.

**

*

*FORM GET_DATA. "#EC CALLED

*

* DATA: WHERE_LINE(40),

* WHERE_TAB LIKE TABLE OF WHERE_LINE.
*

** only national flights requested

* IF NATIONAL NE SPACE.

* WHERE_LINE ="p~countryfr = p~countryto'.

* APPEND WHERE_LINE TO WHERE_TAB.

"#EC NOTEXT

* CAONCATENATFE 'AND n~cninintrufr —! "HEC NINTEYT

* """ INTO WHERE_LINE

* SEPARATED BY SPACE.

* CONCATENATE WHERE_LINE COUNTRY "" INTO WHERE_LINE.
* APPEND WHERE_LINE TO WHERE_TAB.

* ENDIF.

** only international flights requested
* IF INTERNAT NE SPACE.

* WHERE_LINE = "'p~countryfr NE p~countryto'. "#EC NOTEXT
* APPEND WHERE_LINE TO WHERE_TAB.
* ENDIF.

*

** Close WHERE-clause by dot

* WHERE_LINE =".".

* APPEND WHERE_LINE TO WHERE_TAB.

*

** Inner join with dynamical where clause

* SELECT P~CARRID P~CONNID

* P~COUNTRYFR P~CITYFROM P~AIRPFROM

* P~COUNTRYTO P~CITYTO P~AIRPTO

* F~FLDATE F~PRICE F~CURRENCY

* FROM SPFLI AS P JOIN SFLIGHT AS F

* ON P~CARRID = F~CARRID AND P~CONNID = F~CONNID
* INTO CORRESPONDING FIELDS OF TABLE IT_FLIGHTS
* WHERE P~CARRID IN SO_CAR

* AND P~CONNID IN SO_CON

* AND F~FLDATE IN SO_FDT

* AND (WHERE_TAB).

*

*ENDFORM. " GET_DATA
*& ___ *
*& Include BC405_GDAS_1TOP *
*& *

*& ___ *

REPORT sapbc405_gdas_1 LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons
INCLUDE <icon>.

* Constants for writing position
CONSTANTS: pos_cl TYPE i VALUE 6,
line_size TYPE i VALUE 100.

* Constant for CASE statement
CONSTANTS mark VALUE 'X'.

* Internal table like DDIC view DV_FLIGHTS
DATA: it_flights LIKE TABLE OF dv_flights,
wa_flights LIKE dv_flights.

* Selections for connections
SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-tl1.
SELECT-OPTIONS: so_car FOR wa_flights-carrid,
so_con FOR wa_flights-connid.
SELECTION-SCREEN END OF BLOCK conn.

* Selections for flights

SELECTION-SCREEN BEGIN OF BLOCK flight WITH FRAME TITLE text-tl2.
SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.
SELECTION-SCREEN END OF BLOCK flight.

* Output parameter
SELECTION-SCREEN BEGIN OF BLOCK param WITH FRAME TITLE text-tl3.
SELECTION-SCREEN BEGIN OF BLOCK radio WITH FRAME.
PARAMETERS: all RADIOBUTTON GROUP rbg1,

national RADIOBUTTON GROUP rbg1,

internat RADIOBUTTON GROUP rbgl DEFAULT 'X'.
SELECTION-SCREEN END OF BLOCK radio.
PARAMETERS country LIKE wa_flights-countryfr.
SELECTION-SCREEN END OF BLOCK param.

SAP Query - Administration

® User groups

® Functional areas

8 SAP AG 1999

ABAP Query - Administration Hr
DA

, User groups
Functional areas

a4 SAPAG 1999

Maintaining User Groups

Change / Create / Delete ...

Assign user groups

User Assign functional areas

group

Assign a user

1 1 11

Assign a functional area

a4 SAPAG 1999

m \When you create a user group, you must assign a name and a description to the user group.
m To maintain auser group, you can use the following options:

- You can assign users and functional areasto a user group.

- You can assign a user to various user groups.

- You can assign afunctional areato various user groups.

m You can assign every user in the SAP System to one or more user groups.

Authorizations and ABAP Query

S_QUERY uG .
(ACTVT) allocated User activities
NO Cannot use query
YES Start queries
Change (02) YES Start and change queries
L Start queries,
Maintain (23) YES Maintain UG and FA
Change (02) NO Start and change queries,
Maintain (23) Maintain UG and FA
Compile (67) NO Language comparison for query

a4 SAPAG 1999

There are basically two mechanisms for determining who can do what with a query.

Thefirst restriction involves the assignment to a user group. Users who have not been assigned to
any user groups cannot use the query. Users who have been assigned to at least one user group can
start queries.

The second mechanism isfield ACTVT in authorization object S QUERY. You can use thisfield to
authorize users to change queries aswell (ACTVT = 02).

ACTVT = 23 isrequired to maintain functiona areas and user groups (typical administration tasks).
An administrator does not necessarily have to be assigned to a user group.

m A separate authorization (ACTVT = 67) isrequired to compile the query.

ABAP Query - Administration Hr
DA

User groups
, Functional areas

a4 SAPAG 1999

Defining Functional Areas H'
DA

Primary data Secondary data
Logically separated into Is assigned to a functional
functional areas area

Funct. areal Funct. area?2

Additional tables
and

additional fields

4—— (separate authorizations)

Primary data is determined by the functional area type

* Logical database

» Table join (inner, outer)
» Table

» Sequential dataset
 Data collection program

a4 SAPAG 1999

When you define afunctional area, you must first decide on a primary dataset (functional areatype).
Y ou can assign secondary datasets (tables, supplementary fields) to the primary dataset.
Y ou can choose al the fields of the primary dataset and the secondary dataset. Y ou choose fields by

assigning them to a functional group.

Users cannot access fields that are not assigned to a functiona group.
For the end user it isirrelevant whether afield belongs to primary or secondary data.
There are different types of functional aress:

Creating afunctional areafrom alogica database provides data retrieval for logical databases
(GET <node>).

Creating afunctional areafrom atable join allows access to data in tables that are linked with
an INNER or OUTER JOIN (SELECT).

Creating afunctional areafrom atable evaluates data from a table or from a database view
(SELECT).

Creating afunctional area from a program evaluates data read by a predefined program.

Creating afunctional areafrom a sequential file reads data stored in a sequentia file (READ
DATASET).

m For the enduser, it isirrelevant which type of functional areais used.

Overview: Creating Functional Areas

Maintain titles

Determine the functional area type

Defining Functional Areas

Allocating Fields

Additional Information

Selection:
Parameters / selection options

a4 SAPAG 1999

When you create afunctiona area, you have to enter atitle and select the type of functiona area.
Y ou can force every query in afunctional areato be allocated to an authorization group (provides
protection of the generated program, object S PROGRAM).

After header maintenance, you can dvide the available fields into functiona groups.

Y ou can read additiona tables and use additional fields.

Y ou can define parameters and selection options (determination of the selection screen).

When you create a functional area, you must alocate it to the user group with which it is to work.

The system administers every functiona areain two versions. a generated version and a revised
version. After you change a functional area, you must generate it so that the changes become known.
Queries work only with the generated versions of functiona areas.

Y ou can delete a functional area only when it contains no queries.

Y ou can user the directory function to see an overview of the available functional areas along with
their contents and al queries created from a given functional area (menu path AQA-1).

Defining Functional Areas: Example Hr
A

Functional
area
| with LDB

T e = GE

v

/ Table
SCARR_~"

v
T
| |
Seoor |

Selection of fields
and grouping
to functional groups

SELECT
SINGLE .

ABAP
statements,
such as
GET SFLIGHT

a4 SAPAG 1999

m For practical purposes, retrieval of supplemental data (table accesses, supplemental fields) is an
extension of the tables already present.

m When you define table accesses and supplemental fields, you must specify the time and the order (of
access).

m You can aso use ABAP statements to allocate various events.

Defining Functional Areas

BCS1

SPFLI F
SELIGHT F

SBOOK F

Change functional area BCS1
Create

Functional area D Vod
Logical database F1S

[=~ Create functional areas

X

ID

Meaning

10

Connections

20

Flights

30

Bookings

a4 SAPAG 1999

m A functional group is the grouping of severa fieldsinto alogical unit. They serve to smplify field
selection for the user.

m The functional group is displayed using a two-part tree structure:

- Thefirst sub-tree contains the functional groups. This sub-treeisflat: all functional groups exist
next to each other at the same level. Each functiona group contains the fields that have been
assigned toit.

- The second sub-tree describes the structure of the data that will be read. The structure of

functional areas with logical databases corresponds to the structure of the logical database and
contains al the nodes and the hierarchical relationships defined between the nodes. In the case
of atablejoin, the structure contains al the tables of the join in aflat structure.

m Functional groups can be created using the Create icon or from the menu. Y ou must assign an ID
code and a long text when creating a functiona group.

m To alocate fields to afunctiona area, you must choose or select it. The system highlights the
selected functiona areasin color.

m To dlocate afield to afunctiona area, you must first make the field visible by expanding the
corresponding table in the second partial tree. A specid icon next to the field name indicates if the
field has been dlocated to a functional area. If the icon isaminus sign, the field has not been
alocated to afunctiona group. A single click on the icon alocates the field to the currently marked
functional area. The icon behind the ID code of the functional group then changes from aminus sign
to aplussign.

m A singleclick on a plus-icon cancels the dlocation. Y ou can only cancel the field-functional area
alocation if the field has not yet been used in queries.

Y ou can define additiona tables, additiond fields, and ABAP statements either at the GET event or
during record processing for each table in the second sub-tree.

Y ou can reach these enhancements with the Extras function. The enhancements are summarized for
each table.

To maintain additions for a particular table, you must position the cursor on afield in the table and
then call the function. A window appears that displays al additional tables, additiond fields, and
statements all ocated to the table.

The number in the first column indicates the order of the code sections in the generated program.
This number becomes important when individual enhancements are dependent upon each other.

Multiple allocation of additional tables (alias tables):
- Aliastables enable repeated use of atable.

- You can assign multiple alias names for atable. Y ou can then address the table with its various
names.

m You alocate an additional table as follows:
- Cadll the Create function on the screen.
- Enter the name of the additional table and set the selection button on the additional table.
- Enter the order of the coding section and the WHERE dause in the following screen.

m A query performs a table access only when the query requires this table field.

m You alocate an additional field as follows:
- Cadll the Create function on the screen.
- Enter the name of the additional field and select the Additional field radio button.
- On the following screen, define the code section's sequence and the field itself.

m You can enter the format specifications directly using the data type or by referring to an ABAP
Dictionary field.

m This screen does not contain ABAP statements for the additional field. To maintain such statements,
you must branch to the Editor using the Editor function. The Editor syntax check is available there.
Y ou can use include programs, externa form routines, and function modules.

m Seclection criteriamust always refer to primary datafields or to fields that have been defined in a
DATA statement in the functional area.

m When you specify the order, you also determine the output sequence of individual selection criteria
and parameters. However, al the standard selections of the logical database appear in the lead
positions on the selection screen.

m If sdlections have been defined in addition to the logical database, and these selections refer to a
node that does not support free selections, then you have to use a CHECK statement to check the
collected data.

Unit: SAP Query — Administration

Topic: Creating Functional Areas

*e e

When you have completed these exercises, you will be able to:
Create a functional areawith alogical database
Include additional fields

1-1

Include additional tables

Create a functional area, BCS2-##, with logical database F1S in the globa query
area (note: ## is the group number).

1-1-1 Create the following functional groups:
Connections
Flights
Bookings

1-1-2 Assign the following fields to the functiona groups:

Connections: SPFLI-CARRID
SPFLI-CONNID
SPFLI-CITY FROM
SPFLI-AIRPFROM
SPFLI-CITYTO
SPFLI-DEPTIME
SPFLI-ARRTIME
SPFLI-FLTYPE

Flights: SFLIGHT-PRICE
SFLIGHT-CURRENCY
SFLIGHT-PLANETY PE
SFLIGHT-SEATSMAX
SFLIGHT-SEATSOCC
SFLIGHT-PAYMENTSUM

SFLIGHT-FLDATE

Bookings:. SBOOK-BOOKID
SBOOK-CUSTOMID
SBOOK-CUSTTYPE
SBOOK-SMOKER
SBOOK-LUGGWEIGHT
SBOOK-WUNIT

1-2 Create the additional field FREE (with the description free seats) for table
SFLIGHT.

1-2-1 Assign the field FREE to the functional group Flights

1-3 For the table SBOOK, read additional information from table SCUSTOM.

Create additional table SCUSTOM for table SBOOK.

Assign the following fields to the Bookings functional group:
SCUSTOM-NAME
SCUSTOM-FORM
SCUSTOM-STREET
SCUSTOM-POSTCODE
SCUSTOM-CITY
SCUSTOM-TELEPHONE

1-4 Assign the functiona areato your user group BC_STUDENTS.

1-4-1 Create aquery, QE2-##, for functional area BCS2-##, and test the functional
area.

1-4-2 The list should have the following line structure:
Linel: Short name of the airline, code of the

flight connection
Line2: Departure city, arrival city, free seats

Line3: Flight date

Line4: Form of address, customer name, street, city, and zip code

Data Formatting and Control Level Processing

® \With internal tables

® \WVith extract datasets (see appendix)

8 SAP AG 1999

m You can use control level processing to create structured lists. Control levels are determined by the
contents of the fields that are to be displayed. thereis a control level change whenever the content of
afield changes. This means that there is no point in creating control levels unless the data are sorted.

m The data to be displayed must be saved temporarily if you want to use control level processing. You
can aso use internal tables and intermediate datasets.

m From Release 4.0, the R/3 System has included three types of tables. Standard tables (STANDARD
TABLE), sorted tables (SORTED TABLE), and hashed tables(HASHED- TABLE).

m For information on the complete syntax of interna tables, see the online documentation.

You can use an array fetch in a SELECT gstatement to fill an internal table in one go.

Y ou can use the APPEND statement to insert table entries at the end of an internal table. The variant
of the APPEND statement on the dide is permitted only for standard or sorted tables. After an
APPEND statement, system field SY- TABI X contains the index value of the newly inserted table
entry.

Y ou use the COLLECT statement to generate unique or compressed datasets. The contents of the
work area <wa> of the interna table are recorded as anew entry at the end of the table or are added
to an existing entry. The latter occurs when the internal table already contains an entry with the same
key field values as those currently in the work area. The numeric fields that do not belong to the key
are added to the corresponding fields of the existing entry.

When the COLLECT statement is used, al the fields that are not part of the key must be numeric.

The SORT statement sorts the entries in internal table <itab> in ascending order. If the addition BY
<f1> ..., ismissng, then the key assigned when the table was defined is used.

If addition BY <f1> <f1> ... isused, then fields <f1>, <f2>, ... are used as sort keys. The fields can
be of any type.

Y ou can use the additions ASCENDING and DESCENDING with the SORT statement to
determine whether the fields are sorted in ascending (default) or descending order.

For more information about the SORT statement, please refer to appendix documentation DAP-3.

Y ou can use the loop statement LOOP AT <itab> ... ENDL OOP to process an internd table. The
data records in the internal table are processed sequentially.

The CONTINUE statement can be used to prematurely exit the current loop pass and skip to the
next pass.

The EXIT statement can be used to exit loop processing.

At the end of loop processing (after ENDL OOP), return value sy-subrc indicates whether the loop
was passed or not.

SY-SUBRC =0: Theloop was passed at |east once

SY-SUBRC =4: Theloop was not passed because no entry was available.

You can use special control structuresfor control level processing. All the structures begin with AT
and end with ENDAT. These control structures can only be used within a L OOP.

The statement blocks AT FI RST and AT LAST arerun exactly once: at thefirst AT FI RST and at
thelast AT LAST loop.

The statementswithin AT NEW <f > ... ENDAT are executed when the value of field <f>
changes within the current LOOP (start of a control level) or the value of one of the fields in the
table definition (further to the left).

The statementswithin AT END OF <f> ... ENDAT are executed when the value of field <f>
changes during the next LOOP (end of a control level) or the value of one of the fields in the table
definition (further to the left).

At entry of the control level (directly after AT),

- dl fields with the same character types after (to the right of) the current control level key
arefilled with "*"

- al other fields after (to the right of) the current control level key are set to default values.

When a control structure is exited (at ENDAT), all fields of the query area are filled with the data
from the current loop pass.

The SUM statement supplies the respective group totals in the query area of the LOOP in dl fields of
TYPEI, Fand P.

m The control level structure in internal tablesis static. It corresponds exactly to the sequence of
columnsin the interna table (from left to right). In particular, the control level structure for interna
tablesis independent of the criteria used to sort the internal table. The table must be sorted according
to the internd table fields.

m When you implement control level processing, you must follow the sequence of individua control
levels within the LOOP as illustrated in the dide. The sequence follows the sequence of fieldsin the
internal table and is therefore also the sort sequence.

m The processing block between AT FIRST and ENDAT is executed before processing of the single
lines begins. The processing block AT LAST and ENDAT is executed after al single lines have been
processed.

Unit: Data Formatting and Control Level Processing
Topic: Internal Table

*e P

When you have completed these exercises, you will be able to:

Implement control level processing with internal tables

1-1

1-2.

Copy or enhance your program Z##GDA1 ..., or copy the sample solution,
SAPBC405 GDAS 1, to program Z##DAPL Sample solution for exercise:
SAPBC405 DAPS 1.

Carry out control level processing for CITYFROM, CITYTO, CARRID, CONNID.
Create alist like the one in the templ ate.

1-1-1 Create aline typein the TOP include (TY PES statement). Declare the
internal table and the work area in accordance with the line type. You
should include the following fields:

CARRID, CONNID, FLDATE, PRICE, CURRENCY, CITYFROM,
COUNTRYFR, CITYTO, COUNTRYTO, SEATSMAX, SEATSOCC.

Note: The control level hierarchy for an interna table is established by your
line structure.

1-1-2 Sort the interna table in accordance with the requested control level
processing (event: END-OF-SELECTION).

Implement the control level processing in your output routine.

1-2-1 Output each new departure city on a separate page and with intensive
display in color COL_GROUP in the list.

1-2-2 Output the city and airport for each new arrival city with alessintensive
display in color COL_GROUP.

1-2-3 Ensure that the icon ICON_BW_GIS (for international flights), the airline
and the flight number are displayed as required during single-record
processing. Display the key fields in color COL_KEY ; they should remain
as hard lead columns. Display the flight date, the price, the currency, the
maximum number of seats and the number occupied in color
COL_NORMAL in thelist with aless intensive display.

1-2-4 At the end of each flight connection the totals for the maximum number of
seats and the number occupied should be displayed in color COL_TOTAL
without intensive display.

1-2-5 A solid line should appear on the list before the departure location changes.
1-2-6 Draw aframe around the list (sy-vline) .
1-2-7 Modify the column headers to fit the new list output (see the template). Use

toavt dlemoente tn allnw vniir tevte tn he trand ated

Template:

Fl'i ght data

Departure city
Arrival |ocation

Fl i ght Dat e Price Max. Ccce.
FRANKFURT
NEW YORK
09/ 07/ 1999 0400 280 173 1,332.00 DEM
11/29/ 1999 0400 280 156 1,332.00 DEM
12/ 02/ 1999 0400 280 24 1,332.00 DEM
12/ 09/ 1999 0400 280 198 1,332.00 DEM
12/ 29/ 1999 0400 280 277 1,332.00 DEM
Tot al 1400 828
09/ 29/ 1999 0402 280 210 1,332.00 DEM
12/ 28/ 1999 0402 280 280 1,332.00 DEM
01/ 02/ 2000 0402 280 280 1,332.00 DEM
01/ 05/ 2000 0402 280 198 1,332.00 DEM
02/ 08/ 2000 0402 280 11 1,332.00 DEM
Tot al 1400 979

@= | CON BWG S

Optional Exercises

Unit: Data Formatting and Control Level Processing
Topic: Extracts

*ee

When you have completed these exercises, you will be able to:
Name field groups

Define field groups

1-1

Create extracts

Perform control level processing with extracts

Copy or enhance your program Z##.DB2_..., or copy the sample solution,
SAPBC405 _LDBS 2, to program Z##DAP2_... . Sample solution for exercise:
SAPBC405_DAPS 2.

1-1-1 Deactivate the events GET ... LATE.
1-1-2 Define the following field groups in the TOP include:
HEADER
CONNECTIONS
FLIGHTS
BOOKINGS
1-1-3 Assign the following fields to the field groups:
HEADER: spfli-carrid, spfli-connid, sflight-fldate, sbook-bookid, sbook-

customid
CONNECTIONS: spfli-cityfrom, spfli-airpfrom, spfli-cityto,
spfli-airpto
FLIGHTS: sflight-price, sflight-currency, sflight-planetype,

sflight-seatsmax, sflight-seatsocc, free_seats
BOOKINGS: sbook-bookid, shook-customid, sbook-smoker,
sbook-luggweight, sbook-wunit.
1-1-4 Fill the extract for the GET events.
1-1-5 Sort the extract according to the sequence of field group HEADER.
1-1-6 Start control level processing and create a list with the following structure:
Line1: SPFLI-CARRID, SPFLI-CONNID
Line2: SFLIGHT-FLDATE

Line3: SPFLI-CITYFROM, SPFLI-AIRPFROM, SPFLI-CITYTO,
SPFLI-AIRPTO

Line4: SFLIGHT-PRICE, SFLIGHT-CURRENCY, SFLIGHT-
PLANETYPE, SFLIGHT-SEATSMAX, SFLIGHT-EATSOCC,
FREE_SEATS

Line5: SBOOK-BOOKID, SBOOK-CUSTOMID, SBOOK-SMOKER,
BOOK-LUGGWEIGHT, SBOOK-WUNIT.
Only output line 3 if line 4 is also outpuit.
Only output line 4 if line 5 is aso output.

1-1-6 Thelist should aso include the number of total bookings and the total
weight of the luggage for each flight date in one line.

1-2 Formatting the list

1-2-1 The price and luggage weight should be output with correct format for the
respective units.

1-2-2 Output each flight on a new page.

1-2-3 Output a solid line before and after the number of bookings and the total
weight.

1-2-4 Use the following control structures and colors:

AT NEW spfli-connid, COL_GROUP INTENSIFIED
ON

AT NEW sflight-fldate, COL_HEADING INTENSIFIED
ON

AT flights WITH bookings, COL_NORMAL
INTENSIFIED ON

AT bookings, COL_NORMAL INTENSIFIED OFF

AT END OF sflight-fldate, COL_TOTAL
INTENSIFIED ON.

1-2-5 Position the control levelsin the list in such away that the hierarchy is
apparent — for example, line 1 begins further than the left than line 2, and so
on. Draw aframe around the list. Maintain the column headers (standard list
header).

Unit: Data Formatting and Control Level Processing
/ Topic: Internal Table

*& ___ *

*& Report SAPBC405_DAPS 1 *
*& *

*& ___ *

*& Solution; Exercise 1; Control level processing
With internal table
*& *

TOP-OF-PAGE.

* Title
FORMAT COLOR COL_HEADING INTENSIFIED ON.
ULINE.
WRITE: / sy-vline,
'Flight data'(001),
AT line_size sy-vline.
ULINE.

* Column header
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: sy-vline, 'Departure location'(004), AT line_size sy-vline.
WRITE: sy-vline, 'Arrival location'(004), AT line_size sy-vline.

WRITE: sy-vline, AT pos_c1 'Flight'(002).

SET LEFT SCROLL-BOUNDARY.
WRITE: 'Date’'(003),

AT pos_c3 'Price'(006),

AT pos_c4 '‘Max.'(008),

AT pos_c5'Occ.'(009),

AT line_size sy-vline.

ULINE.
*& ___ *
*& Event INITIALIZATION
*& ___ *
INITIALIZATION. " OPTIONAL

* Initialize select-options for CARRID
MOVE: 'AA' TO so_car-low,
'QF' TO so_car-high,

'BT' TO so_car-option,
"' TO so_car-sign.

APPEND so_car.

CLEAR so_car.

MOVE: 'AZ' TO so_car-low,
'EQ' TO so_car-option,
'E' TO so_car-sign.

APPEND so_car.

CLEAR so_car.

*& ___ *
*& Event AT SELECTION-SCREEN ON BLOCK PARAM
*& ___ *

AT SELECTION-SCREEN ON BLOCK param. " OPTIONAL

* check country for national flights is not empty
CHECK national ='X"' AND country = space.
MESSAGE e003(bc405).

* R *

*& Event START-OF-SELECTION

START-OF-SELECTION.

* Checking the output parameters
CASE mark.
WHEN all.
* Radiobutton ALL is marked
SELECT * FROM spfli INNER JOIN sflight
ON spfli~carrid = sflight~carrid
AND spfli~connid = sflight~connid
INTO CORRESPONDING FIELDS OF TABLE it_flights
WHERE spfli~carrid IN so_car
AND spfli~connid IN so_con
AND sflight~fldate IN so_fdt.

WHEN national.
* Radiobutton NATIONAL is marked
SELECT * FROM spfli INNER JOIN sflight
ON spfli~carrid = sflight~carrid
AND spfli~connid = sflight~connid
INTO CORRESPONDING FIELDS OF TABLE it_flights
WHERE spfli~carrid IN so_car
AND spfli~connid IN so_con
AND sflight~fldate IN so_fdt
AND spfli~countryfr = spfli~countryto
AND spfli~countryfr = country.

WHEN internat.
* Radiobutton INTERNAT is marked
SELECT * FROM spfli INNER JOIN sflight
ON spfli~carrid = sflight~carrid
AND spfli~connid = sflight~connid
INTO CORRESPONDING FIELDS OF TABLE it_flights

\WIEDE enflicaarriAd INl eA ~Aar

AND spfli~connid IN so_con
AND sflight~fldate IN so_fdt
AND spfli~countryfr NE spfli~countryto.

ENDCASE.

* Additional solution: dynamical WHERE condition
* PERFORM get_data.

*& ___ *
*& Event END-OF-SELECTION
*& ___ *

END-OF-SELECTION.

*SORT it_flights BY carrid connid fldate.

* Control Level Processing: the internal table has to be sorted
SORT it_flights BY cityfrom cityto carrid connid.

* Data output
PERFORM data_output.

*& ___ *
*& Form DATA_OUTPUT

*& ___ *
* List output of flight data

* *

FORM data_output.

*Loop at the internal table for writing data
LOOP AT it_flights INTO wa_flights.

* Group Level: CITYFROM
AT NEW cityfrom.
NEW-PAGE.
FORMAT COLOR COL_GROUP INTENSIFIED ON.

\WWDITE: | evavlina wa flinhte_ritvfram

AT line_size sy-vline.
FORMAT RESET.
ENDAT.

*Group Level: CITYTO
AT NEW cityto.
FORMAT COLOR COL_GROUP INTENSIFIED OFF.
WRITE: / sy-vline, wa_flights-cityto,
AT line_size sy-vline.
FORMAT RESET.
ENDAT.

* Single Record Processing
* Mark international flights
FORMAT COLOR COL_KEY INTENSIFIED ON.
IF wa_flights-countryfr EQ wa_flights-countryto.
WRITE: / sy-vline, icon_space AS ICON CENTERED.
ELSE.
WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.
ENDIF.
* Data output
WRITE: wa_flights-carrid,
wa_flights-connid.
FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
WRITE: wa_flights-fldate,
wa_flights-price CURRENCY wa_flights-currency,
wa_flights-currency,
wa_flights-seatsmax,
wa_flights-seatsocc,
AT line_size sy-vline.
FORMAT RESET.

*Group Level: CONNID
AT END OF connid.
SUM.
FORMAT COLOR COL_TOTAL.

\WDITE: [cvavlina

‘Total'(007),
wa_flights-seatsmax UNDER wa_flights-seatsmax,
wa_flights-seatsocc UNDER wa_flights-seatsocc,
AT line_size sy-vline.
FORMAT RESET.
ENDAT.

* Group Level: CITYFROM
AT END OF cityfrom.
ULINE.
ENDAT.

ENDLOOP.

ENDFORM. " DATA_OUTPUT

REPORT bc405_daps_1top LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons
INCLUDE <icon>.

* Linetype of internal table

TYPES: BEGIN OF linetype,
cityfrom LIKE spfli-cityfrom,
cityto LIKE spfli-cityto,
carrid LIKE spfli-carrid,
connid LIKE spfli-connid,
countryfr like spfli-countryfr,
countryto like spfli-countryto,
fldate LIKE sflight-fldate,
price LIKE sflight-price,

riirrancyv | IKE cflinht_riirranecy

seatsmax LIKE sflight-seatsmax,
seatsocc LIKE sflight-seatsocc,
end of linetype.

* Constants for writing position
CONSTANTS: pos_cl1 TYPE i VALUE 6,
pos_c3 TYPE i VALUE 30,
pos_c4 TYPE i VALUE 58,
pos_c5 TYPE i VALUE 68,
line_size TYPE i VALUE 100.

* Constant for CASE statement
CONSTANTS mark VALUE 'X'.

* Internal table like DDIC view DV_FLIGHTS
* DATA: it_flights LIKE TABLE OF dv_flights,
* wa_flights LIKE dv_flights.

* Internal table type linetype
DATA: it_flights TYPE STANDARD TABLE OF linetype,
wa_flights TYPE linetype.

* Selections for connections
SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-tl1.
SELECT-OPTIONS: so_car FOR wa_flights-carrid,
so_con FOR wa_flights-connid.
SELECTION-SCREEN END OF BLOCK conn.

* Selections for flights

SELECTION-SCREEN BEGIN OF BLOCK flight WITH FRAME TITLE text-tl2.
SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.
SELECTION-SCREEN END OF BLOCK flight.

* Qutput parameter
SELECTION-SCREEN BEGIN OF BLOCK param
WITH FRAME TITLE text-tl3.

CCI CTINN CADELCN RDECINI NE DI AW radia \WWITU CDANME

PARAMETERS: all RADIOBUTTON GROUP rbg1,

national RADIOBUTTON GROUP rbg1,

internat RADIOBUTTON GROUP rbgl DEFAULT 'X'.
SELECTION-SCREEN END OF BLOCK radio.
PARAMETERS country LIKE wa_flights-countryfr.
SELECTION-SCREEN END OF BLOCK param.

Topic: Extracts

*& Report SAPBC405_DAPS_2
*&

K) e e

*&
*&

GET spfii.
* Save field group: connections
EXTRACT connections.

GET sflight.
* Calculate free seats

free_seats = sflight-seatsmax - sflight-seatsocc.

* Save field group: flights
EXTRACT flights.

Optional Solutions

/ Unit: Data Formatting and Control Level Processing

*& Event GET SBOOK

GET sbhook.

* Check select-option
CHECK so_odat.

* Save field group: bookings
EXTRACT bookings.

*GET spfli LATE.
* ULINE.
* NEW-PAGE.

*GET sflight LATE.
* ULINE.

END-OF-SELECTION.

* Sorting extract data according to the header fields
SORT.

* Control level processing
LOOP.
AT NEW spfli-connid.
FORMAT COLOR COL_GROUP INTENSIFIED ON.
WRITE: / sy-vline,
spfli-carrid,

enfli.ccnnnid

AT line_size sy-vline.
ENDAT.

AT NEW sflight-fldate.
FORMAT COLOR COL_HEADING INTENSIFIED ON.
WRITE: / sy-vline,
AT pos_lev2 sflight-fldate,
AT line_size sy-vline.
ENDAT.

* Single record processing
AT connections WITH flights.
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: / sy-vline,
spfli-cityfrom,
spfli-airpfrom,
spfli-cityto,
spfli-airpto, AT line_size sy-vline.
ENDAT.

AT flights WITH bookings.
FORMAT COLOR COL_NORMAL INTENSIFIED ON.
WRITE: /sy-vline,
sflight-price CURRENCY sflight-currency,
sflight-currency,
sflight-planetype,
sflight-seatsmax,
sflight-seatsocc,
free_seats, AT line_size sy-vline.
ENDAT.

AT bookings.
FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
WRITE: / sy-vline,
AT pos_lev3 sbook-bookid,
sbook-customid,

chnnli_emnlrar

sbook-luggweight UNIT sbook-wunit,
sbook-wunit, AT line_size sy-vline.
ENDAT.

* Control level processing with CNT and SUM
AT END OF sflight-fldate.
FORMAT COLOR COL_TOTAL INTENSIFIED ON.
ULINE.
WRITE: sy-vline,
'Totals:'(001),
cnt(sbook-bookid) UNDER sbook-bookid,
sum(sbook-luggweight) UNIT sbook-wunit
UNDER sbook-luggweight,
sbook-wunit,
AT line_size sy-vline.
ULINE.
ENDAT.
ENDLOOP.

*& Include BC405_DAPS_2TOP

*

*& *

REPORT bc405_daps_2top LINE-SIZE 83.

* Used nodes of the structure of the logical database F1S
NODES: spfli, sflight, sbook.

* Additional selections

SELECTION-SCREEN BEGIN OF BLOCK order WITH FRAME.
SELECT-OPTIONS: so_odat FOR sbook-order_date.
SELECTION-SCREEN END OF BLOCK order.

* \/arinhlAaec

DATA: free_seats LIKE sflight-seatsocc.

* Constants

CONSTANTS: line_size LIKE sy-linsz VALUE 83,
pos_lev2 TYPE i VALUE 10,
pos_lev3 TYPE i VALUE 20.

* Field groups

FIELD-GROUPS: header, " Group Level and sorting fields
connections, " Fields of SPFLI
flights, " Fields of SFLIGHT
bookings. " Fields of SBOOK

* Fixing of field groups

INSERT: spfli-carrid
spfli-connid
sflight-fldate
sbook-bookid
sbook-customid INTO header,
spfli-cityfrom
spfli-airpfrom
spfli-cityto
spfli-airpto INTO connections,
sflight-price
sflight-currency
sflight-planetype
sflight-seatsmax
sflight-seatsocc
free_seats INTO flights,
sbook-bookid
sbook-customid
sbook-smoker
sbook-luggweight
sbook-wunit INTO bookings.

Saving Lists and Background Processing

® Saving Lists
® Print

® Background Processing

8 SAP AG 1999

m There are three ways to save alist that you have generated:

1) In SAPoffice
2.) Asalocdl file on your PC
3.) In the area menu

m You can aways use menu sequence STL-1 in the System menu to save the list, or use the List menu
in the standard list status.

m You can aso create folders in SAPoffice. You can use these folders to store the lists. When alist is
placed in the outbox of the personal folders, it can aso be sent to other users.

m Youcansavealistto aPC asalocal filein four different formats:
1.) Unconverted (ASCII)
2.) Spreadsheet format (-> Microsoft Excel)
3.) RTF (Rich Text Format -> Microsoft Word)
4) HTML (Web Browser)

m You can use the program RSSOPCDR to specify the default file that the system proposes when the
user chooses to save afile to the local PC.

The area menus have been converted to tree navigation in Release 4.6A. Type 1 programs and SAP
gueries can now be added to the area menus in addition to the previously contained transactions. Any
programs that do not have a transaction code are alocated one automaticaly.

The report trees have been integrated in the area menus in Release 4.6. The report trees are now
maintained using the maintenance tools for area menus. Y ou can maintain area menusin the
Workbench menu path STL-1.

Saved lists are saved with the program itsdlf. If the program has been integrated in the area menu,
then the saved lists will also appear there. Y ou can also use standard program RSRSSLIS to display
saved lists.

A user can access an area menu whenever that area menu has been alocated to an activity group to
which the user belongs. Y ou can use the profile generator to alocate an area menu to an activity

group.

m Thereare 4 optionsfor printing alist:
1) From the selection screen

- Thelist is printed when it is generated (adjusted to print format) and does not appear on the
screen.

- Theligt is generated in a dialog work process
2) From within the program

- Thefirst two points of 1, above

- This procedure is suitable for interactive lists. printing details lists
3) After the list has been generated

- Thelist has aready been generated (visible on the screen) and can be formatted within limits.
For example, the number of columnsin the list cannot be changed after the list is generated.

- Thelist is generated in a dialog work process
4) In the background
- Thelist can be printed after it has been generated (as described in 1 above)

- Thelistis generated in a background work process. This procedure is particularly suitable for
long lists, since it does not block a dialog work process during processing.

m To print alist, you must enter print parameters. The print parameters control list output and are
divided into the following areas:

1) Output device and number of copies
2) Spool request

3) Spool control

4) Cover sheets

5) Output format

m Y ou can enter print parameters on the screen or set them directly in the program. Setting print
parameters in the program is treated below (NEW-PAGE PRINT ON).

m You can use the function module SET_PRINT_PARAMETERSto set default values for printing
an online list; you can execute print from the selection screen or after generation of thelist.

NEW-PAGE PRINT ON triggers a page break, and al the subsequent output is redirected to the
spooal.

The print parameters can either be passed on to the system as a structure with the PARAMETERS
attribute or - as shown in the above example - specified individually.

Individual entry of print parametersis not recommended. Consider the case where the user arrives at
the print parameter screen and decides not to print; the only option in this case would be to terminate
the entire program.

In contrast, if you use the PARAMETERS attribute, the user can cancel printing without having to
terminate the program.

If you enter parameter NO DIAL OG, thelist is placed directly in the spool without giving the user
any opportunity to change the print parameters at runtime.

If you do not enter NO DIAL OG, the user is presented with a print parameters screen containing
default values at runtime.

NEW-PAGE PRINT OFF triggers a page break, ends the spool request (sy-spono is assigned), and
all subsequent output is once again output on the screen.

The structure for the PARAMETERS attribute of the NEW-PAGE PRINT ON statement must be
filled using function module GET_PRINT_PARAMETERS. The structure contains an interna
checksum that is calculated by NEW-PAGE PRINT ON. If the checksum is incorrect, the program
terminates. Function module GET_PRINT_PARAMETERS calculates the checksum and returns it
with out_parameters.

Function module GET_PRINT_PARAMETERS provides users with a print parameters screen that
can be used to modify the print parameters and then determine a complete new set of print
parameters. The set is returned using output parameter out_parameters. In successful cases, output
parameter "valid" contains the value 'X'. If the system cannot create a complete set record of print
parameters, the structure transferred with out_parametersis empty and valid contains the value
"gpace”.

Y ou can transfer print parameters to the function module GET_PRINT_PARAMETERS. The print
parameters appear as default values in the print parameters screen.

The print parameters screen of function module GET_PRINT_PARAMETERS offers the option of
canceling the filling of print parameters. In this case, the structure transferred with out_parametersis
empty and valid contains the value "space”.

m One application could be to send alist to severa recipients.

m This has been implemented in the above example. To send alist to severa recipients, you have to
distribute it among several spool requests. To do this, you use parameter NEW_LIST_ID and then
NEW-PAGE PRINT OFF to end the spool request.

When a program converts large datasets and requires along runtime, it makes senseto start it in the
background.

Background runs take place without user dialogs, and can take place in paralldl to online operations.
The dialog work processes are available for online processing. Background job runs are performed
by specia work processes (background processes), which enables distributed processing.

To start a program in the background, you must first add it to a job.

Use the job definition to determine which programs (steps) will run during this job. Y ou can specify
print parameters and set the start time for the job.

The job overview tells you the current status of the job.

m Definejobislocated under menu path STL-2. First assign a name (of your choice) and define the
priority (job class) and the destination (F4 help).

m Then determine the individua steps of the job. If you want the program to run with a selection
screen, you aso have to specify avariant. The list can be stored in the spool or printed immediately.
This depends on the specified print parameters. When you have defined all the steps, save them and
return to the initia screen of the job definition.

m Once you have defined the steps, you can determine the start date for the job. For example, you can
start the job on a certain day at a certain time.

m Onceyou have defined the start date, save your entries and return to the initial screen of the job
definition. Now save the job, which releases it to run at the specified time.

m You can aso use the automated job scheduling with the function modules in function groups BTCH
and BTC2. An exampleis available in program SAPBC405STLD_E JOB.

Unit: Saving Listsand Background Processing
Topic: Program-Controlled Printing

*e e

When you have completed these exercises, you will be able to:
Print using function module GET_PRINT_PARAMTERS

1-1

Copy or enhance your program Z##DAP2 ..., or copy the sample solution,
SAPBC405 DAPS 2, to program Z##STL1 Sample solution for exercise:
SAPBC405_STLS 1.

1-1-1 Enhance the program with the functionality of storing the generated list in
the spool. To do this, use function module GET_PRINT_PARAMETERS.
Use the pattern functions available in the ABAP Editor to program the
function call. Pass the following values on in the interface:

EXPORTING: copies = 2, destination = 'LPO1’, expiration = 3,
immediately = space, line size= 83, list_text = text-xxx (text element),
no_dialog = space, release = X', report = 'EXAMPLE'

IMPORTING: out_parameters = print_parameter, valid = valid

1-1-2 Inthe TOP include, create variable print_parameter as a character field with
length 1, in accordance with DDIC structure pri_params and variable valid.

1-2-1 Evauate the return value of valid after the function call. If valid is not equal
to gpace, store the list in the spool and suppress the print dialog. In addition,
display information message 104 from message class BCTRAIN. If valid is
equal to space, output information message 105 from message class BC405.

Unit: Saving Listsand Background Processing
/ Topic: Program-Controlled Printing

*& ___ *
*& Report SAPBC405_STLS 1 *
*& *
*& ___ *
*& *
*& *
*& ___ *

GET spfli.
* Save field group: connections
EXTRACT connections.

GET sflight.
* Calculate free seats
free_seats = sflight-seatsmax - sflight-seatsocc.

* Save field group: flights

EXTRACT flights.

*& Event GET SBOOK

GET sbook.

* Check select-option
CHECK so_odat.

* Save field group: bookings
EXTRACT bookings.

*GET spfli LATE.
* ULINE.
* NEW-PAGE.

*GET sflight LATE.
* ULINE.

END-OF-SELECTION.

* Define print parameters via function module
CALL FUNCTION 'GET_PRINT_PARAMETERS'
EXPORTING

COPIES =2 " Number of copies
DESTINATION = 'LPO1" " Printer

EXPIRATION =3 " Duration /d in spool
IMMEDIATELY = SPACE " printimmediately
LINE_SIZE = 100 " Width of list

LIST_TEXT = TEXT-SP1 " Title

NO_DIALOG = SPACE " Dialog is suppressed
RELEASE ='X " delete task after print

PEDNDPT — '"EYANDI E'" Nlama

IMPORTING
OUT_PARAMETERS = PRINT_PARAMETER
VALID = VALID.

* Sending list to the SAP spool or on the screen

IF VALID NE SPACE. " Listto spool

NEW-PAGE PRINT ON PARAMETERS PRINT_PARAMETER NO DIALOG.
MESSAGE 1653(BCTRAIN).

ELSE. " List on screen
MESSAGE 1654(BCTRAIN).
ENDIF.

* Sorting extract data according to the header fields
SORT.

* Control level processing
LOOP.
AT NEW spfli-connid.
FORMAT COLOR COL_GROUP INTENSIFIED ON.
WRITE: / sy-vline,
spfli-carrid,
spfli-connid,
AT line_size sy-vline.
ENDAT.

AT NEW sflight-fldate.
FORMAT COLOR COL_HEADING INTENSIFIED ON.
WRITE: / sy-vline,
AT pos_lev2 sflight-fldate,
AT line_size sy-vline.
ENDAT.

* Single record processing
AT connections WITH flights.
FORMAT COLOR COL_HEADING INTENSIFIED OFF.
WRITE: / sy-vline,

enfli Aihfram

spfli-airpfrom,

spfli-cityto,

spfli-airpto, AT line_size sy-vline.
ENDAT.

AT flights WITH bookings.
FORMAT COLOR COL_NORMAL INTENSIFIED ON.
WRITE: / sy-vline,
sflight-price CURRENCY sflight-currency,
sflight-currency,
sflight-planetype,
sflight-seatsmax,
sflight-seatsocc,
free_seats, AT line_size sy-vline.
ENDAT.

AT bookings.
FORMAT COLOR COL_NORMAL INTENSIFIED OFF.
WRITE: / sy-vline,
AT pos_lev3 sbook-bookid,
sbook-customid,
sbook-smoker,
sbook-luggweight UNIT sbook-wunit,
sbook-wunit, AT line_size sy-vline.
ENDAT.

* Control level processing with CNT and SUM
AT END OF sflight-fldate.

FORMAT COLOR COL_TOTAL INTENSIFIED ON.

ULINE.

WRITE: sy-vline,
"Totals:'(001),
cnt(sbook-bookid) UNDER sbook-bookid,
sum(sbook-luggweight) UNIT sbook-wunit
UNDER sbook-luggweight,
sbook-wunit,

AT linA cizn evivlinA

ULINE.

ENDAT.
ENDLOOP.

*& ___ *

*& Include BC405_STLS 1TOP *

*& *

*& ___ *

REPORT sapbc405_stls_1 LINE-SIZE 83.

* Used nodes of the structure of the logical database F1S
NODES: spfli, sflight, sbook.

* Additional selections

SELECTION-SCREEN BEGIN OF BLOCK order WITH FRAME.
SELECT-OPTIONS: so_odat FOR sbook-order_date.
SELECTION-SCREEN END OF BLOCK order.

* Variables

DATA: free_seats LIKE sflight-seatsocc.

DATA: print_parameter LIKE pri_params, " NEW-PAGE PRINT ON
valid VALUE 'X'.

* Constants

CONSTANTS: line_size LIKE sy-linsz VALUE 83,
pos_lev2 TYPE i VALUE 10,
pos_lev3 TYPE i VALUE 20.

* Field groups

FIELD-GROUPS: header, " Group Level and sorting fields
connections, " Fields of SPFLI
flights, " Fields of SFLIGHT
bookings. " Fields of SBOOK

* Fixing of field groups

INICCDT- enfli ~arvrid

spfli-connid

sflight-fldate

sbook-bookid

sbook-customid INTO header,
spfli-cityfrom

spfli-airpfrom

spfli-cityto

spfli-airpto INTO connections,
sflight-price

sflight-currency

sflight-planetype
sflight-seatsmax

sflight-seatsocc

free_seats INTO flights,
sbook-bookid

sbook-customid

sbook-smoker

sbook-luggweight

sbook-wunit INTO bookings.

ALV Grid Control

Contents:

® ALV Grid Control - Standard Application

® Preview of Other Techniques

8 SAP AG 1999

Thistask is performed by the SAP Control Framework.

The R/3 System alows you to create custom controls using ABAP Objects. The application server is
the Automation Client, which drives the custom controls (automation server) at the frontend.

If custom controls are to be included on the frontend, then the SAPGUI acts as a container for them.
Custom controls can be ActiveX Controls or JavaBeans.

The system has to use a Remote Function Call (RFC) to transfer methods for creating and using a
control to the front end.

ABAP objects are used to implement the controls in programs.

m An SAP Container can contain other controls (for example, SAP ALV Grid Control, Tree Control,
SAP Picture Control, SAP Splitter Control, and so on). It administers these controls logically in one
collection and provides a physical areafor the display.

m Every control existsin a container. Since containers are themselves controls, they can be nested
within one another. The container becomes the parent of its control. SAP containers are divided into
five groups:

SAP custom container: Displays within an area defined in Screen Painter on screens or subscreens.
Class: CL_GUI_CUSTOM_CONTAINER

SAP didog box container: Displaysin amodeless dialog box or as afull screen. Class:
CL_GUI_DIALOGBOX_CONTAINER

SAP docking container: Displays as docked, resizable sub-window with the option of displaying it as
amodeless dialog box. Class: CL_GUI_DOCKING_CONTAINER

SAP gplitter container: Displays and groups severa controlsin one area - that is, splits the areainto
cellsClass. CL_GUI_SPLITTER_CONTAINER

SAP easy splitter container: Displays controlsin two cells, which the user can resize using a split
bar. Class: CL_GUI_EASY_SPLITTER_CONTAINER.

In the control, you can adjust the column width by dragging, or use the 'Optimum width' function to
adjust the column width to the data currently displayed. Y ou can also change the column sequence
by selecting a column and dragging it to a new position.

Standard functions are available in the control toolbar. The details display displays the fields in the
line on which the cursor is positioned in amoda dialog box.

The sort function in the ALV Control is available for as many columns as required. Y ou can set
complex sort criteria and sort columnsin either ascending or descending order.

Y ou can use the 'Search’ function to search for a string (generic search without *) within a selected
area by line or column.

Y ou can use the 'Sum'’ function to create totals for one or more numeric columns. Y ou can then use
the "Subtotals’ function to set up control level lists. Y ou can use the 'Subtotal’ function to structure
control level lists. select the columns (non-numeric columns only) that you want to use and the
corresponding control level totals are displayed.

For 'Print' and 'Download' the whole list is aways processed, not just the sections displayed on the
screen.

Y ou can define display variants to meet your own specific requirements. For information on saving
variants, see 'Advanced Techniques.

The ALV grid control is ageneric tool for displaying listsin screens. The control offers standard
functions such as sorting by any column, adding numeric columns, and fixed lead columns

Data collection is performed in the program (with SELECT statements, for example) or by using a
logical database. The data records are saved in an interna table and passed on to the ALV control
along with afield description.

The field description contains information about the characteristics of each column, such as the
column header and output length. This information can defined either globally in the Dictionary
(structure in the Dictionary) or in the field catalog in the program itself. Y ou can aso merge both
techniques.

The ALV link is a standard function of Query and QuickViewer. If multiline queries or QuickView
lists have been defined, they will automatically be compressed to a single line and output in the ALV
control asalong, single line list.

m Use Screen Painter to create a subscreen container for the ALV grid control. The control requires an
areawhere it can be displayed in the screen. Y ou have to create a container control that determines
this area.

m Use the corresponding icon in the Screen Painter layout to create the container control. The size of
area"MY_CONTROL_AREA" determines the subsequent size of the ALV control.

m Thevalid GUI status must be set at the PBO event in the flow logic of the ALV subscreen container.
The OK_CODE processing for the cancel functions must be programmed at the PAI event.

m The reference variables for the custom container and the ALV grid control must be declared.
m To create reference variables, use ABAP statement TYPE REF TO <class name>.

m The globa classes you need to do thisare called cl_gui_custom_container (for the custom container
control) and cl_gui_alv_grid (for the ALV grid contral).

m The global classes are defined in the Class Builder. Y ou can use the Class Builder to display
information for the methods, their parameters, exceptions, and so on.

m Use ABAP statement CREATE OBJECT <name> to create the objects for the container and the
ALV control. Objects Are instances of aclass.

m When an object is created (CREATE), method CONSTRUCTOR of the corresponding classis
executed. The parameters of method CONSTRUCTOR determine which parameters have to be
supplied with data when the object is created. In the above example, object al v_gr i d isgiven the
name of the container control (g_cust om cont ai ner) in exporting parameteri _par ent ,
which links the two controls. For information on which parameters method CONSTRUCTOR
possesses and which of these parameters are required, see the Class Builder.

m Objects should only be created once during the program. To ensure that thisis the case, enclose the
CREATE OBJECT dtatement(s) inanl F <obj ect _nanme> IS INITIAL. ... ENDIF
clause. The objects must be generated before the control is displayed for the first time - that is,
during the PBO event of the ALV subscreen container.

To display the requested dataset in the ALV control, the data must be passed on to the control as an
internal table, and a field description must exist indicating the order in which the columns will be
output.

In the smplest case, the field description can use a structure from the Dictionary. The Dictionary
also determines the technical field attributes like type and length, as well as the semantic attributes
like short and long texts. The ALV control uses this information to determine the column widths and
headers. The column sequence is determined by the field sequence in the structure.

If no suitable structure is active in the Dictionary, or you want to output internal program fieldsin
the control, then you will have to define information like the output length and column header in the
field catalog.

In atypica program run, the dataset is read first (SELECT), the internal table isfilled with the
datato display (... INTO TABLE ...), and ABAP statement CALL SCREEN <number> isthen
used to call the ALV subscreen container.

m Thedatatransfer to the ALV control takes place during the call of method

set_table for_first_display from classcl gui_alv_grid. The method call must be programmed at the
PBO event of the ALV subscreen container.

m The name of the Dictionary structure that supplies the field description is specified in exporting
parameter i_structure_name. The name of the internal table that contains the data records to display
is specified in changing parameter it_outtab.

m Thefield description for the ALV control can be taken from an active Dictionary structure (fully
automatic), by passing afield catalog (manual), or through a mixture of the two options (merge).

m Thefield catalog isin interna table with type Ivc_t_fcat. Thistypeis defined globaly in the
Dictionary.

m Each line in the field catal og table corresponds to a column in the ALV control.

The field characteristics (= column characteristics) are defined in the field catalog. The field catalog
isininterna table with type Ivc_t_fcat. Each line that is explicitly described in the ALV control
corresponds to a column in the field catalog table.

The link to the data records to output that are saved in internal table <outtab> is established through
field name <outtab-field>. This name must be specified in column "fieldname” in the field catalog.

Thisfield can be classified through a Dictionary reference (ref_table and ref_field) or by specifying
an ABAP data type (inttype).

Column headers and field names in the detall view of an ALV control line can be determined in the
field catalog in coltext and seltext, respectively.

The position of afield during output can be determined with col_posin the field catalog.

If you want to hide acolumn, fill field no_out with an "X" in the field catalog. Hidden fields can be
displayed again in a user display variant.

Icons can be displayed in the ALV contral. If you want a column to be interpreted as an icon, then
the icon name must be known to the program (include <icon>.) and icon = "X" must be specified for
this column in the field catalog.

m The above example shows a semi-automatic field description: Part of the field description comes
from the Dictionary structure (sflight), while another part is explicitly defined in the field catalog
(ot_fieldcat).

m Thefield catalog (internal table) isfilled in the program and is passed on together with the name of
the Dictionary structure during the method call. The information is merged accordingly in method
set_table for_first_display.

For a user to save display variants, parameters i s_vari ant and i _save must be passed on
during method call set _tabl e_for _first_screen. Toassgndisplay variants uniquely to a
program, at least the program name must be supplied in the transferred structure (gs_var i ant).
Program names can be up to 30 characters long.

If you only pass on the current parametersfor i s_var i ant , then existing variants can be loaded,

but no new ones can be saved. If you use parameter i _save, you must pass on a variant structure
withi s_vari ant.

|_SAVE =SPACE No variants can be saved.
|_SAVE='U The user can only save user-specific variants.
|_SAVE ="X' The user can only save genera (shared) variants.

|_SAVE="A' The user can save both user-specific and general (shared) variants.

m You can use parameter is layout of method set_table for first display, for example, to define the
header in the ALV control and the detail display.

m To do this, define a query area<gs layout> in the program in accordance with Dictionary structure
Ivc_s layo, and pass on the text to display in field <gs _layout>grid_title or <gs layout>-detailtitl.

m |f you want to create print lists with zebra stripes, set field <gs layout>zebrato "X". You can
display a print preview for print lists by requesting standard function "Print".

W All parameters of method SET_TABLE FOR FIRST DISPLAY from global class
CL_GUI_ALV_GRID are defined in the Class Builder.

m Events aredefined in global classcl _gui _al v_gri d; you can use these events to implement
user interaction within the program. To respond to a double-click on atable line, you must respond
to event DOUBLE_CLICK.

m You receive control in the program, alowing you to implement interactive reporting - such as afull-
screen detailslist. Theeventsfor cl _gui _al v_gri d arelocated in the Class Builder.

To define an implement alocal class in the program, you use a handler method. In this handler
method, you program the functiondlity to trigger by a double-click in the output table.

To activate a handler method at runtime, a class or an object from that class registers itsalf with an
event using command SET HANDLER. The names of the IMPORTING parameters in the handler
method correspond to the names of the EXPORTING parameters of the related event.

In the above example, thelocal classis LCL_ILS and the handler method is ON_DBLCLICK. An
object - ALV_DBLCLICK - iscreated and registers itself for event DOUBLE CLICK.

Y ou can query parameter e row-index to determine which output line was requested by the double-
click. This parameter corresponds to the line number of the output table (interna table with the data
records to output). If you need information for the selected line, you have to read it with READ
TABLE itab INDEX e_row-index.

This subsequent read in the output table generally corresponds to the HIDE areain conventiona
reporting. Y ou first have to make sure that the user has double-clicked a line in the output table
(smilar to the valid line selection with the HIDE technique).

Appendix H’
[Q e Additional slides

® Linking programs

® Menu paths

8 SAP AG 1999

m A field group can contain global data objects, but not data objects that have been defined locally in a
subroutine or function module.

m You can use | NSERT to specify both fields and field symbols. This makesit possible to
dynamically insert a data object referred to by afield symbol into afield group at runtime. Any field
symbols that have not been assigned are ignored, which means no new field is inserted into the field
group.

m The EXTRACT statement writes all the fields of afield group as one record to a sequential dataset
(transport takes place with similarly named fields). If a HEADER field group is defined, then its fields

are placed ahead of each record as sort keys. Y ou can then sort the dataset with SORT and process it
with LOOP . . . ENDLQOCRP. In this case, no further EXTRACT is possible.

m The INSERT statement is not a declarative statement: This means field groups can aso be expanded
in the program flow section.

m Assoon asthefirst dataset of afield group has been extracted with EXTRACT, that field group can
no longer be expanded with | NSERT. In particular, the HEADER field group cannot be expanded
after the first EXTRACT (regardless of the field group).

m When the GET events are processed, the logical database automatically writes hexadecimal zerosin
all the fields of a node when it returns to an upper-level node in the hierarchy. Since the HEADER
normally contains sort fields for all field groups, these hexadecimal zerosin the HEADER serve asa
type of hierarchy key: The more zeros there are, the further up in the control level hierarchy you go.

The SORT statement sorts the extract dataset in accordance with the defined field sequencein field
group HEADER. The addition BY <f 1> <f 2> ... setsanew sort key. Each <fi> must be either a
field of field group HEADER or afield group that consists only of fields of the field group
HEADER. Y ou can use the additions ASCENDING and DESCENDING to determine whether the
fields are sorted in ascending (default) or descending order.

Fields containing X'00" in the logical databases are always displayed before al other values during a
SORT.

Processing of an extract dataset aways takes places within a LOOP. The contents of the extract
dataset field are placed in program fields with the same names.

The group change always involves the fields of the HEADER. Single record processing for extract
datasets is performed using language element AT <f g> (<fg> = field group).

CNT(<hf>) is not a statement, but instead a field that is automatically created and filled when <hf> is
anon-numeric field from field group HEADER and is part of the sort key. At the end of the group,
CNT(<hf>) contains the number of different values that the field <hf> recorded in this group level.

SUM(<nf>) is not a statement, but instead afield that is automatically created and filled when <nf>
isanumeric field of an extract dataset. At the end of the group, SUM(<nf>) contains the control total
of field <nf>.

CUM and CNT are only available at the end of the group level or at AT LAST.

m Singlerecord processing for extract datasets AT <fg 1> WITH <fg_2> isonly performed when
field group <fg_1> isimmediately followed by field group <fg_2> in the temporary dataset.

m Loops over an extract dataset cannot be nested. However, severa contiguous loops are permitted.

m The sequence of the contral level changes within the LOOP must correspond to the sort sequence.
m Totas can only be calculated within control footer processing.

Extracts alow only appends (EXTRACT), sorting (SORT) and sequentia processing (L OOP).
Once a SORT or LOOP has occurred, the intermediate dataset is frozen and cannot be expanded
with EXTRACT. Operations that insert into or delete from EXTRACT datasets are not supported.

Extracts allow for severa record types (FIEL D-GROUPS) with fields that can be set dynamically
(INSERT is not a declarative statement!). Interna tables have a single, statically-defined line type.

Internal tables use the sequence of table fields according to the declaration for the hierarchy of the
control level. The control level structure for interna tables is therefore static, and is independent of
which criteria were used to sort the internal table. Extracts do not depend on the field sequence for
control level processing: are-sort or a completely different control level process can take place. The
control level structure for extract datasets is therefore dynamic. It corresponds exactly to the sort key
of the extract dataset. The sort key is the sequence of fields from the field group HEADER, and is
used to sort the extract dataset.

Extracts rely on the compiler to determine which combinations of group levels and a cumulating
field the control level totals desire. The desired control level totals are determined by the processing
of LOOP ... ENDLOOP blocks. Interna tables build the control level total with the SUM statement.
This procedure leads to high resource depletion for totaling control levelsin interna tables.

Section: Transaction Programming

8 SAP AG 1999

Course Overview

Contents:

Course Goals
Course Objectives
Course Content

Overview Diagram

Main Business Scenario

8 SAP AG 1999

Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit

© 0 N o O p, W DN

K B &

Course Overview

Basicsfor Interactive Lists

The Program Interface
Interactive List Techniques
Introduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output
Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menus on Screens

Listsin Screen Programming
Preview: Control Framework

m Executable program (type 1)
Executable programs can be run directly from the ABAP Editor. A set of processing blocksis
processed in a predefined order. Y ou can use a standard selection screen. Type 1 programs
normally create and display alist.

m Modulepool (type M)
In order for atype M program to be executable, you must create at least one transaction code for it
(in which you specify aninitial screen). Y ou can control the subsequent screen sequence either
staticaly (in the screen attributes) or dynamically (in the program code).

m The following types of programs cannot be executed directly. They serve as "containers' for
modularization units, which you can call from other programs. Whenever you load one of these
modules, the system loads its entire main program into the interna session of the calling program.

* Function group (type F)
A function group can contain function modules, local data declarations, and screens.

* Include program (typel)
An include program can contain any ABAP statements.

* Interface pool (typeJ)

An interface pool can contain global interfaces and local data declarations.
* Class poal (type J)

A class pool can contain global classes and local data declarations.

In the simplest case, your program will consist of a single source that contains al the necessary
processing blocks. However, to make your program code easier to understand, and to enable you to
reuse parts of it in other programs (for example, for data declarations), you should use include

programs

Whenever you create a program from the Object Navigator, the system proposes to create it "With
TOP include". Sdlecting this option will help you to create clearly-structured programs.

When you create processing blocks, the system automatically asks in which include program it
should place the corresponding source code.

If you specify an include program that does not yet exist, the system createsit and inserts a
corresponding INCL UDE statement in the main program.

Basics for Interactive Lists

Contents:

Creating lists
Selection screens
Events

User dialogs on lists

Using the hide technique to pass data

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview

Basicsfor Interactive Lists

The Program Interface

Interactive List Techniques
Introduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output
Screen Elements: Sunscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menus on Screens

Listsin Screen Programming
Preview: Control Framework

When the user starts an executable (type 1) program, the program context and memory space for data
objects (variables and structures) are made available on the application server. The subsequent
program flow is controlled by the ABAP runtime system.

If the program contains a selection screen, the ABAP runtime system sends it to the presentation
server at the start of the program.

Once the user has finished entering data on the selection screen, he or she chooses 'Execute’ to tell
the system to start processing the rest of the program. The data entered on the selection screenis
automatically placed in the corresponding data objects. The ABAP runtime system takes over control
of the program.

In this smple example, there is only one ABAP processing block to be processed by the runtime
system.

This processing block contains a read access to the database. The program sends information to the
database about the records that should be read.

The database returns the required database records and the runtime system ensures that the data is
placed in the relevant data objects.

Thelist output is aso programmed in the processing block. After the processing block finishes, the
runtime system sends the list as a screen to the presentation server.

Selection screens allow users to enter ranges of values. They are normally used to define the set of
data that needs to be read from the database.

Aswell asthe normal graphica elements (group boxes, checkboxes, radio buttons, and so on) that
you use in screens, selection screens aso have input/output fields (PARAMETERS) and specid
groups of input/output fields (SELECT-OPTIONS).

Y ou place a single input/output field on the selection screen using the PARAMETERS statement.

Y ou can use the SELECT-OPTIONS statement to place a group of fields on the screen that alows
users to enter complex selections. The selection may be asingle value, or any form of interval
(discrete or continuous). Y ou can also use patterns. (See following dides).

Y ou can create variants for selection screens.

If you declare an input field with reference to an ABAP Dictionary field, any search helps defined
for the Dictionary field will be available on the selection screen.

Selection texts can be trandated into other languages. They are then displayed in the user's logon
language.

Selection ranges are stored in programs using an internal table.

The ABAP statement SELECT-OPTIONS <selname> FOR <field> declares an internal table called
<selname>, containing four fields- SIGN, OPTION, LOW, and HIGH. The fields LOW and HIGH
have the same type asthe field <field>.

The SIGN field can take the value'I' (for inclusive) or 'E' (for exclusive).

The OPTION field can contain relational operators, pattern operators, and operators that allow you to
enter intervals.

For more information about selection ranges, choose Goto -> Sdlection screen help from any
selection screen.

For more information about selection screens, refer to the online path ILB-1 in the gppendix.

To define a selection screen, include the required PARAMETERS and SELECT- OPTI ONS
statements in your data declarations. If you define more selection screens than just the standard
selection screen, you must enclose the additional definitions in the statmeents SELECTI O\
SCREEN BEG N OF SCREEN <nnnn> and SELECTI ON- SCREEN END OF SCREEN
<nnnn> where <nnnn> isthe number of the selection screen.

For information about other graphical elements that you can place on a selection screen, such as
group boxes, checkboxes, radio buttons, references to input fields on other selection screens and so
on, see the keyword documentation for the SELECTI ON- SCREEN statement or the online
documentation (IL B-2). Thistopic aso forms part of course BC405: Techniques of List Processing.

The standard selection screen is displayed by the ABAP runtime system when the program starts.
User-defined selection screens are displayed when you use the statement CALL SELECTI O\
SCREEN <nnnn>. This statement sets the return code sy-subrc to zero if the user chooses
'Execute, and to 4 if the user chooses 'Cancel’.

You can aso cal aselection screen asamodal dialog box. To do this, use the syntax CALL
SELECTI ON- SCREEN <nnnn> STARTI NG AT <l eft _col > <upper _row> ENDI NG

AT <right_col > <l ower _row> where<| ef t _col >and <upper _r ow>arethe
coordinates of the top left-hand corner of the screen. <ri ght _col >and <l ower _r ow> arethe
coordinates of the bottom right-hand corner.

Selection screen processing is event-driven. Events are ABAP processing blocks that are called by
the runtime system in a particular order and processed sequentidly. In the program, each event is
introduced by an event keyword. The processing block ends when the next event block starts, or the
definition of a subroutine or dialog module occurs.

AT SELECTION-SCREEN OUTPUT is processed before the selection screen is displayed. You
can use this event to modify the selection screen dynamically.

AT SELECTION-SCREEN ON HELP-REQUEST FOR <sd_field> and
AT SELECTION-SCREEN ON VALUE-REQUEST FOR <sd_field> allow you to define your
own F1 and F4 help.

AT SELECTION-SCREEN is processed when the user presses ENTER or chooses another
function on the selection screen. Y ou can use this event to check the values the user entered on the
screen. Theaddition ON... alows you to control which fields or groups of fields should accept
input again in the event of an error.

An ABAP program consists of a sequence of processing blocks (events) that are processed by the
runtime system in a particular order.

LOAD- OF PROGRAMis triggered directly after the system has loaded a program with type 1, M, F,
or Sinto an internal session. The processing block is executed once only for each program in each
internal session.

I NI TI ALl ZATI ONis processed in executable (type 1) programs, directly before the selection
screen is displayed. Y ou can use the corresponding processing block to preassign vaues to the
parameters and selection options on the selection screen.

START- GF- SELECTI ONis processed after the selection screen has been processed. If you are
working with alogical database, the corresponding GET events are triggered after START- OF-
SELECTI ON. For further information, refer to the course BC405 "Techniques of List Processing and
SAP Query' and the online documentation.

END- OF- SELECTI ONiis processed after al of the data has been read, and before thelist is
displayed.

TOP- OF- PAGE isan event in list-processing. The processing block is aways executed when you
start anew pageinthelist.

Once the basic list has been displayed, you can react to possible user actions. Detail lists allow you
to distribute the information you want to display across severd ligts.

This makes the lists easier for the user to understand, and improves performance, since you can delay
reading extra information from the database until the user actually requestsit.

Y ou can also use additional sdlection screens to allow the user to enter further restrictions.

For each basic list you can use up to 20 detail lists. Each list is stored in its own list buffer. When
the user chooses '‘Back’ (green arrow) or '‘Cancel’ (red cross), he or she returns to the previouslist.
This action initializes the list buffer of the list level the user just left.

When the user chooses 'Exit’ (yellow arrow), the system terminates the list processing and returns to
the standard selection screen.

The events START-OFSELECTION, GET, END-OFSELECTION, TOP-OFPAGE and END-OF-
PAGE can be used only to create basic lists.

To create detail lists, use the events AT LI NE- SELECTI ON or AT USER- COMVAND.
Use TOP- G- PAGE DURI NG LI NE- SELECTI ON for page headers on detail lists.

Each detall list event exists only once in the program and is shared by dl detail lists. Y ou must
therefore ensure yourself, within the processing block, that the correct list is created. To do this, use
a CASE dtructure that uses the system field sy-1sind. This system field contains the list index of the
list that you are currently generating.

m Usethe statement H DE gl obal _fi el d to store the contents of the global datafield
gl obal _fi el dfor the current line.

m |f the user selects the ling, the datafield is automatically filled with the value that you retained for
theline.

m You do not have to display the field on the list in order to retain its value using HI DE.

m Thefield can be a structure. However, deep structures (structures containing internal tables as
components) are not supported.

m When the user selects aline on an interactive list, al of the global data fields whose values you
stored using the HIDE statement while you were creating the basic list are filled with those values.

m Theline selection is based on the cursor position when the AT LI NE- SELECTI ONand AT USER
COVIVAND events occur. (system field sy-1il1i).

m |f you choose aline using the READ LI NE. . . statement, . the values are placed back in the origina
fields according to the line numbers.

m To check whether the user selected avaid line, you can use the fact that the hide area only contains
datafor valid lines. When you have finished creating the list, initialize a suitable test field. This
alows you to check before you create the detail list whether a value from the hide area has been
placed in the test field.

m Once you have created the detail list, re-initiaize the test field to ensure that the user cannot choose
an invalid line once he or she returns from the detail list and attempts to select another line for a new
detail list

Unit: Basicsfor Interactive Lists
Theme: Creatingasimplelist

*e e

At the conclusion of these exercises, you will be able to:

Create a ssmple program to create a list with an include structure for
more complex applications.

/

The first step in your application isto write a program that displays alist
~of flights. The program should have a selection screen to allow the user
> /) to restrict the amount of data read and displayed.

2-1

Start your development project.

2-1-1 Create adevelopment class Z##BC410 (where ## is your group number)
and assign it to your change request. Y ou will use this development class
for all of the Repository objects you create this week.

Write a simple program to create a list, which will serve as a basis for your further
work. Call your program Z##BC410 SOLUTION (where ## is your group
number). The program should display alist of flights.

The data you want to display is contained in the table SFLIGHT. You can use the
model solution for orientation: SAPBC410ILBS SIMPLE LIST.

2-2-1 Your main program should consist of three include programs:
Z##BC410_SOLUTIONTOP Top include
Z##BC410_SOLUTIONEO1 Event include
Z##BC410 SOL UTIONFO1 Subroutine include.
Create the includes.

2-2-2 Inthetop include, declare awork area wa_sflight with type SFLIGHT; and
a corresponding (standard) internal table it_sflight.

2-2-3 Create a selection screen with selection options for wa_sflight-carrid and
wa_sflight-connid. Place these in a group box with the title “Flight”, and
maintain the selection texts.

2-2-4 Inthe event include, write two events START-OF-SELECTION and END-
OF-SELECTION. Inthe START-OF-SELECTION event, call a subroutine
read_flights, in which you use an array fetch to read the data from table
SFLIGHT into your internal table. Remember to take the user’s selections
into account when you read the data. Create the subroutine in your
subroutine include using forward navigation. In the END-OF-SELECTION
event, call asubroutine display_flights, in which you display the data on a
list. Display the data as shown on the model list. Ensure that the priceis

dienlanvved annrnnriataelyv tnite ciirroancy

2-2-5 Maintain standard headings for the list as on the model list.

RS Y ou can program an array fetch as follows:

- ~ SELECT * | NTO TABLE it _sflight
FROM SFLI GHT ...

Flights

Flight Date Price Seats

max. OCC.

AA OO0t 12241999 51369———USb—660— 16—

AA 0017 12/19/1999 513.69 USD 660 16

AA 0017 11/29/1999 513.69 USD 660 51

AA 0017 11/22/1999 513.69 USD 660 95

AA 0017 11/19/1999 513.69 USD 660 O

AA 0017 09/30/1999 513.69 USD 660 8

AA 0017 08/28/1999 513.69 USD 660 34

LH 0400 12/31/1999 1,332.00 DEM 280 42

LH 0400 12/29/1999 1,332.00 DEM 107 76

LH 0400 12/09/1999 1,332.00 DEM 280 20

LH 0400 12/02/1999 1,332.00 DEM 280 O

LH 0400 11/29/1999 1,332.00 DEM 280 41

LH 0400 10/10/1999 1,332.00 DEM 280 1

LH 0400 09/07/1999 1,332.00 DEM 280 183

AZ 0555 12/21/1999 360,202 ITL 220 89

AZ 0555 19.12.1999 360.202 ITL 220 205

AZ 0555 29.11.1999 360.202 ITL 220 0

AZ 0555 22.11.1999 360.202 ITL 220 66

AZ 0555 19.11.1999 360.202 ITL 220 140

Unit: Basicsfor Interactive Lists
/ Theme: Creatingasimplelist

2-2 Modd solution: SAPBC410I1LBS SIMPLE _LIST

*& ___ *
*& program SAPBC4101LBS_SIMPLE_LIST *
*& *
*& ___ *

INCLUDE bc410ilbs_simple_listtop.
INCLUDE bc410ilbs_simple_listeOl.
INCLUDE bc410ilbs_simple_listfOl.

Top include

A e e e e e e e *
* INCLUDE BC410ILBS_SIMPLE_LISTTOP *
* *

PROGRAM sapbc410ilbs_simple_list.

workarea and internal table for flights
DATA: wa_sflight TYPE sflight,
it_sflight LIKE TABLE OF wa_sTflight.

selection screen for choosing connections

SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-001.
SELECT-OPTIONS: so_car FOR wa_sflight-carrid,

so_con FOR wa_sflight-connid.

SELECTION-SCREEN END OF BLOCK conn.

A e e e e e e e e *
* INCLUDE BC4101LBS_SIMPLE_LISTEO1 *
A e e e e e e e *
START-OF-SELECTION.

PERFORM read_flights.

END-OF-SELECTION.
PERFORM display_flights.

K *
) *
*& Form READ_FLIGHTS

K *

FORM read_flights.
SELECT * INTO TABLE it_sflight FROM sflight
WHERE carrid IN so_car

AND connid IN so_con.

ENDFORM.

*& ___ *
*& Form DISPLAY_FLIGHTS

*& ___ *

FORM display_flights.
LOOP AT it_sflight INTO wa_sflight.

WRITE: / wa_sflight-carrid,

wa_sflight-connid,

wa_sflight-fldate,

wa_sflight-price CURRENCY wa_sflight-currency,
wa_sflight-currency,

wa_sflight-seatsmax,

wa_sflight-seatsocc.

ENDLOOP.
ENDFORM. " DISPLAY_FLIGHTS

The Program Interface F'
A

Contents:

® Overview: GUI title and GUI status
® Creating a GUI status

® Using a GUI status

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview

Basicsfor Interactive Lists

The Program Interface

Interactive List Techniques
Introduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output
Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menus on Screens

Listsin Screen Programming
Preview: Control Framework

m A GUI statusis made up of a menu bar, astandard toolbar, an application toolbar, and of
function key settings. Each screen can have one or more GUI statuses. For example, an editor
program might have two statuses - one for display mode and one for change mode.

m The eements of a GUI status allow users to choose functions using the mouse.

m Menus are control elements that allow the user to choose which functions will be processed by an
application program. Menus can also contain submenus. The 'System' and 'Help' menus are present
on every screen in the R/3 System. They aways have identical functions and cannot be changed or
hidden.

m The application toolbar contains icons for frequently-used functions. The standard toolbar, which is
the same on every screen in the R/3 System, contains a set of icons, each of which has afixed
assignment to a corresponding function key. If afunction in the standard toolbar is not available on
the current screen, the icon is grayed out.

m The application toolbar alows the user to choose frequently-used functions by clicking the
corresponding pushbutton.

m You use the function key settings to assign functions such as Find, Replace, or Cut to the function
keys.

m All of aprogram’'s GUI titles and statuses taken together make up its user interface. Whenever you
change or add a new title or status, you must regenerate the user interface.

There are three ways to create atitle: from the object list in the Object Navigator, from the Menu
Painter, or by forward navigation from the ABAP Editor.

The name of atitle can be up to 20 characters long.
Y ou should set an appropriate title for each screen in your application.

You can use variables in titles that are set dynamically at runtime by including the ampersand
character (&) as a placeholder. At runtime, the ampersand is replaced by a vaue that you specify.
Y ou can use up to nine variables by placing digits after the ampersand.
To set atitle that contains variables, use the statement:

SET TITLEBAR <title name> WTH <&1> ... <&I10>.

A title bar remainsin place until you set another one. At runtime, the system variable sy-title
contains the current title. Title bars are aso known as GUI titles.

m From atechnical point of view, a statusis ar efer ence to amenu bar, to certain key assignments and
to an application toolbar.

m A single component (such as a menu bar) can be used by more than one GUI dtatus.
m GUI statuses are ABAP program objects that can be displayed on screens and lists.
m You should set a status for every screen in your application.

A datusis areference to a menu bar, akey setting, and an application toolbar.
A menu bar is made up of individua menus.
Key assignments and application toolbars are sub-objects of the function key settings.

Y ou can create a set of application toolbars for a single key setting. Refer to the online
documentation path in appendix reference GUI -1. In order to include afunction in an application
toolbar, the function must be assigned to a function key. Each status contains a single application
toolbar.

All program menus and key assignments refer to a particular function list. Thislist can be reached
using F4 help. Application toolbars refer to the function list indirectly by way of the key assignment.

A function within a status can be ether active or inactive. Inactive functions are not displayed in the
application toolbar.

m Functions are identified by their function codes.

m The attribute function type determines the intended purpose of afunction. Y ou can use the function
types' ' (space), 'E', and 'P for pushbuttons that you place on a screen using the Screen Painter, and
for tab titles. Function types'S and 'H' are reserved for interna use by SAP. Function type 'T'
indicates a transaction code. When the user chooses a function with this type, the system leaves the
current program (without performing any checks) and calls the new transaction.

m Functions can be created with static texts or dynamic texts.

m |f afunction has a static text, you can assign anicon to it (Icon name attribute). If the function is
aready assigned to a pushbutton, anicon is displayed instead of the static text. The static text isused
when you assign the function to a menu entry. The function text belonging to the function is used as
"quick info". The contents of the Infotext attribute appear in the status bar of the screen when the
user chooses the function. If you want to display text as well as the icon, enter the text in the Icon
text attribute.

m The Fastpath attribute alows you to define a letter code, which users can enter to choose the
function without using the mouse.

m For further information, refer to the online documentation path in appendix reference GUI-2.

Functions can be assigned to individual function keys or pushbuttons.
Function key settings consist of a key assignment and an application toolbar pushbutton.

A function key assignment's type (possible values: screen or diaog box) only servesto define the
technical use of the key assignment.

Key assignments consist of Reserved Functions Keys, Recommended Functions Keys and Freely
Assigned Function Keys Reserved Functions Keys are function keys whose assigned val ues cannot
be changed in the SAP system. Y ou may activate and deactivate their functions, however, the icons
and texts assigned to them cannot be changed. Activated Reserved Functions Keys appear in the
standard toolbars of both screens and lists.

Recommended Functions Keysare assigned suggested values that satisfy SAP usability (ergonomic)
norms.

Functions that have been assigned to function keys can aso be assigned to pushbuttonsin the
application toolbar.

An application toolbar can contain up to 35 pushbuttons.

m A menu can contain up to 15 entries.
m Possible entries are functions, separators, and menus (cascading menus).
m Menus can be up to three levels deep. The third level may only contain functions and separators.

m Menus can be created with static or dynamic text. Y ou must assign a field name to menus with
dynamic text, whose contents will be displayed as the menu text at runtime.

m The menu type Include menu alows you to reference menus in other programs. When you do this,

you must specify the name of the program and status from which you want to include the menu next
to the Short documentation field.

m |nclude menus can only be accessed using the menu bar.

m A menu bar can contain up to eight different menus. Up to six of these can be freely assigned. The
system automatically adds both the System menu and the Help menu to every menu bar.

There are three ways to create atitle: from the object list in the Object Navigator, from the Menu
Painter, or by forward navigation from the ABAP Editor.

The status type indicates the technical attributes of the status. 'Y ou can choose between a dialog
status (status for fullscreen), or adialog box status (for use with modal dialog boxes). Context
menus are specia collections of functions that can be displayed when the user clicks the right-hand
mouse button. We will deal with them separately in the Context Menus unit.

Y ou can create your own statuses by initially generating new settings, using existing ones (reference
technique), or by combining both of these procedures. If you want to create an entirely new status,
you must then create your own menu bars, menu functions, and other e ements. Changes to a status
only affect that status.

When you use the reference technique, you create menu bars, application toolbars, and function key
assignments as independent elements. Y ou then create your own status and refer to the menu bar,
application toolbar, and any function key assignment you want. The Menu Painter stores and
maintains these references so that any changes in the menu bar, application toolbar or function key
assignments automatically take effect in al statuses referring to them.

The linking technique is particularly effective for ensuring consistency in very large applications that
use severa statuses. The links ensure that the user can access functions in the same way whatever
statusis set.

The Adjust template function in the Extras menu allows you to add standardized function codes to
your own statuses. This function alows you to merge objects from any status into the current status.
In particular, it allows you to use standards for list statuses or selection screens, or to take a status
from another ABAP program.

Y ou can also choose to display standard proposals for the menu bar, which you can then modify.

m Inthe Menu Painter, you can include in a status key settings, application toolbars, or menu bars that
you have aready defined elsewhere. If you do this, work from the bottom upwards. If there is more
than one application toolbar defined for your key setting, you can choose the appropriate one.

m Initidly, al functions are inactive. Y ou only have to activate the functions that are relevant in the
current status.

m When you create new functions, you can decide whether you want to change al of the statuses that
use the same object. The new functions areinitidly inactive in al other statuses in which you
include them.

m Inakey setting, you assign individua functions to function keys and pushbuttons. Function key
settings consist of akey assgnment and a set of application toolbars.

m A function key assignment's type (possible values: Screen, Dialog box, Ligt, List in a dialog box)
determines where the key can be used.
m You can attach functions to reserved function keys, recommended function keys, and freely-assigned

function keys. Y ou should observe SAP's ergonomic guidelines. There is a series of examples that
you can display from within the Menu Painter.

m Recommended Functions Keysare assigned suggested values that satisfy SAP usability (ergonomic)
norms.

m |f afunction isimportant, and you have aready assigned it to a function key, you can aso assign it
to a pushbutton in the application toolbar. The application toolbar may contain up to 35 pushbuttons.

m When you assign a function to the standard toolbar, it is aso automatically assigned to areserved
function key.

m To find out the function keys to which these functions are assigned in the current status, click the
Information icon in the Menu Painter.

m For more information about how key combinations such as Ctrl-P are converted into interna
function key numbers (for example, for batch input), follow menu path GUI-3 in the Menu Painter.

Y ou can only use afunction in the application toolbar if you have aready assigned it to a function
key.

Functions in the application toolbar are identified by their function code. The Function type attribute
identifies the purpose of the function. If you want to process afunction in the program, use the type'

" (space). If you assign type 'T' to afunction, the current program terminates when the user chooses
the function, and the system starts the transaction assigned to the function.

If you assign an icon to a function with a static text (Icon name attribute), the system displays the
icon instead of the text in the application toolbar. The function text belonging to the function is used
as"quick info". The contents of the attribute Info. text appear in a screen's status line whenever the

event is triggered. If you want to display additional text with an icon, it should be entered in the
attribute Icon text.

Y ou can use the Fastpath attribute to specify the letters that allow you to choose a function without
using the mouse.

To insert a separator in the application toolbar, use the Insert menu in the Menu Painter.

If you use the 'Fixed positions attribute for the application toolbar, pushbuttons for inactive
functions are grayed out instead of being hidden. To set this attribute, double-click the open padliock
symbol next to the application toolbar description.

m A menu entry can be afunction, a separator, or another menu (cascading menu)

m To add afunction to a menu, enter its function code in the left-hand column. If the function already
existsin the function list and has a text assigned to it, thisis entered automatically in the text field. If
not, double-click the right-hand field to maintain a text.

m Toinsert a separator, use the 'Insert’ menu or fill the function text field with minus signs at the
appropriate position.

m Status and title names can be up to 20 charactersin length and must be entered al in capita letters. A
status stays active until anew oneis set.

m You can use up to nine variablesin aGUI title using the syntax SET Tl TLEBAR <titl e>
WTH <f1> ...<f9>

m |f no GUI interface has been set, a standard user interface is displayed. Use SET PRSTATUS
SPACE to deactivate previousdy entered statuses and activate the default list status. Y ou can
deactivate functions at runtime with the EXCLUDING <FCODE> addition. If you want to deactivate
severd function codes at the same time, you must first transfer these to the system using an internal
table.

m Y ou should work with an interactive event and centrally control various user actions in the program,
handling the actions independently of each other.

m You program AT USER-COMMAND as an interactive event and evaluate the system field sy-
ucomm in a CASE control structure. This field contains the current function code.

m Dataisrestored from the hide area to the corresponding globa data fields for the line on which the
cursor was positioned.

*e e

L2 s

31

Unit: The Program Interface
Theme: Creating a GUI statusand GUI title

At the conclusion of these exercises, you will be able to:

Create a user interface for a program and use it for navigation.

Continue developing your application by creating a GUI status for your
program. You should, in particular, create a function in your interface
that allows the user to display alist of bookings for aflight. You will
also make it easier for the user to recognize where he or sheisin your
application by using GUI titles.

Add a GUI status and GUI title to your program and create a detail list containing
the bookings for aflight.

3-1-1

3-1-2

3-1-3
3-1-4

Extend your program Z##BC410_SOLUTION from the Basics for
Interactive Listsunit, or copy the corresponding model solution
SAPBC410I1LBS SIMPLE_LIST. You can use the model solution
SAPBC410GUIS LIST_GUI for orientation.

Create a GUI status and a GUI title for your program with the following
attributes. The status should be a list status with the standards included.
Create the function book, assigning it to a pushbutton in the application

toolbar and to a menu entry.

GUI Status | BASE Type: Didog status

Function BOOK Function key: F5

Text: Bookings

Icon: ICON_ICON_LIST
Infotext: Booking list
Function type: ~~

GUI Title BASE Text: Flights

Set the status and title for the basic list.

In the AT USER-COMMAND event, create a detail list if the user chooses
the BOOK function. Read the data from the database table SBOOK for the
line in which the cursor is positioned. Encapsulate the database accessin a
subroutine read_bookings. Y ou will need to pass the airline, flight number,
date, and cancellation flag to it as parameters. Read the data into a alobal

Template:

3-1-5

3-1-6

3-1-7

internal table it_shook_read with the line type SBOOK. Make sure that
you only read the flights that have not been canceled (cancellation flag:
canceled =" "))

Append the lines of it_sbook_read to another internal table it_sbook with
the same type. Sort it_sbook by airline, flight number, flight date, and
booking number. Write another subroutine display_bookings to display the
data from the interna table it_sbook on the detail list. Display the
following booking data as it appears on the modéd list: booking number
(bookid), customer number (customid), customer type (custtype), luggage
weight (luggweight), weight unit (wunit), class (class), and booking date
(order_date). To do this, create a global work area wa_sbook with type
SBOOK for the internal table it_sbook. Display the luggage weight with the
correct unit. Usethe UNI T addition in the WRI TE statement.

Create a GUI status BOOK and atitle BOOK for the booking list. Status
BOOK should reference the status BASE for its menu bar, function key
setting, and application toolbar. However, you should deactivate the BOOK
function. Set the status and title for the booking list.

Ensure that the detail list is not displayed if the user does not select a valid
line.

Use the TOP-OF-PAGE DURING LINE-SELECTION event to create list
headings as shown in the model list.

Flight:

AZ 0555

Date 09/30/1999

00000536 00000195 B 10,3000 KG C 10/28/1998
00000537 00000074 B 0 KG C 10/28/1998
00000538 00000274 B 11,2000 KG C 11/03/1998
00000539 00000140 B 0 KG C 11/01/1998
00000540 00000141 B 0 KG C 10/28/1998
00000541 00000270 B 6,1000 KG C 10/23/1998
00000542 00000206 B 0 KG C 11/03/1998
00000543 00000206 B 10,7000 KG C 11/01.1998
00000544 00000201 B 0 KG C 10/28/1998
00000545 00000201 B 1,3000 KG C 10/23/1998
00000546 00000165 B 0 KG C 11/03/1998
00000547 00000072 B 0 KG C 11/01/1998
00000548 00000072 B 5,1000 KG C 10/28/1998
00000549 00000168 P 0 KG F 10/23/1998

Unit: The Program Interface
/ Theme: Creating a GUI statusand GUI title

3-1 Modd solution SAPBC410GUIS LIST GUI

Add the coding in bold type to your program. Create the new subroutines using forward
navigation.

Top include

workarea and internal tables for bookings
DATA: wa_sbook LIKE sbhook,

it_sbook read LIKE TABLE OF wa_sbook,
it_sbook LIKE TABLE OF wa_sbhook.

Event include

AT USER-COMMAND .

CHECK NOT wa_sflight-carrid 1S INITIAL.
CASE sy-ucomm.

WHEN "BOOK".

REFRESH it_sbook.

PERFORM read_bookings

USING wa_sflight-carrid

wa_sflight-connid

wa_sflight-fldate

APPEND LINES OF it_sbook read TO it_sbook.
SORT i1t_sbook BY carrid connid fldate bookid.
PERFORM display_bookings.

SET PF-STATUS "BOOK™.

SET TITLEBAR "BOOK".

CLEAR wa_sflight-carrid.

ENDCASE.

CHECK sy-ucomm = "BOOK".

FORMAT COLOR COL_HEADING.

ULINE.

WRITE: / "“Flight:"(t0l1), wa_sbook-carrid, wa_sbook-connid,
AT sy-linsz space,

/ “Date:*(t02), wa_sbook-fldate, AT sy-linsz space.

ULINE.

Subroutineinclude

FORM display_flights.
LOOP AT it_sflight INTO wa_sflight.

WRITE: / wa_sflight-carrid,

wa_sflight-connid,

wa_sflight-fldate,

wa_sflight-price CURRENCY wa_sflight-currency,
wa_sTlight-currency,

wa_sflight-seatsmax,

wa_sflight-seatsocc.

HIDE: wa_sflight.

ENDLOOP.

ENDFORM. " DISPLAY_FLIGHTS

*& ___ *
*& Form READ_BOOKINGS

*& ___ *

FORM read_bookings USING p_carrid LIKE wa_sbook-carrid
p_connid LIKE wa_sbook-connid
p_fldate LIKE wa_sbook-fldate

p_cancelled LIKE wa_sbook-cancelled.

SELECT * INTO TABLE it_sbook _read FROM sbook
WHERE carrid = p_carrid

AND connid =p_connid

AND fldate = p_fldate

AND cancelled = p_cancelled.

ENDFORM. " READ_BOOKINGS

*& Form DISPLAY_BOOKINGS

FORM display_bookings.

LOOP AT it_sbook INTO wa_sbook.

WRITE: / wa_sbook-bookid,
wa_sbook-customid,

wa_sbook-custtype,

wa_sbook-luggweight UNIT wa_sbook-wunit,
wa_sbook-wunit,

wa_sbook-class,

wa_sbook-order_date.

ENDLOOP.

ENDFORM. " DISPLAY_BOOKINGS

Interactive List Techniques

Contents:

® Selecting multiple lines

® Sorting lists

® Controlling the list sequence and messages

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview

Basicsfor Interactive Lists

The Program Interface

Interactive List Techniques
Introduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output
Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menus on Screens

Listsin Screen Programming
Preview: Control Framework

When a user chooses afunction from aligt, it triggers that function's function code. This function
code, in turn, triggers a corresponding event.

Some function codes are reserved for use by the system and therefore do not trigger an interactive
event when the user chooses them (that is, the system does not return to the program). Instead these
codes trigger a corresponding system function.

All function codes with the exception of "PICK" aswell as all codes reserved for system use trigger
the event AT USER-COMMAND. For more information, refer to the Program Interface unit.

You can find alist of those function codes reserved for system use in the Menu Painter under the
appendix ILS-1.

m At aREAD statement all values for that line that have been stored in the hide area are inserted into
their corresponding fields and thus made available to the program.

m With the addition | NDEX <i >you can read the lines of a particular list level <i >. If you omit this
addition, the system refers to the list last displayed.

m |f you usethe addition FI ELD VALUE <f 1> | NTO <gl1>, the system readsfield <f 1> from the
corresponding line of the list buffer and places the contents in field <g1>. If you leave out INTO
<g1l>, only fied <f 1> isfilled.

Caution: All linesin the list buffer are stored as character strings (type C). Thus, valuesinserted in
field <f1> are automatically converted to type C.

m If you usetheaddition LI NE VALUE | NTO <wa>, the system places the entire line in the work
area <wa>.

m For more on READ statement variants, refer to the online documentation path in appendix reference
ILS-2.

The statement MODI FY LI NE <l > modifysthe [line of thelist. The values stored in the hide
areafor thisline are placed in the corresponding fields, and are thus available in the program.

The statement MODI FY CURRENT LI NE changes the last line to have been chosen by line
selection or the READ LI NE statement (even if it wasin adifferent list level).

If youusethe LI NE FORMAT addition, the selected line is formatted according to the
specifications<f nil>, <f n2>, ...

The addition FI ELD VALUE replacesthe field contents of <f 1>, <f 2>, ... in thelist line with the
current values of <gl1>, <g2>, ... (al values are converted to type C).

The contents of <f 1>, <f 2>, ... themsealves are not replaced.

If afield from the line being modified is displayed more than once, that line will only be modified
the first time it is displayed.

The LI NE VALUE FROM <wa> addition alows you to replace the entire line being modified
with the current contents of field <wa>.

For more information about the MODI FY statement, refer to the online documentation path in
appendix reference L S-3.

TheFl ELD <fi el dnanme> statement, allows you to find out the name of the field in which the
cursor is positioned. The name of the variable from which the value comesis placed in thefield

<f i el dname>. However, for the sort criterion, you only use the name of the field asit appearsin
the table definition. Y ou therefore need to use an offset specification to find out the field name. The
offset is the length of the structure name plus one character for the hyphen.

The name of the output field is provided in the field specified in the FI ELD parameter. The output
vaue is contained in the field specified in the VALUE parameter.

The operation sets the return code sy- subr c.
- sy-subrc = 0: The cursor was positioned on afield.
- sy-subrc = 4: The cursor was not positioned on afield.

Caution: Do not use the value from the VALUE parameter as a selection criterion in a SELECT
statement. If it is not a character field, the system will convert its type, which could lead to undesired
results. It is better to use the hide technique instead.

Y ou can find out more about what additions can be used with GET CURSOR. Refer to the online
documentation path in appendix reference | L S4.

m Before you find out the sort field, check that the user placed the cursor on avalid line. If thisisnot
the case, you should display an appropriate message.
m Decreasing the list level (changing the value of sy-Isind) should always be the last action before you

display the list buffer. This system field determines the list level at which the new list is displayed.
The hide area and list buffer of any higher list levels are automatically initiaized.

m You can use system field sy- | si nd to determine the list level a which the list is displayed. In the
example above, list level 2 where the list is sorted according to the number of unoccupied seatsis
being displayed. The statement sy-1 si nd = 1 causesthelist to be displayed at list level 1, thus
replacing the list sorted according to date, which would normally be displayed first.

m You cannot assign avaueto sy- | si nd that is greater than the current vaue of the field assigned
by the system. This means you cannot bypass list levels in ascending direction.

m You should only change sy- | si nd in the last statement before the list is displayed, since changing
the value does not dways lead to an immediate change of list level. The new list level is assigned to
thelist at the very end, after the entire list buffer has been displayed. If you are not acquainted with
this behavior, you could program your lists incorrectly.

m Message types have the following effects on list processing:
* Type E messages discard the curent detail lists and return to the list level previoudy displayed.
* Type W messages are aways displayed as error messages (type E).

» While the basic list is being created, type W and type E messages always lead to program
termination (corresponds to type A).

m For full details of how messages behave in a particular event, refer to the online documentation for
the MESSAGE keyword.

Unit: Interactive List Techniques
Theme: Multipleline selection and dynamic list sorting

At the conclusion of these exercises, you will be able to:

Display detail information for a set of linesin alist.

*ee

Sort an existing list dynamically.

Extend your application to alow the user to display the bookings for a set
: ~ of flights from the bookings list. 'Y ou should also alow the user to sort
p.) y. the booking list by the column on which the cursor is positioned.

4-1 Enable multiple line selection.

4-1-1 Extend your program Z##BC410 SOLUTION from the Program interface
unit, or copy the corresponding model solution
SAPBC410GUIS LIST _GUI. You can usethe modd solution
SAPBC410ILSS INTERACTIVE_LIST1 for orientation.

4-1-2 At the beginning of each line of the basic list, display a selection field mark
as a checkbox (subroutine display_flights).

4-1-3 Inthe AT USER-COMMAND event, establish the lines that the user chose
and, if necessary, retrieve the corresponding booking data using the
subroutine read_bookings. The effort with the two internal tables
it_sbook read and it_sbook was not worth it after all.

4-1-4 Extend the subroutine display_bookings so that there is a page break before
each new flight. To do this, create a global structure key_sflight with the
fields carrid, connid, and fldate (table SFLIGHT). Whenever the datain
the booking data record changes, generate a page break.

PRy Y ou could use the following construction:

\l 7,
\
/1N

| F wa_sbook-carrid NE key_sflight-carrid

MOVE- CORRESPONDI NG wa_sbook TO key_sflight.
ENDI F.
4-1-5 Add the functions SELECT and DESELECT to the status BASE. Use this
to allow the user to select or deselect al of the list entriesin a single step.

Implement the functions in the application toolbar and in the menu.

Function SELECT Function key: F6
Text: Select al
lcon: ICON_SELECT ALL
Function type: ™~

Function DESELECT Function key: F7

Text: Deselect all

I con:
ICON_DESELECT_ALL
Function type: "~

4-1-6 Program the SELECT and DESELECT functions in the AT USER-
COMMAND event.

Allow the user to sort the booking list.

4-2-1 Extend your program Z##BC410 SOLUTION from the previous exercise
(or copy the model solution SAPBC410ILSS INTERACTIVE_LIST1).

Y ou can use the modd solution SAPBC410ILSS INTERACTIVE _LIST2
for orientation.

4-2-2 Add the functions SRTU and SRTD to the status BOOK. Allow the user to
sort the booking list in either ascending or descending order. To do this,
sort the internal table it_sbook by the airline, flight number, flight date, and
the field on which the cursor is positioned. Ensure that the user can only
sort the table when the cursor is positioned on a valid line. Implement the
functions in the application toolbar and in the menu.

Function SRTU Function key: F8
Text: Sort ascending
Icon: ICON_SORT_UP
Function type: "~

Function SRTD Function key: F9

Text: Sort descending
Icon: ICON_SORT_DOWN
Function type: ™~

4-2-3 Make sure that the list level is not increased in each sort, and that the correct

list header is displayed.

Unit: Interactive List Techniques
/ Theme: Multipleline selection and dynamic list sorting

4-1 Moded solution SAPBC410ILSS INTERACTIVE_LIST1

Add the coding in bold type to your program. Create the new subroutines using forward
navigation.

Top include

workarea and internal table for flights
DATA: mark,

wa_sflight type sflight,

it_sflight LIKE TABLE OF wa_sflight.
sTlight key for testing changes
DATA: BEGIN OF key sflight,

carrid LIKE wa_sflight-carrid,
connid LIKE wa_sflight-connid,
fldate LIKE wa_sflight-fldate,

END OF key_sflight.

Event include

AT USER-COMMAND.

CHECK NOT wa_sflight-carrid 1S INITIAL.
CASE sy-ucomm.

WHEN "BOOK™.

REFRESH it_sbook.

DO.

READ LINE sy-index FIELD VALUE mark.

IF sy-subrc NE O. EXIT. ENDIF.

CHECK NOT mark 1S INITIAL.

PERFORM read_bookings

USING wa_sTlight-carrid
wa_sflight-connid

wa_sflight-fldate

APPEND LINES OF it_sbook read TO it_sbhook.
ENDDO.

CNNT 24 ~AlhAaAl, DV AAawvevzAd AcarnnesAd FlAA+A hLhAaals A

PERFORM display_bookings.

SET PF-STATUS "BOOK™.

SET TITLEBAR "BOOK®.

CLEAR wa_sflight-carrid.

WHEN "SELECT".

DO.

READ LINE sy-index.

IF sy-subrc NE O. EXIT. ENDIF.

MODIFY CURRENT LINE FIELD VALUE mark FROM "X*".
ENDDO.

WHEN "DESELECT".

DO.

READ LINE sy-index.

IF sy-subrc NE O. EXIT. ENDIF.

MODIFY CURRENT LINE FIELD VALUE mark FROM space.
ENDDO.

ENDCASE.

Subroutineinclude

FORM display_bookings.

LOOP AT it_sbook INTO wa_sbook.

IF key_sflight-carrid NE wa_sbook-carrid
OR key_sflight-connid NE wa_sbook-connid
OR key_sflight-fldate NE wa_sbook-fldate.
MOVE-CORRESPONDING wa_sbook TO key_sflight.
NEW-PAGE .

ENDIF.

WRITE: / wa_sbook-bookid,
wa_sbook-customid,

wa_sbook-custtype,

wa_sbook-luggweight UNIT wa_sbook-wunit,
wa_sbook-wunit,

wa_sbook-class,

wa_sbook-order_date.

ENDLOOP.

ENDFORM. " DISPLAY_BOOKINGS
4-2 Mode solution SAPBC410ILSS INTERACTIVE_LIST2

Add the coding in bold type to your program. Create the new subroutines using forward
navigation.

Top include
field name for GET CURSOR

DATA fieldname(50).

Event include

AT USER-COMMAND.
CASE sy-ucomm.
WHEN “BOOK™.

CLEAR: wa_sflight-carrid,

wa_sbook-bookid.

WHEN "SRTU".

CHECK NOT wa_sbook-bookid 1S INITIAL.

GET CURSOR FIELD fieldname.

fieldname = fieldname+9.

SORT it_sbook BY carrid connid fldate (fieldname).
PERFORM display_bookings.

sy-Isind = sy-Isind - 1.

CLEAR wa_sbook-bookid.

WHEN "SRTD".

CHECK NOT wa_sbook-bookid IS INITIAL.

GET CURSOR FIELD fieldname.

fieldname = fieldname+9.

SORT it_sbook BY carrid connid fldate (fieldname) DESCENDING.
PERFORM display_bookings.

sy-Isind = sy-Isind - 1.

CLEAR wa_sbook-bookid.

ENDCASE.

TOP-OF-PAGE DURING LINE-SELECTION.
CHECK sy-ucomm = "BOOK®" OR sy-ucomm = "SRTD" OR sy-ucomm = *"SRTU".

Subroutineinclude

FORM display_bookings.

LOOP AT it_sbook INTO wa_sbook.

IF key_sflight-carrid NE wa_sbook-carrid
OR key_sflight-connid NE wa_sbook-connid
OR key_sflight-fldate NE wa_sbook-fldate.
MOVE-CORRESPONDING wa_sbook TO key_sflight.
NEW-PAGE .

ENDIF.

WRITE: / wa_sbook-bookid,
wa_sbook-customid,

wa_sbook-custtype,

wa_sbook-luggweight UNIT wa_sbook-wunit,
wa_sbook-wunit,

wa_sbook-class,

wa_sbook-order_date.

HIDE wa_sbook-bookid.

ENDLOOP .

ENDFORM. " DISPLAY_BOOKINGS

Introduction to Screen Programming

Contents:

Principles of screen programming
Screen objects
Dynamic screen modifications

Screen processing

GUI status for screens

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview

Basicsfor Interactive Lists

The Program Interface

Interactive List Techniques

I ntroduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output
Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menus on Screens

Listsin Screen Programming

Preview: Control Framework

m Screens alow you to enter and to display data.

m One of their strengthsis that they can combine with the ABAP Dictionary to alow you to check the
consistency of the data that a user has entered.

m Screens alow you to create user-friendly dialogs with pushbuttons, tabstrip controls, table controls,
and other graphical elements.

Let uslook at asimple dialog program with a selection screen asitsinitial screen and a screen for
displaying information for a selected data record.

When the program starts, the system loads its program context and prepares memory space for the
program data objects. The selection screen is displayed.

The user enters data on the selection screen and chooses Execute.

In a processing block, the program reads data from the database. To do so, it passes information
about the data requested by the user to the database. The database fills a structure with the required
data record.

The processing logic then calls a screen. This triggers a processing block belonging to the screen
called Process Before Output (or PBO). Once the PBO has been processed, the datais transferred to
a structure that serves as an interface to the screen. It is then transferred to the screen and displayed.

Any user action on the screen (pressing enter, choosing a menu entry, clicking a pushbutton, ...)
returns control to the runtime system. The screen fields are then transported into the structure that
serves as the interface between screen and program, and the runtime system triggers another
processing block belonging to the screen, which is aways processed after a user interaction, and is
called Process After Input (or PALI).

m Inthis course, you will learn about screen objects. A screen object is any screen element in the R/3
System that allows usersto interact with an ABAP program.

m On the following pages, screen objects are presented from an object-oriented viewpoint, that is, their
attributes are described, along with the methods you can use to work with them.

m You can use the User settings icon (on the far right hand side of the standard toolbar) to configure
the R/3 window according to your own preferences.

m You can:
- Change the colors of various elements of the R/3 interface
- Change the font of texts displayed in the system
- Modify the R/3 window (for example, hide the standard toolbar or restore the default window size
- Show or hide grid linesiin lists
- Change the cursor behavior

m The changes you make to the user settings are stored on your presentation server, not in the R/3
System.

m For more detailed information, refer to the online documentation path in appendix reference DIA-1.

The screen objects text field, input/output field, status icon, group box, radio button, checkbox, and
pushbutton all have generd attributes, Dictionary attributes, program attributes, and display
attributes.

The objects subscreen, tabstrip control and table control have general attributes, and specia
attributes relating to the respective object type.

We can divide the attributes of an object into
- Statically definable attributes that cannot be changed dynamically
- Statically definableattributes that can be changed dynamically
- Attributes that can only be changed dynamically

For complete documentation of the attributes of screen objects, refer to the online documentation
path in appendix reference DI A-2.

m At the beginning of the PBO, the runtime system reads the statically-created and dynamically-
modifiable attributes of each screen object on the screen into a system table with the line type
SCREEN.

m The dide shows the assignment of the fields in the system table SCREEN to the names of the
statically created attributes of the screen objects.

When a screen is processed, the system table SCREEN contains an entry for each screen object that
has been created in the Screen Painter for that screen.

It isinitiadlized in the PBO of each screen, and isfilled with the screen objects belonging to that
screen.

Y ou can change the dynamically-modifiable attributes of the elements on the screen using the
construction

LOOP AT SCREEN. ... ENDLOOP.

inaPBO module. To do this, you use the structure SCREEN, which is created automatically by the
system, and filled with the values of each successive line of the system table in the LOOP. Active
attributes have the value ', inactive attributes have the value '0'. To change the system table, use
MODI FY SCREEN. within the LOOP.

To find the object whose attributes you want to modify, you can use aL OOP on the SCREEN table,
and query one of the following fields: SCREEN- NAME, SCREEN- GROUP1 to SCREEN- GROUP4.
There is further information about modification groups on the next page.

For further information about the SCREEN table, see the description of the structure of SCREEN or
the documentation for the L OOP statement.

m Dynamic changes to the attributes of screen objects are temporary.

m Using this technique to modify the attributes of a screen object (for example, to change whether an
input/output field is ready for input), you can replace long sequences of separate screens, which are
more costly in terms of both programming time and runtime.

m If you want to change the attributes of several attributes at once at runtime, you can include themin a
modification group. To do this, enter the same three-character group name in one of the fields
SCREEN- GROUP1 through SCREEN- GROUP4 of each element.

m Each object can belong to up to four modification groups. Y ou assign the group namesin the
element list or layout editor in the Screen Painter.

Y ou must program your screen modifications in a module that is processed during the PROCESS
BEFORE OUTPUT processing block.

Y ou use aloop throught the table SCREEN to change the attributes of an object or a group of
objects. (LOOP AT SCREEN WHERE .. . and READ TABLE SCREEN are not supported.)

To activate and deactivate attributes, assign the value 1 (active) or O (inactive), and save your
changes using the MODIFY SCREEN statement.

Note that objects you have defined statically in the Screen Painter as invisible cannot be reactivated
with SCREEN-ACTIVE = 1. However, objects that you have statically defined as visiblein the
Screen Painter can dynamically be made invisible. SCREEN-ACTIVE = 0 has the same effect as the
following three statements:

SCREEN-INVISIBLE = 1, SCREEN-INPUT = 0, SCREEN-OUTPUT =0.

m Screens are fregly-definable objects that you can use to display or enter information.
m They are aform of dialog between the user and the ABAP program.

m A screen consists of the input/output mask (layout), the screen attributes, and the screen flow logic.
For further information about how to program screen flow logic, refer to the ABAP User's Guide.

m Screens have four components: the screen mask, the screen attributes, the element list, and the flow
logic. The flow logic contains flow logic code (not ABAP statements).

m Screens are containers for other screen objects.

Each screen has a set of adminigtration attributes that specify its type, size, and the subsequent
screen. It aso has settings that influence other properties of the screen and of its components.

The administration attributes Programand Screen number identify the screen by its number and the
program to which it belongs.

Screen numbers greater than 9000 are reserved for SAP customers. Screen numbers 1000 through
1010 are reserved for the maintenance screens of ABAP Dictionary tables and the standard selection
screens of reports.

The screen type identifies the purpose of the screen. Certain other special attributes of a screen and
its components depend on this attribute.

The "Next screen” attribute allows you to specify the screen that should be processed after the
current screen in a fixed sequence.

For afull list of screen attributes with their meanings, refer to the online documentation path in
appendix reference DI A-3.

m When you create a screen, you must:

Set the generd screen attributes (on the attribute screen)

Design the screen layout (in the layout editor)
Set the field attributes (in the field list)
Write the flow logic (in the flow logic editor).

To create a screen from the object list in the Object Navigator, create a new development object with
the type Screen. Position the cursor on Screens and right-click.

The Object Navigator automatically opens the Screen Painter.

When you create a screen, you first have to enter its attributes. Enter a screen number, a short text,
and a screen type. You will normally use the screen type Normal. Y ou can specify the number of the
next screen in the Next screen field.

If you enter O (or nothing) for the next screen, the system resumes processing from the point at which
the screen was called once it has finished processing the screen itself.

Y ou can aso create a screen by writing a CALL SCREEN <nnnn> statement in the ABAP Editor
and then double-clicking the screen number <nnnn>.

- Todlow you to set the attributes of all screen elements, the Screen Painter contains an element
list with six views. Y ou can aso display all of the attributes for a single element from any of the
lists (Attributes). Y ou can also maintain the attributes for an element from the layout editor
using the Attributes function.

- Within the Screen Painter, you work with external data types. These correspond to the types
defined in the ABAP Dictionary. For fields that you have chosen that are defined in the ABAP
Dictionary, the system displays the externa data type in the Format column. For elements
(templates) that do not have an ABAP Dictionary reference, you must enter an external data
type yoursalf.

- To find out the corresponding external data type for an internal data type (ABAP data type), see
the keyword documentation for the ABAP TABL ES statement. For example:

ABAP Dictionary DataType ABAPDataType
CHAR C
NUMC N

Y ou usually define screen fields by adopting the corresponding field descriptions from the ABAP
Dictionary. However, you can also use field descriptions that you have defined in your program. In
order to do this, you must generate the program first.

Y ou can use the key word texts and templates either together or separately.

The graphical layout editor provides an easy way of defining the various screen elements (such as
input/output fields, key word texts, boxes, and so on). Y ou simply choose the element you require,
and position it on the screen using the mouse.

To delete a screen element, select it, and choose Déelete.
Y ou can move elements on the screen by dragging and dropping them with the mouse.
Note:

The graphical layout editor is available under Windows NT, Windows 95 and UNIX.
If you use a different operating system, you must use the a phanumeric Screen Painter.

Screens have their own set of keywords that you use in the PBO and PAI events of the flow logic.

In the flow logic, you write MODULE calls. The modules are components of the same ABAP
program. They contain the ABAP statements that you want to execute.

Y ou can create amodule by double-clicking the module name in the flow logic Editor.

To create a module from the object list in the Object Navigator, choose the devel opment module
'PBO modul€e' or 'PAI modul€'.

Y ou can cal the same module from more than one screen. If the processing depends on the screen
number, you can retrieve the current screen number from the system field sy- dynnr .

Note that the modules you call in the PBO processing block must be defined using the MODULE
OUTPUT gtatement; modules that you define using the statement MODULE. . . | NPUT can only be
caled in the PAI event.

In order for ascreen and its ABAP program to be able to communicate, the fields on the screenand
the corresponding fields in the program MUST HAVE IDENTICAL NAMES.

After it has processed dl of the modules in the PBO processing block, the system copies the
contents of the fieldsin the ABAP work areato their corresponding fields in the screen work area.

Before it processes the first module in the PAI processing block, the system copies the contents of
the fields in the screen work areato their corresponding fieldsin the ABAP work area.

Y ou should use your own structures (SDYN_CONN, ...) for transporting data between the screen
and the ABAP program. This ensures that the data being transported from the screen to the program
and vice versais exactly the data that you want.

m You can establish a static sequence of screens by entering a vaue in the Next screen field of the
screen attributes.

m |f you enter O (or no value) as the next screen, the system resumes processing from the point at
which the screen was initiated, once it has finished processing the screen itself.

m The SET SCREEN <nnnn> statement temporarily overwrites the Next screen attribute.
m The screen <nnnn> must belong to the same program.

m The next screen is processed either when the current screen processing ends, or when you terminate
it using the LEAVE SCREEN statement.

m To specify the next screen and leave the current screen in asingle step, use the
LEAVE TO SCREEN <nnnn> statement.

To interrupt processing of the current screen and branch to a new screen (or sequence of screens),
usethe CALL SCREEN <nnnn> statement. The screen <nnnn> must belong to the same program.

In the program, the system constructs a stack. The stack has to be destroyed before the end of the
program.

To return to the statement following the CALL SCREEN statement, you can use either SET
SCREEN 0, LEAVE SCREEN, or LEAVE TO SCREEN 0. The sareen that called the other screen
is then processed further.

If you use the above statements outside of a call chain, the program terminates, and control returns to
the point from which it was called. Y ou can aso terminate a program using the ABAP staterment
LEAVE PROGRAM

m Inthe CALL SCREEN statement, you can use the STARTI NG AT and ENDI NG AT additionsto
specify the position and size of the screen that you are calling. The screenin the CALL SCREEN
statement must be defined as a moda dialog box.

m |f you omit the ENDI NG AT statement, the size of the dialog box is determined by the Used size in
its screen attributes.

m |f you use the ENDI NG AT addition, the system displays as much of the dialog box as will fit into
the available space. If there is not enough room to show the entire dialog box, it appears with
scrollbars.

m The starting position (origin) of every SAP window is its top left-hand corner.

m The values that you passto Ic, ur, rc, and Ir in the statement
CALL SCREN STARTING AT Ic ur ENDING AT rc Ir

refer to the R/3 window in which you display the dialog box (on the dide, screen 100).

When the system displays a screen, it automatically places the cursor in the first input field. If you
want the cursor always to appear in adifferent field, you can enter the corresponding object name in
the Cursor position field of the screen attributes.

You can aso tell the system in the PBO event to position the cursor in a particular field. This makes
your application more user-friendly.

Y ou can set the field in which the cursor should appear in the program.
To do this, use the ABAP statement

SET CURSOR FI ELD <fi el d_name> OFFSET <position>.

<fi el d_nane> can be a unique name in quotation marks, or a variable containing the object
name. To place the cursor at a certain position within afield, use the OFFSET parameter, specifying
the required position in <posi ti on>.

The system then places the cursor at the corresponding offset position, counting from the beginning
of thefield.

m A GUI gatus is made up of a menu bar, astandard toolbar, an application toolbar, and of
function key settings. A single screen can have more than one status. Y ou should use a module
set_status <nnnn> in the PBO (Process Before Output) event of each of your screensto assign a

GUI status and a GUI titleto it.

m There are three ways to create a status: from the object list in the Objet Navigator, from the Menu
Painter, or by forward navigation from the ABAP Editor. The status type describes the technical
atributes of the status. Choose Diaog status if you want use the status with a screen in fullscreen
mode, and dialog box, if you are going to use it with a dialog box. Context menus are special menus
that you can attach to the right-hand mouse button. They are described in a separate unit.

m When you change a status, you must activate it before the changes become visible.

m To ensure consistency, you should reuse existing menu bars, application toolbars, and key settings
wherever possible. The Menu Painter administers the links you establish between these objects so
that any changes apply to all other statuses that use them. Thereisaso a set of standard menu

entries that you can use as a template and modify.

m When you assign functions to the reserved function keys in the standard toolbar, you should adhere
to the SAP standards. This makes your program easier for users to understand and for you to
maintain. For further information, refer to the SAP Style Guide

m When the user triggers a function with type ' ' using a pushbutton, menu entry, or function key, the
system places the relevant function code in the OK_CODE field of the screen.

m To alow you to process thisfield in the PAI event, you must assign a name to the field, which you
enter in the element list in the Screen Painter. Y ou must then create a field in your ABAP program
with the same name. During the automatic field transport at the beginning of the PAI event, the
function code is passed from the screen to the corresponding field in the program.

m To avoid the function code leading to unexpected processing steps on the next screen (ENTER does
not usualy change the OK_CODE field), you should initialize the function code field in the ABAP
program before leaving the screen, otherwise it will be transported back to the screen automatically
in the PBO event.

*e e

/

)

51

Unit: Introduction to Screen Programming

Theme: Creating a screen and using it in an executable
program

At the conclusion of these exercises, you will be able to:

Create screens and use them in your programs.

Create a maintenance screen for your program. Design an interface for it.
The user should see the screen after double-clicking aline on the basic
list.

Create a screen and include it in your program.

5-1-1

5-1-2
5-1-3

5-1-4

5-1-5

5-1-6

Extend your program Z##BC410 SOLUTION from the previous exercise
(or copy the model solution SAPBC410ILSS INTERACTIVE_LIST?2).
Y ou can use the model solution SAPBC410DIAS DYNPRO for
orientation.

In the AT LINE SELECTION event, call screen 100.
Create the following program object:

Screen 0100 Short description:
M aintenance screen
Type: Normal
Next screen: 100

In the PBO event of screen 100, call amodule status. Use forward
navigation to create the module in a new include.
Z##BC410_SOLUTIONOO1 PBO module include. In this
module, set the GUI status STATUS 100 and GUI title TITEL_100 (Flight
data (&)) and pass “Display” to the title as a parameter. Use atext element
for the parameter, to ensure that it can be trandated. Y ou can create the
status and title by forward navigation.
Assign the type Dialog statusto the status. Activate the standard function
BACK (F3) with the function type * * (space).

Assign the name ok _code to the function code field on your screen, and
create a corresponding variable in the top include of your program.

In the PROCESS AFTER INPUT event of screen 100, call the modules
save ok_code and user_command_100. Use forward navigation to create
the modules in a new include

Z##BC410 SOLUTIONIO1 PAI module include. Ensure that

the user can return from screen 100 to the basic list if he or she chooses
BACK (F3).

5-1-7 Make sure that you have inserted the necessary | NCLUDE statementsin
your main program.

Unit: Introduction to Screen Programming

Theme: Creating a screen and using it in an executable
/ program

5-1 Modd solution SAPBC410DIAS DYNPRO

Add the coding in bold type to your program. Create the new modules using forward
navigation.

Flow logic for screen 100
PROCESS BEFORE OUTPUT.
MODULE status.

PROCESS AFTER INPUT.

MODULE save_ok_code.
MODULE user_command_100.

*& ___ *
*& program SAPBC410DIAS_DYNPRO *
*& *
*& ___ *

INCLUDE BC410DIAS_DYNPROTOP.
INCLUDE BC410DIAS_DYNPROEO1.
INCLUDE BC410DIAS_DYNPROFO1.
INCLUDE BC410DIAS_DYNPROOO1.
INCLUDE BC410DIAS_DYNPROIO1.

Top include
fields for ok _code processing

DATA: ok _code LIKE sy-ucomm,
save_ok LIKE ok_code.

Eyviont inchinidao

AT LINE-SELECTION.
CALL SCREEN 100.

A e e *
*& ___ *
*& Module STATUS OUTPUT

*& ___ *

MODULE status OUTPUT.

SET PF-STATUS "STATUS_100".

SET TITLEBAR *TITLE_100" WITH "View"(mO01).

ENDMODULE. " STATUS OUTPUT

K *
) *
*& Module USER_COMMAND INPUT

K o *

MODULE USER_COMMAND_100 INPUT.
CASE SAVE_OK.

WHEN "BACK™.

LEAVE TO SCREEN O.

ENDCASE.

ENDMODULE. " USER_COMMAND INPUT

*& ___ *
*& Module SAVE_OK_CODE INPUT

*& ___ *

MODULE SAVE_OK_CODE INPUT.
SAVE_OK = OK_CODE.

1l EFAR Nk C~NONDE

ENDMODULE . " SAVE_OK_CODE INPUT

Screen Elements for Output H'
A

Contents:

® Using, creating, and modifying
® Text fields
® Status icons
® Group boxes

® Example: Dynamic screen modifications

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview

Basics for Interactive Lists

The Program Interface

Interactive List Techniques

Introduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls

Screen Elements: Table Controls

Context Menus on Screens

Lists in Screen Programming

Preview: Control Framework

A text field is arectangular area on a screen in which the system displays text.

Text fields contain labels for other elements. These labels (sometimes called "keywords"), are purely
for display - they cannot be changed at runtime by the user. Text fields are displayed in a fixed
position on the screen.

Text fields can also contain literals, lines, icons, and other static elements. They can contain any
alphanumeric characters, but may not begin with an underscore () or a question mark (?) . If you
use atext as alabel for a checkbox or radio button, it must have the same object name as the
checkbox or radio button it accompanies.

If your text consists of more than one word, use underscore characters as separators. This enables the
system to recognize that the different words in fact belong together. The system interprets spaces as
separators between two different text fields.

Text fields can be trandated. They then appear in the user's logon language. To do this, follow the
menu path under OUT-1.

m At runtime, you can change the size (visible length) of atext field and the display attributes Bright
and Invisible. To do this, use the fields SCREEN-LENGTH, SCREEN-INTENSIFIED, and
SCREEN-INVISIBLE (or SCREEN-ACTIVE).

m You can create text fields in either of the following ways:

Directly in the layout editor, by placing atext field object in the work area and entering the text
in the Object text attribute.

By using the accompanying text of a data element from the ABAP Dictionary.

m When you use fields from ABAP Dictionary structures on the screen, the system normally displays
the data element text as well as the template for the input/output fields on the screen.

m You can make text fidlds invisible at runtime.

m |f you make an object invisible that is enclosed in a box, the box is not displayed ether. (For further
information, refer to the documentation for the screen attribute Switch off runtime compression).

m At PBO, the system table with the line type SCREEN isinitialized by the runtime environment, and
filled with the static attributes from the Screen Painter.

m To hide atext field at runtime, you modify the system table. Use LOOP AT SCREEN. ... MODIFY
SCREEN
ENDLOORP.

m To make atext field invisible, use SCREEN-INVISIBLE = 1 or SCREEN-ACTIVE = 0.

m To ensure that the field TEXTHFELDL is not displayed on the screen, you can call amodule in the
PROCESS BEFORE OUTPUT processing block that sets the invisible attribute for that field.

m Todo this, set the contents of the field SCREEN-INVISIBLE to O.

m You can process the SCREEN table like an internal table with header line (LOOP AT SCREEN. ...
MODIFY SCREEN. ENDLOORP.)

m The system does not support the statements LOOP AT SCREEN WHERE... and READ TABLE
SCREEN.

m A datusicon isan output field that contains an icon. Y ou choose the relevant icon at runtime. Icons

alow you to indicate a status in your application. They are predefined in the system, and take up
between two and four characters.

m For information about the available icons, see the online documentation (reference OUT-2).

m Statusicons are specia output fields that display icons. The system sets the attributes 'Output field'
and '2 dimensional’, and these cannot be changed. The default data format is CHAR.

m You can change the Visible length, Intensified, and Invisible attributes of a status icon dynamically.

m You can only define a status field in the graphical layout editor. A status field is an output field with
anicon. You usethem to display anicon, which you specify dynamicaly at runtime.

m To assign anicon to an output field dynamically, use the function module ICON_CREATE. The
internal length of the output field must be at least 13 (icon without text). To ensure that you can
display quickinfos that might be longer, define the field with defined length 132 and visible length 2.

m |Inthe ABAP program, define a field with the same name as the screen field using the field TEXT
from the structure ICONS.

m You sdlect the icon you want to display from the ABAP program. Before the screen is displayed, you
need to find out the technical name of the icon. Y ou do this by calling a module in the PBO event.

m You retrieve the technical name of an icon using the function module ICON_CREATE. You must
pass the name of the icon you want to display to the function module. Y ou can aso pass atext to be
displayed with the icon. The function module returns the technical name of the icon.

m For further details about this function module, refer to its documentation.

m Group boxes enclose a selection of elements that belong together (for example, agroup of fields or a
radio button group). They are purely display elements, and help the user to identify which elements
on the screen belong together in a group.

m You can use group boxes to make sure that al fields within abox have the same context menu
assigned to them. For further information, refer to the Context Menus on Screens unit.

m Group boxes may have atitle.

m Y ou can change the Visible length and Invisible attributes using the system table SCREEN.
m A group box may contain other screen objects.

m At runtime, if the box contains only invisible elements and the screen attribute Runtime compression
is set, the box itself is not displayed.

m You define agroup box in the layout editor. The object must have a name, and you may also assign
a heading to the box.

m Y ou can change the group box text dynamically. To do this, you should activate the output field
attribute and create a globd data field in the ABAP program with the same name. Because the
Screen Painter field and the program field have the same name, any changes to the field contents will
be immediately visible on the screen (similarly to input/output fields).

Output objects are for improving the layout of your screens.

Text fields alow you to label input/output fields. In this case, you should use the same name for the
text field as for the input/output field. If you deactivate the input/output field, the text |abel is then
automatically deactivated as well.

Status icons alow you to provide the user with a quick graphical overview of information.

Group boxes alow you to make a group of fields that logically belong together. Runtime
compression ensures that empty boxes cannot be displayed.

Static texts on a screen can be trandated, so that they appear on the screen in the language in which
the user islogged on. To make dynamically-assigned text accessible to trandators, you must use text
elements in your ABAP programs.

Screen Elements for Input/Output !’
A

Contents:

Input/output fields
Input help

)
°
® Checkboxes and radio button groups
[

Pushbuttons

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview

Basicsfor Interactive Lists

The Program Interface

Interactive List Techniques
Introduction to Screen Programming
Screen Elementsfor Output
Screen Elements for Input/Output
Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menus on Screens

Listsin Screen Programming
Preview: Control Framework

Aninput field is a rectangular screen element in which users can enter data.
An output field is arectangular screen element in which the system displays text or other data.

Input/output fields are also known as templ ates.

Input fields can have automatic input checks based on thir data type (for example, adate field will
only alow you to enter avalid date).

Input fields that you create with reference to ABAP Dictionary fields may have built-in data
consistency checks (foreign key checks, value sets).

Input fields may have possible values help (F4)

For further information about input/output fields, see the online documentation INP-1.

m You can temporarily change the object attributes marked in gray using the system table SCREEN.

m |t may not be possible to activate al possible combinations of attributes. This depends on the format
of the input/output field.
Example: You cannot activate the Leading zeros attribute for afield with the dataformat CHAR,
sinceit is only relevant for numeric fields.

m For further information about the "Data format™ attribute, refer to the online documentation path in
appendix reference | NP-2.

m You can create input/output fields in two ways.

By entering them directly in the layout editor. Y ou determine the size of the field by the
number of underscore characters in the object text attribute. For numeric values, you can
specify acomma as a separator, and a period as a decimal point. As the last character in the
input/output field, you can enter 'V' as a placeholder for a plus or minus sign.

By using a template from the ABAP Dictionary. Choose Dict/Programfieldsto do this.

m |f you want to use the contents of an input/output field in your ABAP program, you must declare the
field globally using the DATA or TABLES statement.

m You can save valuesin SAP memory using a parameter 1D. These are user and termina-session
specific, but availableto all internal sessions.

m SET PARAMETER copiesthe corresponding field contents into SAP memory in the PAI processing
block.

m CET PARAMETER copiesthe corresponding field contents from SAP memory at the end of the PBO
processing block (after data has been transferred from the program), but only if the screen field till
hasitsinitia value.

m You can link an input/output field to an area of SAP memory in the ABAP Dictionary.

m When you use an input/output field that is defined in the ABAP Dictionary, its parameter ID is
displayed in the Dictionary attribute PID in the Screen Painter.

m The SPA and GPA attributes alow you to enable the set and get parameter functions separately.
m You can define parameter IDs in table TPARA.

m After the screen has been displayed, but before the PAI modules are processed, the system
automatically checks the values that the user has entered on the screen.

m Thefirst check isto ensure that al required fields have been filled.

m The system can only perform aforeign key check if a screen field refers back to a ABAP Dictionary
field for which a check table has been defined and the Foreign key check attribute has been set.

m The F4 help function is also active. This enables users to display possible entries.

m If the automatic field input checks are insufficient for your requirements, you can program your own
in the PAl event. To do this, use the FI ELD statement with the MODULE addition. This means that
the module you specify is only processed for the field specified in the FI ELD statement.

m |f an error or warning message occurs during the module, the system sends the screen again, but
without processing the PBO module. The message is displayed, and only the field to which the check
was applied is ready for input.

m Note: It isthe FI ELD statement that is responsible for making the field ready for input again. If you
use a message in amodule that is not called from within a FI ELD statement, the system displays the
message, but does not make the field ready for input again.

m If you want to ensure that more than one field is ready for input following an error diaog, you must
list al of the relevant fidlds in the FI ELD statement, and include both that and the MODUL E
statement in aCHAI N ... ENDCHAI N block.

m You can include individual fields in more than one CHAI N ... ENDCHAI N block.

m Note that the FI ELD statement does not only make the field ready for input again; it also means that
field contents changed during the current PAI processing are only visible if the field in question was

also included in the FI ELD statement of the current CHAI N block.

If the system sends an error or warning message, the current screen is sent again, but the PBO is not
processed again.

Only the fields to which the module is assigned are ready for input again.

After the user has entered new values, the PROCESS AFTER | NPUT module is not completely
reprocessed, but restarted somewhere within the processing block.

The system finds out which field the user changed and resumes processing at the first corresponding
Fl ELD statement.

If the user merely confirms a warning message (without changing the fields contents), the system
restarts the PAI processing after the MESSAGE statement where the error was triggered.

m There are six different categories of message: A, X, E, W, I, and S

A Termination The processing terminates and the user must restart the transaction.
X Exit Like messagetype A, but with short dump MESSAGE_TYPE_X.

E Error Processing is interrupted, and the user must correct the entry.

w Warning Processing is interrupted and the user can correct the entries (works

like an E message). However, it is aso possible to confirm the existing
entries by pressng ENTER (works like an | message)

I Information Processing is interrupted, but continues when the user has confirmed
the message (pressed ENTER).

S SuccessDisplays information on the next screen

m The system transports data from screen fields into the ABAP fields with the same name in the PAI
processing block. First, it transports al fields that are not contained in any FI ELD statements. The
remaining fields are transported when the system processes the relevant FI ELD statement.

m If an error or warning message occurs in amodule belonging to a Fl ELD statement, the current
values of al fieldsin the same CHAI N structure are automatically transported back into their
corresponding screen fields.

m Fieldinput checks usually require access to the database. Consequently, avoiding them where
possible improves the performance of your program.

m |f the user "strayed” onto the screen by mistake, he or she will not usually be able to make a
consistent set of entries that will satisfy the input checks. Y ou should therefore make it possible for
auser to leave a screen without the field checks taking place.

m To protect the user from losing data that he or she has aready entered if they leave the screen
unintentionally, you should program security prompts.

m |f you usethe ON | NPUT addition in a MODULE statement after FI ELD, the module is only called if
the field contents have changed from their initial value.

m Within a CHAI Nblock, you must usethe ON CHAI N- | NPUT addition. The module is then called
if the contents of at least one screen field within the CHAI N block have changed from their initia
value.

m You may only usethe ON | NPUT addition if the MODULE statement is contained in aFI ELD
statement.

m |f you usethe ON REQUEST addition in a MODUL E statement after FI EL D, the module is only
cdled if the user has entered a new vaue in that field.

m Within a CHAI Nblock, you must usethe ON CHAI N- REQUEST addition. The module is then
caled if the user has changed the contents of at least one screen field within the CHAI N block.

m You may only usethe ON REQUEST addition if the MODULE statement is contained ina Fl ELD
Statement.

m The module with the addition AT EXI T- COMVAND is processed before the automatic field input

checks. You can useit for navigation. You may only usethe AT EXI T- COMVAND addition with
one module. It may not have an associated FI ELD statement.

m If you do not leave the screen from this module, the automatic field checks are processed after it,
followed by the rest of the PAI event.

m Ensure that you process the contents of the OK_CCODE field appropriately.

m The SAP Style Guide contains details of how you should set the navigation functions Back, Exit, and
Cancel.

m The BACK function (green left arrow) should lead one logical level backwards. From screens on the
same level astheinitia screen, it leads back to theinitial screen. From screens that contain detailed
information, it leads back to the screen that called the current screen.

m The CANCEL function differsfrom BACK in its didog behavior. For details, see the next page.
m The EXI T function should return to where the processing unit was called.

m Ontheinitial screen of aprogram, all three functions Back, Exit, and Cancel lead back to the screen
from which the current program was called.

m For further information, refer to the online documentation path in appendix reference INP-3.

If the user has entered data on the screen (sy- dat ar ='X" or your own flag), you can avoid
accidental loss of data by using a predefined security prompt.

Aswell as specifying the targets of the Back, Exit, and Cancel functions, the SAP Style Guide also
contains information about the dialogs you should conduct with the user, and the sequence of dialogs
and automatic field checks.

For the Exit and Cancel functions, you should first send adialog box to the user. Then (in the case of
the Exit function), the system checks the input on the screen. The functions in question must have
function type 'E".

In the case of the Back function, the input checks come before the dialog.
The R/3 System contains a series of function modules that you can use for the user dialogs.

These are listed above. For further information, refer to the online documentation path in appendix
reference | NP-4.

You can help the user with input by using dropdown list boxes containing the possible entries.

Input help (F4 help) is a standard function in the R/3 System. It dlows the user to display alist of
possible entries for a screen field. If the field is ready for input, the user can place avaluein it by
sdlecting it from the list.

If afield hasinput help, the possible entries button appears on its right hand side. The button is
visible whenever the cursor is placed in the field. Y ou can start the help either by clicking the button
or choosing F4.

Aswell as the possible entries, the input help displays relevant additional information about the
entries. Thisis especialy useful when the field requires aformal key.

Since the input help is a standard function, it should have the same appearance and behavior
throughout the system. There are utilitiesin the ABAP Workbench that allow you to assign
standardized input help to a screen field.

The precise description of the input help of afield usually arises from its semantics. Consequently,
input help is usualy defined in the ABAP Dictionary.

m Dropdown list boxes alow the user to choose an entry from a pull-down list containing the possible
entries. The user cannot enter values fregly, but must choose a value from the list.

m To create adropdown list box for an input field, you must do the following in the Screen Painter:
* Set the Dropdown attribute to list box.
* Change the visLength attribute to the displayed length of the descriptive text.

» Set the Valuelist attribute to ' ' to use value help from the ABAP Dictionary.

* If required, set the function code for the selection. Like a menu entry, this function code triggers
the PAI, and you can interpret it using the OK_CODE field.

m Important: The visible length of the field deter mines the width of the field (including button) and
the selection list, and you must normally change it when you convert the field to a dropdown box.

m Thevaues arefilled automatically using the search help assigned to the ABAP Dictionary field. The
Dictionary field must have a search help (check table) with two columns or atable of fixed values.

Various things are required of input help for a screen field (the sear ch field):

The input help must take into account information that the system aready knows (the context). This
includes both information that the user has entered on the current screen, and information from
previous dialog steps. The input help normally uses the context to restrict the set of possible values.

The input help must find out the values that it will then present to the user for selection. It must also
determine the data that will be displayed as additiona information in the list of possible values. In
determining the possible vaues, it must take into account restrictions that arise from the context, as
well as those entered by the user as specific search conditions.

The input help must conduct a user didog. Thisinvolves (at least) displaying the possible values
with additional information, and allowing the user to choose a value from it. In many cases, the
input help will aso contain an input screen on which the user can specify conditions to restrict the
number of possible entries displayed.

When the user selects a vaue, the input help must place it into the search field. In many cases, there
are extrafields on the input screen (often only output fields), containing extra information about the
search field. Theinput help should aso update the contents of these fields.

The ABAP Dictionary object sear ch help isadescription of an input help. Its definition contains
the information that the system requires to meet the user's needs.

The interface of the search help controls the data that is passed between the input screen and the F4
help. The interface determines the context data that is required and the data that can be placed back
on the input screen when the user chooses avaue.

The internal behavior of the search help describes the actua F4 process. This contains the selection
method, which retrieves the vaues for display, and the dialog behavior, which describes the
interaction with the user.

Similarly to function modules, search helps have an interface, which defines their capacity to

exchange data with other software components, and an interna behavior (which, in the case of a
function module, is its source code).

It is only worth defining a search help if there is a mechanism that alows you to address it from a
screen. Thismechanism is called a search help connection, and is described later.

Like the function module editor, the search help editor also allows you to test your objects. This
alows you to check how a search help behaves before you assign it to a screen field.

m A search help describes the process of an input help. In order for it to work, we need a mechanism
that assigns the search help to the field. Thisis caled the sear ch help connection.

m Connecting a search help to afield affectsits behavior. It istherefore regarded as part of thefield
definition.

m The semantic and technica attributes of a screen field (type, length, F1 help) are normally not
defined directly when you define the screen. Normally, you use a reference in the Screen Painter to
an existing field in the ABAP Dictionary. The screen field then inherits the attributes of the ABAP
Dictionary field.

The same principle applies when you define input help for a screen field. The link between the
search help and the search field is established using the ABAP Dictionary field, not the screen field.

m When you assign a search help, its interface parameters are asssigned to the screen fields that are
filled by the search help, or which pass information to it from the screen. The search field must be
assigned to an EXPORT parameter of the search help. Y ou should also make the search field an
IMPORT parameter, so that the search help can take into account a search pattern already entered in
the field by the user.

m A field can have input help even if it does not have a search help - there are other mechanisms for F4
help (for example, fixed values for adomain).

There are three ways to link a search help to afield in the ABAP Dictionary.

It can be assigned directly to afield of astructure or table. Y ou define this link in very much the
same way as you would define aforeign key. Y ou should define the assignment here (between the

interface parameters of the search help and the structure field). The system generates a proposal.

If the field has a check table, its contents are automatically proposed as possible values in the input
help. The key fields of the check table are displayed. If the check table has atext table, the first non

key character fidd is aso displayed.
If the default display isinsufficient for your requirements, you can attach a search help to the check
table. Thisisthen used for al fieldsthat have that check table. When you link the search help, you

must define the assignment between the search help interface and the key of the check table.

The semantics of afield and its possible values are defined by its data element. Y ou can therefore
aso link a search help to a data element. The search help is then used by all fields that are based on
that data element. When you link the search help, you must specify a single EXPORT parameter,
which will be used to transfer the data.

Attaching a search help to a check table (or data element) increases its reusability. However, it does
restrict your options for passing extra values to the search help interface.

To alow as many fields as possible to carry useful input help, the R/3 System contains a wide range
of mechanisms with which you can defineit. If it is possible to use more than one of these for a
particular field, the one highest in the hierarchy is used.

Aswell as defining the input help for afield in the ABAP Dictionary (as we have already seen), you
can aso defineit in the screen field. This method has the disadvantage that you cannot reuse it
automatically.

The screen event POV (PROCESS ON VALUE-REQUEST) dlows you to program input help for a
field yoursdlf. Y ou can make this help appear in standard form by using the function modules

FA4l F_FI ELD VALUE REQUEST or F4l F_I NT_TABLE_ VALUE REQUEST.

However, you should first check to see whether you cannot program your own input help better
using a search help exit.

Y ou can also attach a search help to a screen field in the Screen Painter. However, the functional
scope of thistechnique is more restricted in comparison to attaching a search help in the ABAP
Dictionary.

Y ou should no longer use input checks programmed directly in the flow logic (and from which input
help can be derived).

In the context menu (right-click) for the hit list, thereis afunction Technical info. Thistellsyou
which mechanism is being used in a particular case.

Use radio buttons when you want to allow a user to choose only a single element from a group of
fields.

Use checkboxes when you want to alow the user to choose one or more elements from a group of
fields.

Witih radio buttons, one selection rules out al other options within the group. When the user selects
one, al of the others are automatically desel ected.

When the user selects aradio button, control is not immediately passed back to awork process on the
application server. As with checkboxes (but in contrast to pushbuttons), it is still possible to make
further entries before pressing a pushbutton or choosing a menu option.

Checkboxes dlow the user to select more than one el ement a once. Control is not returned to a
work process on the application server. This does not happen until the user chooses a pushbutton or
menu entry.

m Checkboxes and radio buttons must have an object name.

m Aswadl asthe input/output field, you can display text and icons for them. The text is contained in the
Object text field in the attributes. To display an icon, enter its name in the con name attribute. Y ou
can enter quick info for the icon in the appropriate field.

m You can change the Input field and Invisible attributes using the system table SCREEN.

m Y ou create checkboxes in the fullscreen editor of the Screen Painter. To do this, choose the checkbox
object from the object list and place it on the screen. Y ou must assign names to checkboxes. In the
ABAP program, create a field with the same name, type C, and length 1.

m You can find out whether a user has chosen a checkbox in the ABAP program by querying the field
contents. If a checkbox is not selected, itsfield value isinitial.

m You can assign afunction code and function type to a checkbox. Whenthe user selectsit, the PAI
event is triggered as though the user had chosen a menu entry.

m You create radio buttonsin the layout editor of the Screen Painter. There are two steps involved:

- Create the radio buttons as individual elements. Choose "radio button” from the object list and
place it on the screen. Y ou must assign names to radio buttons. In the ABAP program, create a
field with the same name, type C, and length 1.

- Combine a collection of radio buttons into a radio button group. To do this, select the radio
buttons in the layout editor and then choose Edit -> Group-> Radio button group -> Define.

m You can find out which radio button a user has chosen by querying the field contents in the ABAP
program. If aradio button is not selected, the field valueisinitial.

m You can assign afunction code and function type to aradio button group. When the user selects one
of itsradio buttons, the PAI event istriggered as though the user had chosen amenu entry.

m A pushbutton triggers a particular function. When the user chooses it, the system tells the program
which function has been chosen. At this point, control of the program passes back to awork process
on the gpplication server, which processes the PAI processing block.

m Pushbuttons may contain text (Object text attribute), an icon, or both. Y ou can either specify anicon
statically, or dynamically, using the function module ICON_CREATE.

m You can change thevisible length, output field, and invisible attributes dynamically using the system
table SCREEN.

m You can change the text on a pushbutton dynamically. To do this, you must have set the Outpuit field
attribute in the Screen Painter to active, and created a globa field with the same name in your ABAP
program. Because the Screen Painter field and the program field have the same name, any changes to
the field contents will be immediately visible on the screen (smilarly to input/output fields).

m When you create a pushbutton, you must:

Create the pushbutton itself. Choose the Pushbutton object from the Screen Painter object i,
place it on the screen, and assign a name to it in the "Object name" attribute. Y ou can enter a
static text in the "Object text" attribute. Enter afunction code for the pushbutton in the
"Function code” attribute. Thisis placed in the OK_CODE field automatically when the user
chooses the pushbutton on the screen.

Activate the OK_CODE field on the screen by assigning a name to the OK_CODE field object
in the Screen Painter field list and creating afield in your ABAP program that has the same
name. Y ou m,ust give the field a name in the element list of the Screen Painter, then declare an

identically-named field in the ABAP program with reference to the system field sy- ucomm

m When the user chooses a function on the screen, the system places the corresponding function code
into the OK_CODE field. Y ou can then query the field and use the result to trigger the appropriate
processing block.

Pushbuttons have a function code and a function type.

If the user chooses a pushbutton that has the function type ' ', the PAI event is processed. The system
places the function code that has been triggered into the OK_CCODE field, which you can then query
in the module.

If the user chooses a pushbutton whose function has the function type "E", the system processes a
module with the addition AT EXI T- COMVAND. This happens before the automatic field transport
and the field input checks. The system places the function code that has been triggered into the
OK_CODE field, which you can then query in the module.

After the AT EXI T- COVMAND module, the system continues processing the screen normaly (field
input checks, followed by PAI processing).

Unit: Screen Elementsfor 1 nput/Output

Theme: Input/output fields on screens, input help, mode
selection using a radio button group

*e e

At the conclusion of these exercises, you will be able to:
Create input/output fields for screens
Make input checks

/

Use input helpsin your programs
Create radio button groups and program the relevant logic

Make dynamic changes to screens.

Add input/output fields to your program for flight information. When
the user arrives on the screen, it should display data for the line that

) / he or she chose. The Airling, flight number, and flight datefields

7-1

should be ready for input.

Support the user by checking the entries and providing input help.
Allow the use to switch between different program modes. These are:
Display mode

Flight data maintenance mode (the user can change the aircraft type)
Maintain bookings (you will use this later)

The current mode should be indicated in the title. If the user changes
the aircraft type, he or she should be able to save the changed value.
If thisis the case, you must update the basic list.

Additional task: Use a standard dialog to warn the user if data will
be lost when he or she leaves the screen. Y ou should also provide the
opportunity at this point to save the data.

Add the input/output fields to the screen, implement the input checks, and extend
the navigation options on the screen to include the Cancel and Exit functions.

7-1-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410DIAS _DYNPRO). You can use the
model solution SAPBC410INPS _INPUT_FIELD for orientation.

7-1-2 Copy the ABAP Dictionary structure SDYN_CONNOO to the structure
ZDYN_CONN##. (## is your group number). Use the TABLES statement
to create a structure with the same name (for transporting data between the
program and the screen).

7-1-3 Create the following fields on the screen. Use the facility for using fields
from the ABAP Dictionary.

7-2

7-3

7-1-4

7-1-5

7-1-6

Screen 100 | 1/0O fields, text fields: For each field: Input: on
ZDYN_CONN## Output: On
-CARRID Required: On
-CONNID
-FLDATE

I/O fields, text fields: For each field: Input: Off

ZDY N_CONN## Output: On
-PRICE
-CURRENCY
-PLANETY PE
-SEATSMAX
-SEATSOCC
-PAYMENTSUM

In the PBO event of screen 100, call amodule get_sflight_data. Create the
module using forward navigation. Copy the relevant fields of your work
area wa_sflight into your screen data transfer structure zdyn_conn##
Ensure that al of the required fields have been restored from the hide area.

Check the combination of airline, flight number, and flight date if the user
changed any of these details. To do this, try to read the corresponding data
record from table SFLIGHT, and analyze the return code sy-subrc. If the
data record does not exist, display message 007 from classBC410 asan
error message. Make sure that the fields are ready for input again. If the
input checks are successful, update the ABAP work areawa_sflight.

Assign the function codes EXIT and CANCEL to the standard keys Shift-F3
(exit) and F12 (cancel). Ensure that these functions are processed before the
automatic input checks. If the user chooses Exit, leave the program. If, on
the other hand, the user chooses Cancel, return to the basic list, but without
checking the field values. In the case of Cancel, remember to initialize the
OK_CODE fidd.

Make the user’s job easier by providing input help.

7-2-1

7-2-2

7-2-3

7-2-4

Extend your program Z##BC410 _SOLUTION from the previous exercise
or copy the corresponding model solution

SAPBC410INPS INPUT_FIELD. You can use the model solution
SAPBC410INPS HELP_FOR_INPUT for orientation.

On screen 100, set the Dropdown attribute to List box for the input/output
field zdyn_conn##-carrid. Make sure that the program attribute Value list
issetto‘ ' (from ABAP Dictionary).

In the ABAP Dictionary, attach the search help SDYN_CONN_CONNID to
the field zdyn_conn##-connid and the search help
SDYN_CONN_FLDATE to the field zdyn_conn##-fldate.

Test the input help to seeif it is context-sensitive.

Create a radio button group to allow the user to choose one of arange of program

modes.

7-3-1

Extend your program Z##BC410 SOLUTION from the previous exercise
(or copy the model solution SAPBC410INPS HELP_FOR_INPUT). You

can use the modd solution SAPBC410INPS RADIOBUTTON_GROUP
for orientation.

7-3-2 On screen 100, create aradio button group with the buttons view,
maintain_flights, and maintain_bookings. Make sure that the function
code MODE (with type ‘ ") is triggered when the user chooses a different
mode. Create a group box around the radio button group called frame and
assign it the text “Mode’. Declare the relevant data fields in your top
include.

7-3-3 Set the GUI title according to the mode chosen by the user.

7-3-4 Program the Maintain flight data mode. In this mode, the input/output field
zdyn_conn##-planetype should be ready for input. Assign the
modification group ADM to the field, and create a module modify_screen
to make the corresponding dynamic screen modification.

If the user enters a new aircraft type, check whether the number of seats
booked is greater than the maximum number of seats. To do this, update the
field zdyn_conn##-seatsmax from table SAPL ANE. If an error occurs,
display message 109 from class BC410 as an error message. If an error
occurs, transport the maximum number of seats back to the screen.

7-3-5 Assign the function code SAVE (function type * ’) to the standard key Citrl-
S. If the user chooses this function, save the new data record in the
database. To do this, write a subroutine update_sflight containing a direct
database update in the form:

UPDATE sflight FROM wa_sflight.
| F sy-subrc = 0.
CLEAR dat al oss.
MESSAGE s009(bc410).
ELSE.
MESSAGE a008(bc410).
ENDI F.

(This process would normally use a suitable SAP lock, but we have omitted it here
for smplicity.)

7-3-6 Ensure that the basic list is updated if the user has changed the aircraft type.
To do this, use the subroutine read_flights to read the data from the database

and then use the subroutine display_flights to display the list again at list
level O.

7-4 Additional task:
7-4-1 Use the function modules popup_t o_confi rm st ep and
popup_to_confirml oss_of data toensurethat the user cannot
inadvertently lose his or her changes by leaving the screen. Use the system
field sy-datar. You can use it in the AT EXIT-COMMAND module to find
out whether the user changed data on the current screen. Y ou will also need
aflag of your own call it dataloss.

Unit: Screen Elementsfor Input/Output

Theme: Input/output fields on screens, input help, mode
/ selection using a radio button group

7-1 Modd solution SAPBC410INPS_INPUT_FIELDS

Add the coding in bold type to your program. Create the new modules and subroutines using
forward navigation.

Flow logic for screen 100

PROCESS BEFORE OUTPUT.

MODULE status.
MODULE get_sflight_data.

PROCESS AFTER INPUT.

MODULE exit AT EXIT-COMMAND.

CHAIN.

FIELD: sdyn_connOO-carrid,

sdyn_conn00-connid,

sdyn_conn00-fldate MODULE check _sflight ON CHAIN-REQUEST.
ENDCHAIN.

MODULE save_ok_code.

MODULE user_command_100.

Top include

structures for dynpro processing
TABLES SDYN_CONNOO.

*& ___ *
*& Module GET_SFLIGHT_DATA OUTPUT
*& ___ *

MODULE get_sflight _data OUTPUT.
MOVE-CORRESPONDING wa_sflight TO sdyn_conn00.
ENDMODULE. " GET_SFLIGHT_DATA OUTPUT

*& ___ *
*& Module CHECK_SFLIGHT INPUT
*& ___ *

MODULE check_sflight INPUT.

CHECK sdyn_connOO-carrid NE wa_sflight-carrid
OR sdyn_conn00-connid NE wa_sflight-connid

OR sdyn_conn00-fldate NE wa_sflight-fldate.
SELECT SINGLE * INTO wa_sflight FROM sflight
WHERE carrid = sdyn_connOO-carrid

AND connid = sdyn_conn00-connid

AND fldate = sdyn_conn00-fldate.

CHECK sy-subrc NE O.

MESSAGE e007(bc410).

ENDMODULE. " CHECK_SFLIGHT INPUT

*& ___ *
*& Module EXIT INPUT

*& ___ *

MODULE exit INPUT.

CASE ok_code.

WHEN "CANCEL".

CLEAR ok_code.

LEAVE TO SCREEN O.

WHEN "EXIT".

LEAVE PROGRAM.

ENDCASE .

ENDMODULE. " EXIT INPUT

7-3 Modd solution SAPBC410INPS_RADIOBUTTON_GROUP

Add the coding in bold type to your program. Create the new modules using forward
navigation.

Flow logic for screen 100

PROCESS BEFORE OUTPUT.
MODULE status.

MODULE get_sflight_data.
MODULE modify_screen.

PROCESS AFTER INPUT.
MODULE exit AT EXIT-COMMAND.

CHAIN.

FIELD: sdyn_conn-planetype,

sdyn_conn-seatsmax MODULE check _planetype ON CHAIN-REQUEST.
ENDCHAIN.

MODULE trans_from_100.

MODULE save_ok_code.

MODULE user_command_100.

Top include
fields for mode choice

DATA: view VALUE "X*, maintain_flights, maintain_bookings,
mode (20).

flags for update

DATA: planetype_changed.

Event include

AT LINE-SELECTION.

CALL SCREEN 100.

update list of flights if necessary
IF NOT PLANETYPE_CHANGED IS INITIAL.
CLEAR PLANETYPE_CHANGED.

PERFORM READ_FLIGHTS.
PERFORM DISPLAY_FLIGHTS.
SY-LSIND = SY-LSIND - 1.
ENDIF.

*& ___ *
*& Form UPDATE_SFLIGHT
*& ___ *

FORM update_sflight.

UPDATE sflight FROM wa_sflight.

IF sy-subrc = 0.

MESSAGE s009(bc410).

ELSE.

MESSAGE a008(bc410).

ENDIF.

ENDFORM. " UPDATE_SFLIGHT

PBO moduleinclude

MODULE status OUTPUT.

SET PF-STATUS "STATUS_100-.

CASE "X".

WHEN view.

mode = “view®(m0l).

WHEN maintain_flights.

mode = "maintain flights®(m02).
WHEN maintain_bookings.

mode = "maintain bookings®(m03).
ENDCASE.

SET TITLEBAR "TITLE_100" WITH mode.
ENDMODULE . " STATUS OUTPUT

*& Module MODIFY_SCREEN OUTPUT

MODULE modify_screen OUTPUT.
CHECK NOT maintain_flights IS INITIAL.

CHECK screen-groupl = “ADM".

screen-input = 1.

MODIFY SCREEN.

ENDLOOP .

ENDMODULE. " MODIFY_SCREEN OUTPUT

PAIl module include

MODULE user_command_100 INPUT.
CASE save_ok.

WHEN *BACK".

WHEN "SAVE".
PERFORM update_sflight.

ENDCASE.

ENDMODULE . " USER_COMMAND INPUT

*& ___ *
*& Module CHECK_PLANETYPE INPUT

*& ___ *

MODULE check_planetype INPUT.

CLEAR planetype_changed.

SELECT SINGLE seatsmax INTO sdyn_conn-seatsmax FROM saplane
WHERE planetype = sdyn_conn-planetype.

planetype_changed = "X".

CHECK sdyn_conn-seatsmax < sdyn_conn-seatsocc.

MESSAGE e109(bc410).

ENDMODULE. " CHECK_PLANETYPE INPUT

*& ___ *
*& Module TRANS_FROM_100 INPUT

*& ___ *

MODULE trans_from_100 INPUT.
MOVE-CORRESPONDING sdyn_conn TO wa_sflight.
ENDMODULE . " TRANS_FROM_100 INPUT

7-4 Modd solution SAPBC410INPS_RADIOBUTTON_GROUP

Add the coding in bold type to your program. Create the new modules using forward
naviaation.

Top include
flags for update
DATA: planetype_changed, dataloss.

Subroutineinclude

FORM update_sflight.

UPDATE sflight FROM wa_sflight.

IF sy-subrc = 0.

CLEAR dataloss.

MESSAGE s009(bc410).

ELSE.

MESSAGE a008(bc410).

ENDIF.

ENDFORM. " UPDATE_SFLIGHT

PAIl moduleinclude

MODULE user_command_100 INPUT.
CASE save_ok.

WHEN "BACK™.

IF dataloss IS INITIAL.

LEAVE TO SCREEN O.

ELSE.

CALL FUNCTION "POPUP_TO_CONFIRM_STEP*
EXPORTING

textlinel = text-e05

titel = text-e06

IMPORT ING

answer = answer.

CASE answer.
WHEN "J". "J = Yes
PERFORM update_sflight.

release database locks
LEAVE TO SCREEN O.
WHEN *N*". " N = No
CLEAR dataloss.

LEAVE TO SCREEN O.
ENDCASE.
ENDIF.

WHEN "SAVE+EXIT".

PERFORM update_sflight.

LEAVE PROGRAM.

ENDCASE.

ENDMODULE . " USER_COMMAND INPUT

MODULE exit INPUT.

IF sy-datar 1S INITIAL AND dataloss IS INITIAL.
CASE ok_code.

WHEN "CANCEL".

CLEAR ok_code.

LEAVE TO SCREEN O.

WHEN "EXIT".

LEAVE PROGRAM.

ENDCASE.

ELSE.

CASE ok_code.

WHEN "EXIT".

CALL FUNCTION "POPUP_TO_CONFIRM_STEP*

EXPORTING
textlinel

text-e0l

titel
IMPORTING

answer

text-e02

answer .

CASE answer.
WHEN "J". "J = Yes
Do not save here, but during "normal"™ ok-code processing.
Remember that all screen checks will be executed after this
module. Saving and LEAVE TO SCREEN O must be coded after all checks!
ok _code = "SAVE+EXIT".
WHEN *N*". " N = No
release all database locks
LEAVE PROGRAM.

WHEN OTHERS. " Cancel cancelled :-)
CLEAR ok_code.

ENDCASE.

WHEN "CANCEL".

CALL FUNCTION "POPUP_TO_CONFIRM_LOSS_ OF_DATA*®
EXPORTING

textlinel = text-e03

titel = text-e04

IMPORTING

answer = answer.

IF answer = "J". " J = Yes

Release all database locks

CLEAR dataloss.

CLEAR ok_code.

LEAVE TO SCREEN O.

ENDIF.

ENDCASE .

ENDIF.

ENDMODULE . " EXIT INPUT

MODULE check_ planetype INPUT.

CLEAR planetype_changed.

SELECT SINGLE seatsmax INTO sdyn_conn-seatsmax FROM saplane
WHERE planetype = sdyn_conn-planetype.

planetype_changed = *"X".

dataloss = "X".

CHECK sdyn_conn-seatsmax < sdyn_conn-seatsocc.

MESSAGE e109(bc410).

ENDMODULE. " CHECK_PLANETYPE INPUT

Screen Elements: Subscreens and Tabstrip Controls

Contents:

® Subscreens

® Tabstrip controls

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview

Basicsfor Interactive Lists

The Program Interface

Interactive List Techniques

I ntroduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output
Screen Elements. Subscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menus on Screens

Listsin Screen Programming
Preview: Control Framework

m A subscreen areais areserved rectangular area on a screen, into which you place another screen at
runtime. Subscreen areas may not contain any other screen elements. To use a subscreen, you create
a second screen (with the type subscreen), and display it in the subscreen area you defined on the
main screen.

m A subscreen is an independent screen that you display within another screen. Y ou may want to use a
subscreen as away of displaying a group of objectsin certain circumstances, but not in others. You
can use this technique to display or hide extra fields on the main screen, depending on the entries the
user has made.

m A second use for subscreens is that different programs can use the same subscreens. To do this, you
must execute other screen programs within your main program.

m You can include more than one subscreen on a single main screen. Y ou can also determine the
subscreens dynamically at runtime.

m Y ou can use subscreens in the following circumstances:

In screen enhancements (screen exits),
Within other screen objects (tabstrip control)
In the Modification Assistant

- In Web transactions.

If the subscreen is larger than the subscreen areain which it is called, the system only displays as
much of it as will fit onto the screen. However, you can use the Scrollabl e attribute to ensure that, if
the screen is too big, the system will display scrollbars.

The resizing attributes control whether the size of a subscreen area can be changed vertically and
horizontally. Y ou should set these attributes if you want the size of the subscreen area to change with
the size of the whole window. Y ou can use the minimum size attribute to set alower limit beyond
which the subscreen area cannot be resized.

The Context menu attribute allows you to assign a context-sensitive menu to the output fields on the
subscreen screen.

The following restrictions apply to subscreens:

CALL SUBSCREEN . .. isnot alowed between LOOP and ENDLOCP or between
CHAI N and ENDCHAI N.

A subscreen may not have anamed OK_CODE fidd.
Object names must be unique within the set of al subscreens called in a single main screen.
Subscreens may not contain a module with the AT EXI T- COVMAND addition.

You cannot usethe SET Tl TLEBAR, SET PF- STATUS, SET SCREEN, or LEAVE
SCREEN statements in the modul es of a subscreen.

m To create a subscreen area, choose subscreen from the object list in the Screen Painter and placeit on

the screen. Fix the top-left hand corner of the table control area, and then drag the object to the
required size.

m In the Object text field, enter a name for the subscreen area. Y ou need this to identify the area when
you call the subscreen.

m To use asubscreen, you must cal it in both the PBO and PAI sections of the flow logic of the main
screen. The CALL SUBSCREEN <subar ea> statement tells the system to execute the PBO and
PAI processing blocks for the subscreen as components of the PBO and PAI of the main screen. You
program the ABAP modules for subscreens in the same way as for anormal screen (apart from the
restrictions aready mentioned).

m If the subscreen is not in the same module pool as the "main program”, the global data of the main
program is not available to the subscreen, and the data from the screen will not be transferred back to
the program. Y ou must program the data transfer yourself (for example, using a function module that
exports and imports data, with an appropriate MOV E statement in the subscreen coding).

m |f you want to use subscreens in the screens of severa different programs, you should encapsulate
the subscreens in a function group and use function modules to transport data between the program
in which you want to use the subscreen and the function group.

m You can pass data between the calling program and the function group using the interfaces of the
function modules.

m Thisisthe technique used for customer subscreens (screen enhancements).

Y ou use function modules to transport data between the calling program and the function group.

To declare the data from the calling program to the subscreen of the function group, use a module
before the subscreen call. This should call a function module whose interface you can use to pass the
required data to the function group.

The function module call must occur before the subscreen call. This ensures that the datais known in

the function group before the PROCESS BEFORE OUTPUT processing block of the subscreen is
called.

In the PAI module of the calling screen, the sequenceis reversed: You cal the PROCESS AFTER
I NPUT processing block of the subscreen before calling a function module to pass the data from the
function group back to the calling program.

m For the data from the calling program to be available globaly in the function group, you must
transfer the interface parameters from the function module into global data fields of the function
group.

m The function module that you use to transfer the data from the calling program into the function
group must copy its interface parametersinto the globa datain the function group.

m The function module that you use to transfer data from the function group to the calling program

must copy the corresponding data from the globa data of the function group into its interface
parameters.

m Tabstrip controls provide you with an easy, user-friendly way of displaying different components of
an application on a single screen and alowing the user to navigate between them. Their intuitive
design makes navigation much easier for end users.

m Tabstrip controls are a useful way of simplifying complex applications. Y ou can use tabstrip
controls wherever you have different components of an application that form alogica unit. For
example, you might have a set of header data which remains constant, while underneath it, you want
to display various other sets of data.

m You should not use tabstrip controls if

Y ou need to change the screen environment (menus, pushbuttons, header data, and so on) while
processing the application components. The screen surrounding the tabstrip must remain
constant.

The components must be processed in a certain order. Tabstrips are designed to allow usersto
navigate freely between components.

The components are processed dynamically, that is, if user input on one tab page leads to other
tab pages suddenly appearing.

m Tabstrip controls are compatible with batch input processing.

m A tabstrip control consists of individua pages. These consist of the page area and the tab title.
m The tab may only have one row of tab titles.

m |f the tabstrip control contains too many pages, it will not be possible for al of the tab titles to be
displayed at once. If this happens, the system displays a scrollbar with which you can scroll through
the remaining tab pages. In the top right-hand corner of the tab is a pushbutton. If the user clicks this,
alist of al of the tab titlesis displayed. The active tab title is marked with atick.

m A tab page consists of atab title, a subscreen area, and a subscreen.
m From atechnical point of view, the system handles tab titles like pushbuttons.

m The contents of tab pages are displayed using the subscreen technique. Y ou assign a subscreen area
to each tab page, for which you can then call a subscreen.

m Aswell asthe generd "Object name", " Starting position” and static size attributes, tabstrip controls
also have specid tabstrip attributes.

m For details of these specia attributes, see the section on subscreen attributes.

m You create atabstrip control in the following three steps:
- Definethetab area
- Define the tab titles and, if necessary, add further tab titles

- Assign a subscreen area to each tab page.

To create atabstrip area, choose Tabstrip from the object list in the Screen Painter and place it on the
screen. Fix the top-left hand corner of the table control area, and then drag the object to the required
size.

Assign aname to the tabstrip control in the "Object name" attribute. Y ou need this name to identify
your tabstrip control.

In your ABAP program use the CONTROL S statement to declare an object with the same name. Use
TABSTRI P asthetype.

The type TABSTRI P is defined in the type pool CXTAB. Thefield ACTI VETAB contains the
function code of the tab title of the currently active tab page. The other fields are reserved for
internal use.

The default number of tab pages for atabstrip control is two.

m Technically, tab titles are treated in the same way as pushbuttons. They have an object name, atext,
afunction code, and a function type. Y ou enter these in the "Object name”, "Object Text", "FctCode"
and "FctType" fields of the object attributes.

m A tab title can have the function type ' ' (space) or 'P. If the function typeis" ' (space), the PAI
processing block is triggered when the user chooses that tab, and the function code of the tab title is
placed in the OK_CQODE fidld. If the function typeis'P, the user can scroll between the different tab
pages with the same type without the PAI processing block being triggered. For further details, refer
to the following pages.

m |f you want your tabstrip control to have more than two pages, you must create further tab titles. To
do this, choose Pushbutton from the object list in the Screen Painter and place it in the tab title area.

®m Y ou must assign a subscreen area to each tab page.

m The subscreen area assigned to a tab page is automatically entered as the "Reference object” (in the
Dictionary attributes) for the tab title of that page.

m To assign a subscreen area to one or more tab pages, choose the relevant tab title in the fullscreen
editor, choose the Subscreen object, and place it on the tab page.

m Alternatively, you can assign a single subscreen area to severa tab pages by entering the name of the
subscreen area directly in the "Reference object” field of the attributes of the relevant tab pages.

If you have assigned a different subscreen areato each tab page in atabstrip control, you can scrall
between the pages locally at the frontend.

To do this, you must send al of the subscreens to the front end when you send the main screen itself.
All of the tab titles in the tabstrip control must also have function type 'P.

Now, when you scroll between the different tab pages, there is no communication between the
presentation server and the application server.

When the user chooses a function on the screen that triggers PAI processing, the system processes
the PAI blocks of all of the subscreens aswell. Thismeansthat all of thefield checks arerun. In
this respect, you could regard the tabstrip control as behaving like a single large screen.

Loca scrolling in tabstrip controls is more appropriate for display transactions.

m To program atabstrip control to scroll locally at the front end, you must:

- Assign a separate subscreen area to each tab page; a subscreen will be sent to each of these
when the screen is processed.

- Cdl dl of the subscreens from the flow logic.
- Assign function code type 'P to al of the tab titles.
m The system hides any tab page whose subscreen contains no elements that can be displayed.

m If there are no tab pages containing elements that can be displayed, the system hides the entire
tabstrip control.

m For further information about tabstrip controls, follow the appendix documentation path SUB-2.

m If al of the tab pages share a single subscreen area, the program analyzes the function code of the
chosen tab title to determine which screen is displayed.
m There are two stepsin this process:
- Inthe PAI processing block, the program determines which tab page needs to be active, based
on the tab title chosen by the user.
- When the PBO processing block is processed again, the program displays the corresponding
screen.
m During this process, the system only checks the fields of the subscreen that is actually displayed.

m If you want the application program to process scrolling in a tabstrip control,
- All of the tab pages must share a common subscreen area
- All of the tab titles must have the function code type ' ' (space), and

- Intheflow logic, you must use a variable to cal the screen that isto be displayed in the
subscreen area.

m Inthe PAI block, you must call a module in which the function code of the active tab title is placed
inthefield ACTI VETAB of the structure you created in your program with type TABSTRI P. Inthe
example above, thisisMY_TAB_STRI P.

m The PBO processing block must contain a module, before the subscreen is called, in which you place
the number of the subscreen in the corresponding variable. In order for the screen to be processed the
first time (before the user has had a chance to choose atab title), you must assign an initia value to

thisfield.

m You can hide atab page at runtime by setting the corresponding tab title to inactive using the system
table SCREEN (SCREEN- ACTI VE = ' 0"). You should do this before processing the tabstrip
control for the first time, to ensure that the screen environment remains constant.

m Y ou can now create tabstrip controls on selection screens. They allow you to create logica groups
of fields, and make large selection screens more user-friendly.

m The following requirements must be met if you are to use selection screens with tabstrip controlsin
your R/3 System:

- GUI version 4.0 or higher
- Frontend: Motif, Windows 95, MacOs, NT 3.51 or higher.
m For a sdection screen with tabstrips, you must define:
- A subscreen area on the selection screen to accommodate the tabstrip control
- Theindividual tab titles

- Selection screens as subscreens for the individual tab pages

m Sinceit is possible to define selection screens as subscreens, you can include selection fields that you
create in thisway in any other screens. Selection screens as subscreens are processed similarly to
other screens.

m You define a selection screen as a subscreen as follows:
SELECTI ON- SCREEN BEG@ N OF SCREEN <scrn> AS SUBSCREEN
[NESTI NG LEVEL <nm»] [NO | NTERVALS] .

SELECTI ON- SCREEN END OF SCREEN <scr n>.
Optional additions: [NESTI NG LEVEL <ne] . Each box around a tabstrip control increases the
NESTI NG LEVEL by one.
[NO | NTERVALS] . Thisoption hides the HIGH fields for any selection
criteria defined using SELECT-OPTIONS on the screen.

Y ou define a subscreen area for atabstrip control on a selection screen asfollows. SELECTI ON-
SCREEN BEG N OF TABBED BLOCK <bl ocknanme> FOR <n> LI NES

SELECTI ON- SCREEN END OF BLOCK <bl ocknane>.

The size of the subscreen areaiin linesis defined by <n>.

The system automatically generates a CONTROLS statement (CONTROLS:
TABSTRI P_BLOCKNAME TYPE TABSTRI P.) You must not write your own CONTROLS
statement. If you try to do so, a syntax error results.

Y ou define the individua tab pages as follows:

SELECTI ON- SCREEN TAB (| engt h) <nanme> USER- COMVAND <ucom® [DEFAULT
[PROGRAM <pr og>/ SCREEN <dynnr>]].

Optional additions; [DEFAULT [PROGRAM <pr og>/ SCREEN <dynnr>]].

Assign the selection screen to atab page. If you use the DEFAULT addition, you must also use the
SCREEN addition. The PROGRAMaddition is optional. Y ou only need it if the screen comes from
another program.

Y ou can delay specifying the link between the tab title and the selection screen until runtime. You
can aso change an existing assgnment at runtime. To do this, fill the structure blockname. Thisis
created automatically for every tabstrip block. The structure has the same name as the tabstrip block,
and contains the fields PROG, DYNNR, and ACTI VETAB. For further information, refer to the online
documentation in appendix refererce SUB-2.

m If you define a selection screen as a subscreen, you can display it on anormal screne or in atabstrip
control that is embedded in anormal screen.

m All you need to do is define the selection screen as a subscreen with the relevant selection options
and input parameters. Y ou can then define a subscreen area on the screen and embed the subscreen
screen init, by calling the subscreen screen in the PBO event and, if necessary, in the PAI event as
well.

Unit: Subscreen and Tabstrip Control
Theme: Creating subscreens and tabstrip controls

*e e

At the conclusion of these exercises, you will be able to:

Use subscreens and tabstrips on screens and selection screensin your
programs

Display additional information on your screen, depending on the mode in
which the user is working.

)) / Extend the display to allow users to switch between the additional

8-1

information using a tabstrip control.

Extend the “Flight data” screen (100) to display flight information and the aircraft
type. Use a subscreen to do this.

8-1-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410DIAS DYNPRO). You can use the
model solution SAPBC410SUBS SUBSCREEN for orientation.

8-1-2 Onthe“Flight data’ screen (100), create a subscreen area with the following

attributes:
Subscreen SUB Attributes:
Vert. And horiz. resizing:
On

8-1-3 Create two screens 110 and 120, each with the type subscreen and the
following attributes:

Screen110 I/O fidlds, text fields: For each field:
ZDYN_CONN## Input: Off
- COUNTRYFROM Output: On
- COUNTRYTO
- CITYFROM
-CITYTO
- AIRPFROM
- AIRPTO
- DEPTIME
- ARRTIME
Screen 120 I/O fidlds, text fields: For each field:
SAPLANE Input: Off
- PLANETYPE Output: ON

8-2

8-1-4

8-1-5

8-1-6

8-1-7

- PRODUCER Output only: On
- SEATSMAX
- TANKCAP

- CAP_UNIT

- WEIGHT

- WEI_UNIT

- OP_SPEED

- SPEED_UNIT

a) In your TOP include, create afield DYNNR that you can use in the flow
logic to determine which subscreen should appear in the subscreen area.

Call the subscreen screens in the flow logic of screen 100. Before the call,
write a PBO module to determine which of the subscreens will appear. If
the user isin “Display” mode, call subscreen screen 110 with the flight
information. If the user isin “Maintain flight data’ mode, call subscreen
screen 120 with the aircraft information.

In the flow logic of screen 110, read the flight information from table SPFLI
using the key field values.

In the flow logic for screen 120, read the information for the aircraft
information from table SAPLANE using the value you have for the aircraft

type.

Create atabstrip control on screen 100 for displaying extraflight information and
details of the aircraft type.

8-2-1

8-2-2

Extend your program Z##BC410 SOLUTION from the previous exercise
(or copy the model solution SAPBC410SUBS SUBSCREEN). You can
use the model solution SAPBC410SUBS TABSTRIP for orientation.

Create the tabstrip control: Remove the subscreen area on screen 100 and
create a tabstrip control with the following attributes:

Tabstrip Name: Attributes:

control MY_TABSTRIP Vert. And horiz. resizing:
On

Pushbutton Name: Attributes:

(Tabtitle 1) P1 Text: Display flight data

Function code: FC1
Function type: <blank>
Referencefidd: SUB

Pushbutton Name: Attributes:

(Tab title 2) P2 Text: Display technical
data for aircraft
Function code: FC2

8-2-3

8-2-4

8-2-5

8-2-6

Function type: <blank>
Referencefield: SUB

Pushbutton Name: Attributes:

(Tab title 3) P3 Text: Maintain bookings
Function code: FC3
Function type: <blank>
Referencefield: SUB

In the TOP include of your program, create a data object for the tabstrip
control using the following statement:
CONTROLS MY_TABSTRI P . ..

In the flow logic of screen 100, implement the call for the subscreen screen
in the tabstrip control.

Before calling the subscreen, write a PBO module in which you determine
which of the subscreens is to be called (regardless of the mode in which the
user is working). Additionally, determine which subscreen screen you want
to set the first time the screen is displayed, and assign the corresponding
function code to the field MY_TABSTRI P- ACTI VETAB.

Extend your function code processing for screen 100 to include scrolling
logic for the first two pages of the tabstrip control. Do this by assigning the
relevant value to M\Y_TABSTRI P- ACTI VETAB.

Y ou will create the subscreen for the third tab page and program its
scrolling logic in alater exercise.

Unit: Subscreen and Tabstrip Control
/ Theme: Creating subscreens and tabstrip controls

8-1 Modd solution SAPBC410SUBS SUBSCREEN
Add the coding in bold type, and create new modules where appropriate using forward
navigation.

SCREEN 100

PROCESS BEFORE OUTPUT.
MODULE STATUS.
MODULE GET_SFLI GHT_DATA.
MODULE MODI FY_SCREEN.
MODULE CHOOSE_SUBSCREEN_DYNPRO,
CALL SUBSCREEN SUB | NCLUDI NG SY- CPROG DYNNR.

PROCESS AFTER | NPUT.

MODULE USER_COMMAND. 100.
SCREEN 110

PROCESS BEFCRE OUTPUT.
MODULE GET_SPFLI .

PROCESS AFTER | NPUT.
SCREEN 120

PROCESS BEFORE QUTPUT.
MODULE GET_SAPLANE.

PROCESS AFTER | NPUT.

M odule pool

Add the following to the ABAP program:
Top include

TABLES: sdyn_conn, sapl ane.
* screen for subscreen

DATA dynnr LIKE sy-dynnr.

PBO modules

*& Modul e CHOOSE SUBSCREEN DYNPRO OUTPUT

* & __ *
MODULE CHOOSE_SUBSCREEN_DYNPRO OUTPUT.
CASE ' X' .
VHEN VI EW
DYNNR = ' 0110 .
VHEN MAI NTAI N_FLI GHTS.
DYNNR = ' 0120'.

ENDCASE.
ENDMODULE. " CHOOSE_SUBSCREEN_DYNPRO QUTPUT
K R o o o e *
*& Modul e CGET_SPFLI OUTPUT
* *

MODULE GET_SPFLI QOUTPUT.
SELECT SI NGLE * | NTO CORRESPONDI NG FI ELDS OF
SDYN_CONN FROM SPFLI
VWHERE CARRI D = WA_SFLI GHT- CARRI D

AND CONNI D = WA_SFLI GHT- CONNI D.
ENDMODULE. " GET_SPFLI OQUTPUT
K R e o o e *
*& Modul e GET_SAPLANE QOUTPUT
* *

MODULE GET_SAPLANE QOUTPUT.
SELECT SI NGLE * FROM SAPLANE
WHERE PLANETYPE = WA SFLI GHT- LANETYPE.
ENDMODULE. " GET_SAPLANE OUTPUT

8-2 Maode solution SAPBC410SUBS TABSTRIP
Add the coding in bold type, creating new modules where appropriate using forward
navigation.

SCREEN 100

PROCESS BEFORE OUTPUT.
MODULE STATUS.
MODULE GET_SFLI GHT_DATA.
MODULE MODI FY_SCREEN.
MODULE FI LL_DYNNR

CALL SUBSCREEN SUB | NCLUDI NG SY- CPROG DYNNR.
PROCESS AFTER | NPUT.

MODULE USER_COWVIVAND_100.

Module pool

A AA tha fAallAaina tavimr ARA D nranram:-

Top include

* definition of tabstrip control structure
CONTROLS ny_tabstrip TYPE TABSTRI P.

PBO modules

K o o e Y e Y Y Y e *
* & Modul e FILL_DYNNR OUTPUT

* *

MODULE FI LL_DYNNR QUTPUT.
CASE MY_TABSTRI P- ACTI VETAB.
VWHEN ' FC1' .
DYNNR = ' 0110'.
VHEN ' FC2' .
DYNNR = ' 0120' .
* VHEN ' FC3' .
* DYNNR = ' 0130'.
VWHEN OTHERS.
MY_TABSTRI P- ACTI VETAB = ' FC1'.
DYNNR = ' 0110'.

ENDCASE.
ENDMODULE. " FILL_DYNNR OUTPUT
PAI modules
* & ___ *
*& Modul e USER _COMMAND | NPUT
* & ___ *

MODULE USER COMMAND 100 | NPUT.
CASE SAVE_CX.

VWHEN ' FC1' OR 'FC2'. "OR ' FC3'.
MY_TABSTRI P- ACTI VETAB = SAVE K
ENDCASE.

ENDMODULE. " USER_COMVAND | NPUT

Screen Element: Table Controls

Contents:

® Table control overview
® C(Creating atable control
® Processing atable control

® Othertechniques

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview

Basicsfor Interactive Lists

The Program Interface

Interactive List Techniques
Introduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output
Screen Elements: Subscreens and Tabstrip Controls
Screen Elements. Table Controls
Context Menus on Screens

Listsin Screen Programming
Preview: Control Framework

m A table contral is an area on the screen in which the system displays datain tabular form. It is
processed using a loop. The top line of atable control is the header line, which is distinguished by a
gray separator.

m Within atable control, you can use table e ements, key words, templates, checkboxes, radio buttons,

radio button groups, and pushbuttons. A line may have up to 255 columns; each column may have a
title.

m You can display or enter single structured lines of data using a table contral.

m Features:

Resizeable table for displaying and editing data.

The user or program can change the column width and position, save the changes, and rel oad
them later.

Check column for marking lines. Marked lines are highlighted in a different color.
Line selection: Sngle lines, multiple lines, all lines, and deselection

Column headings double as pushbuttons for marking columns.

Scrollbars for horizontal and vertical scrolling.

Y ou can fix any number of key (leading) columns.

Cell attributes are variable at runtime.

m Users can save display variants for table controls. These variants can be saved by each user, dong
with the basic setting, as the current display setting or as the default display setting.

m Thetable control contains a series of attributes that are controlled entirely at the presentation server:
Theseare:

- Horizontal scrolling using the scrollbar in the table control
- Swapping columns

- Changing column widths

- Marking columns

- Marking lines

m The PAI processing block is triggered when you scroll vertically in the table control or save the user
configuration.

Aswell asthe normal "Object name”, "Start position on screen” and "Static size" attributes, table
controls aso have special table control attributes.

The "Special table control attributes’ determine the table type and display options for a table control,

aswell as whether it can be configured by the user. Thefieldsst epl and | oopc of structure sy st
contain information about the loop processing used with table controls (see following pages).

For further information about the static attributes, refer to the online documentation.

For more information about the dynamically changeable attributes, refer to the online documentation
in appendix reference TAB-1.

m When you create atable control, you must create:
- A table control area.
- Table control fields.

To create atable control area, choose the table control object from the object list in the Screen
Painter and place it in the screen work area. Fix the top-left hand corner of the table control area, and
then drag the object to the required size.

In the "Object name" attribute, assign a name to your table control. In the ABAP program, declare a
structure with the same name, containing the dynamically changeable attributes of the table control.

The CONTROL S statement declares a complex data object with the type TABLEVI EW
(corresponding to the type CXTAB_CONTROL, declared in type group CXTAB in the ABAP
Dictionary). At runtime, the data object (my_cont r ol) contains the static attributes of the table
control.

You maintain the initial vaues (static attributes) in the Screen Painter. The USI NG SCREEN
addition in the CONTROLS statement determines the screen whose initial values are to be used for
the table control.

You can reset atable control to itsinitia attributes at any time using the statement REFRESH
CONTROL <ctrl > FROM SCREEN <scr >. <scr > does not have to be the same as the initia
screen of the table contral.

m You create fieldsin atable control using the Dict./Programfields function. Thisinvolvesthe
following steps:

- Enter the name of the structure whose fields you want to use in the table control and press
ENTER.

- Inthefidd ligt, choose the fields that you want to use and choose OK.

- Position the cursor in the table control area and click the left mouse button.
The system places al of the selected fields in the table contral. If the fields have data eement
texts, the system uses these as column headings.

m Alternatively, you can position individual input/output fields in the table control area, each of which
generates a single column.

m When you create atable control, the system automatically proposes one with a selection column.

m The selection column behaves like a checkbox. It must therefore be a field with length 1 and data
type CHAR. Y ou must enter the field name in the attributes of the table control.

m The selection column is afield of the structure used for transport between the screen and the ABAP
program.

The runtime attributes of a table contral, which are stored in the structure declared using the
CONTROLS statement, can be divided into general attributesand column attributes.

The general attributes contain information about the attributes of the table control as awhole, such
as, for example, the number of fixed columns.

The column attributes are stored in an interna table (one entry per column of the internal table).
For each column, it maintains the attributes stored in the structure SCREEN, plus the specia table
control column attributes column position, a selection and avisibility flag, and afield for the
displayed width.

For information about the names of the attributes and their precise meanings, refer to the keyword
documentation in the ABAP Editor for the CONTROLS statement (then choose Tableview ->
CXTAB_CONTROL), and the online documentation in appendix reference TAB-1.

m You can change atable control dynamically by modifying the contents of the fields in the table
control structure declared in your program.

m Thefields of the table control structure aso provide information about user interaction with the table

control. For example, you can use the selected field to determine whether the user has selected a
particular column.

m For performance reasons, you read the data for the table control once from the database and store it
in an internal table using an array fetch.

m The system fills the table control lines from this internal table.

Before you can display data from an internal table in a table control, you must first fill the table.
Make sure that you do not fill the internal table in every PBO event, but only when the key fields
change (in the above example, airline and flight number).

For the table control processing, you need to know how far the user can scroll verticaly (the size of
the internal table). Y ou should therefore use the DESCRI BE TABLE statement to find out the
number of entriesin the interna table, and save thisin the LI NES field of the table control.

Thereis only one work areafor processing lines in the table control. For this reason, you need a
LOOP ... ENDLQOOR. gtructure in both the PBO and PAI events for each table control.

In the PBO processing block, you must fill one line of the table control with the corresponding line
from the internal table in each loop pass.

Similarly, in the PAI processing block, you must pass the changes made in the table control back to
the correct line of the internal table.

When you process functions, you must distinguish between those that should only apply to
individual lines of atable control, and those that should apply to the entire screen.

m There are three steps involved in displaying buffered data from the interna table in the table control:

- The system loops through the lines of the table control. The lines of the screen table are
processed one by one. For each line, the system carries out the following steps.

The current line of the internal tableis placed in the work area of the interna table. (Note that it
is possible to scrall in the table on the screen.)

The data from the work area of the interna table is copied into the relevant line of the table
control.

m When you use table controls on a screen, the field transport sequence changes.

m |nthe PBO processing block, datais transferred from the ABAP program to the screen after each
loop pass in the flow logic. The rest of the screen fields are filled, as normal, at the end of the PBO.

The loop statement in the flow logic LOOP AT <itab> | NTO <wa_i tab> W TH CONTROL
<t c_nane>

starts a loop through the screen table, and reads the line of the internal table corresponding to the
current line of the screen table, placing it in <wa_i t ab>.

<i t ab> isthe name of the interna table containing the data, <wa_i t ab> isthe name of the work
areafor theinterna table, and <t ¢ _nane> is the name of the table control on the screen.

If the fields in your table control have the same structure and name as those in the work area
<wa_i t ab>, the system can transport data between the ABAP program and the screen
automaticaly (step 3).

If you are not using the same structure for the table control fields and the work area of the internal
table, you must call a module between LOOP and ENDLOCP that moves the data from the work area
<wa_i t ab> into the screen fields (MOVE- CORRESPONDI NG <wa_i t ab> TO .)).

The system calculates the value of <ct r | >- TOP_LI NE when you scroll, but not when you scroll a
page at atime outside the table contral.

m Transferring changed values from the table control back to the internal table involves the following
three steps:

- The system loops through the lines of the table control. The lines of the screen table are
processed one by one. For each line, the system carries out the following steps.

The data from the current line of the table control is copied into the header line of the interna
table.

The datain the work area must then be placed in the line of the internal table corresponding to

the line of the table control that is being processed. (Note that it is possible to scroll in the table
on the screen.)

m Inthe PAI processing block, all screen fields that do not belong to atable control and that are not
listed in a Fl ELD statement are transported back to the work fieldsin the ABAP program first.

m The contents of the table control are transported line-by-line to the corresponding work areaiin the
ABAP program in the appropriate loop.

m Lastly, thefiddsthat occur in FI ELD statements are transported directly before the corresponding
Statement.

m The LOOP AT <itab>. ... ENDLOOP block processes aloop through the lines of the table
on the screen.

m If the fields on your screen have the same names as the fields in the internal table, you must return
the data from the header line of the interna table to the body of the table itsalf. Y ou do this using the

fild<control >-current _|i ne.

m If thefieds on your screen do not have the same names as the fields in the interna table, you must
first copy the data into the header line of the internal table. Y ou can then copy the data back into the
internal table itself. You can aso usethefield <cont r ol >- current _I| i ne todothis.

m Y ou can modify the attributes of atable control by overwriting the field contents of the structure
created in the CONTROLS statement.

m To change the attributes of individual cells temporarily (!), change the table SCREENin a PBO

module that you processes between LOOP and ENDLOCP in the flow logic (LOOP AT SCREEN,
MODI FY SCREEN).

m |n the LOOP, the runtime system initializes the attributes set statically for the table control in the
Screen Painter. Y ou can only change these in amodule called from aloop through the table control.

m Y ou can change atable control dynamically by modifying the contents of the fields of its structure.

m Thefields of the table control structure aso provide information about user interaction with the table

control. For example, you can use the selected field to determine whether the user has selected a
particular column.

m You can change atable control dynamically by modifying the contents of the fields of its structure.

m Thefields of the table control structure aso give you information about user interaction with the
table control. For example, you can use the selected field to determine whether the user has selected
aparticular column.

m It ispossibleto change the attributes of table control fields temporarily. These changes are only
effective while the current screen is being processed.

m To do this, you call amodule from within the table control loop in the flow logic, in which you
change the attributes of the current line.

m To change the attributes of the fields of aline in the table control, useaLOOP AT SCREEN.
ENDLOOP. block to loop through the fields of the current line. Within this loop, you can change the
attributes of the fields of the current line of the table control.

m You can easily sort the table control display by a particular column using the table control attribute
<ctrl >-sel ectedand<ctrl >-screen- nane

You can scroll apage at atimein atable control using the table control attribute
<ctrl>-top_line.

In the PAI processing block, you need to know the current number of lines in the corresponding table
control.

The system field sy- | oopc contains the number of table control lines in the PBO processing block.
However, in the PAI, it contains the number of filled lines.

Sy- | oopc isonly filled between LOOP and ENDLOOP, since it dways refers to the current loop.
Note that you must catch any overflow or shortfall yourself (see processing above for 'F22').
See also the function module SCROLLI NG_| N_TABLE

The LI NE parameter in the GET or SET statement refersto the system field sy - st epl , the special
loop index in the flow logic.

Y ou calculate the internal table line that corresponds to the selected table control line as follows:
Line = <ctrl>-TOP_LINE + cursor position - 1.

The GET CURSOR statement sets the return code as follows. sy- subr ¢ = 0. The cursor wason a
field. sy- subr ¢ =4: The cursor was not positioned on afield.

If you use a step loop on your screen, you can place the cursor on a particular element within the step
loop block. To do this, use the L1 NE parameter and enter the line on which the cursor should be
positioned: SET CURSOR FI ELD <fi el d_nane> LI NE <l i ne>.

You can aso use the OFFSET and L1 NE parameters together.

*e e

L2 s

9-1

Unit: Table control
Theme: Creating a table control

At the conclusion of these exercises, you will be able to:

Use a table control and its processing logic in your program

On the third page of your tabstrip control, create a table control in which
you can maintain bookings for your flight.

For the third page of your tabstrip control, create atable control containing the
booking information for aflight.

9-1-1

9-1-2

9-1-3

Extend your program Z##BC410 SOLUTION from the previous exercise
(or copy the model solution SAPBC410SUBS TABSTRIP). You can use
the model solution SAPBC410SUBS TABLE_CONTROL1 for

orientation.

Create a subscreen screen 130: Call the subscreen screen for the third page
of your tabstrip control.

Creating the table control area:
On subscreen screen 130, create a table control with the following attributes:

Table control | Name: Attributes:
MY_TABLE_CONTROL | Vert. And horiz. Resizing:
ON
Vert. and horiz. separators:
ON

Column selection: SINGLE
Linesdection: MULTIPLE
Column headers: On
Configurable: ON
Selection column:
SDYN_BOOK- MARK

No. of fixed columns: 2

Note: You cannot set the number of fixed columns attribute for the table
control until you have created al of its columns
In the TOP include, create a complex data object for the attributes of your

bl A AammbAl. AT O RA/ T ADI I NN

9-1-4

9-1-5

9-1-6

Creating the table control columns: Use the following structure fields to
create the columns in the table control:

I nput/output Name: Attributes:
field SDYN_BOOK Input: Off
Text fied - BOXID Output: On
(intable - CUSTOM D
control) - CUSTTYPE

- SMOXER

- LUGGWEI GHT
- WUNI'T

- I NvO CE

- CLASS

- FORCURAM
- FORCURKEY
- LOCCURAM
- LOCCURKEY
- ORDER_DATE
- COUNTER

- AGENCYNUM

Now enter the number of fixed columns in the table control attributes.

Declaring theinternal table: In the TOP include of your program, create
aninternal table | T_SDYN_BOCK. Thiswill buffer the bookings that you
are going to display in the table control. Create the internal table with type
STANDARD and no header line. Declare a suitable work area for the internal
table. Use the line type SDYN _BOCK to declare both the internal table and
the work area.

Reading the data: In the flow logic of screen 130, create a PBO modulein
which you read all of the bookings for the flight selected from the basic list
that have not been canceled. The data should only be read if the flight
selection from the basic list has changed. Include an appropriate query for
thisin the module. The L1 NES field in your table control requires the
number of linesin your interna table. To find out the value, use the
DESCRI BE TABLE ... gtatement.

Implementing the table control: Program aloop for the table control in
both the PBO and PAI events of screen 130 (reads the entries in the internal
table). LOOP ... ENDLOOP. InthePBO loop, cal amoduleto copy
data from the work area of the internal table into the screen fields In the PAI
loop, call amodule to copy the data from the screen into the internal table.
The module should only be called for lines that have been selected on the
screen (FI ELD ... MODULE ... ON REQUEST.).

Note: You can test whether your changes are transferred to and from the
screen properly by scrolling in the table control (selecting aline represents a
change). Select aline, then scroll down and up again in the table control. If
the selected entry is still selected after you have scrolled, your changes have
been copied correctly from the internal table to the table control.

9-3

Implement functions for canceling a booking, selecting all unmarked table control
lines, and deselecting al marked table control lines.

9-2-1

9-2-2

9-2-2

9-2-3

Extend your program Z##BC410 SOLUTION from the previous exercise
(or copy the model solution SAPBC410TABS TABLE_CONTROL1).

Y ou can use the model solution SAPBC410TABS TABLE_CONTROL?2
for orientation.

Creating Pushbuttons:. Create the following pushbuttons on screen 130:

Pushbutton Name: Function code: SELE
SELECT_ALL Function type: <blank>
Icon: ICON_SELECT _ALL
Pushbutton Name: Function code: DSELE
DESELECT _ALL Function type: <blark>
Icon:
ICON_DESELECT ALL
Pushbutton Name: Function code: DELE
P _DELETE Function type: <blank>
Icon: ICON_DELETE
Input: Off
Output: Off
Invisible: On

Implementing the functions: Extend the OK_CODE processing for screen
100 to implement cancellation function. The pushbutton for canceling a
booking should only appear if the user isin “Maintain bookings’ mode. To
do this, create a PBO module for screen 130 in which you change the
attributes of pushbutton P_DELETE arunti ne (LOOP AT SCREEN

. ..). Ensure that the function code for the “Maintain bookings’ checkbox
is set to trigger PAL.

In the TOP include of your program, create a new interna table

| T_SDYN_BOOK _UPD with type STANDARD and no header line, aswell as
awork area. Use the line type SBOOK to declare both the internal table and
the work area. Copy the selected entries from the interna table

| T_SDYN _BOX into thetablel T_SBOOK UPD, copying the selection
column flag to the field CANCEL L ED. Pass both interna tables to the
function module BC_GLOBAL_UPDATE_BOOK. The function module
makes the database changes for table SBOOK and the resulting changes in
table SFLI GHT. Initidlizethetable | T_SDYN_ BOOK _UPD and return to
the basic list. Ensure that the changed data is displayed on the basic list
straight away.

Extend the function code processing of screen 100 or 130 to include the
functions “ Select al” and “Deselect al”.

In the table control, implement the functions “ Scroll using standard toolbar” and

“Sort”.

9-3-1

9-3-2

9-3-3

9-3-4

9-3-5

Extend your program Z##BC410 _SOLUTION from the previous exercise
(or copy the model solution SAPBC410TABS TABLE_CONTROL2).

Y ou can use the model solution SAPBC410TABS TABLE_CONTROL3
for orientation.

Sorting the table control You can sort the table control by a selected
column as follows:
Creating Pushbuttons: Create the following pushbuttons on screen 130:

Pushbutton Name: Function code: SRTU
P_SRTU Function type: <blank>
Icon: ICON_SORT_UP
Pushbutton Name: Function code: SRTD
P_SRTD Function type: <blank>
Icon: ICON_SORT_DOWN

Implementing the functions: Extend the OK_CODE processing for screen
130 to implement the two sort functions. Use the table control structure
MY _TABLE CONTRQOL to find out the column in the table control selected
by the user. You will need to write aloop for the internal table

MY_TABLE CONTROL- COLS. This means that you will also need a work
areafor MY_TABLE_CONTROL- COLS. Create this in the TOP include of
your program (suggested name: WA _COLS). ii) Use the fields
MY_TABLE_CONTROL- COLS- SELECTED and WA_COLS- SCREEN
NANE to find out the name of the column selected by the user. Since the
fidldWA_COLS- SCREEN- NAME contains the name of the screen field
(SDYN_BOOK- <f nane>), you will need to find out the field name using
an offset specification. Sort the internal table containing the data for the tree
control by the selected field in the chosen direction.

Scrolling in the table control (screen): You can allow the user to scroll
through atable control using pushbuttons as follows:

Creating the buttons in the standard toolbar: Assign the following
function codes to the functions in the standard toolbar:

Button in Icon Function code: P--
standard First page Function type: <blank>
toolbar

Button in Icon Function code: P-
standard Previous page Function type: <blank>
toolbar

Button in Icon Function code: P+
standard Next page Function type: <blank>
toolbar

Button in Icon Function code: P++
standard Last page Function type: <blank>
toolbar

I mplementing the functions: Extend the OK_CODE processing for screen

100 to implement the scroll functions.
In order to scroll through the table control using pushbuttons, your program

needs to know how many lines can currently be displayed within the control
(if the screen is of variable size, the user may resize the control). The system
field SY- LOOPC contains this information between L OOP and ENDLOORP in
the PBO. Store thisvauein aglobal field in your program, which you
should declare in the TOP include (suggested name: LOOPLINES) in a
modul e between L OOP and ENDL OOP in the PBO processing of screen 130.
To find out the new value of MY_TABLE CONTROL- TOP_LI NE, usethe
function module SCROLLI NG_| N_TABLE. Passthe vaue of the fields
MY_TABLE_CONTROL- TOP_LI NE, MY_TABLE_CONTRL- LI NES,
LOOPLI NES and the function code of the scrolling pushbutton to the
function module. It returns the new value for MY_TABLE CONTROL-
TOP_LI NE.

Unit: Table control
/ Theme: Creating a table control

9-1 Model solution SAPBC410TABS TABLE_CONTROL1

Add the coding in bold type, and create new modules where appropriate using forward

navigation.

SCREEN 100

PROCESS BEFORE OUTPUT.

*

MODULE STATUS.

MODULE GET_SFLI GHT _DATA.

MODULE MODI FY_SCREEN.

MODULE FI LL_DYNNR.

CALL SUBSCREEN SUB | NCLUDI NG SY- CPROG DYNNR

PROCESS AFTER | NPUT.

MODULE EXI T AT EXI T- COMVAND.
CHAI N,
FI ELD: SDYN_CONN- CARRI D,
SDYN_CONN- CONNI D,
SDYN_CONN- FLDATE MODULE CHECK_SFLI GHT
ON CHAI N- REQUEST.
ENDCHAI N.
CHAI N,
FI ELD: SDYN_CONN- PLANETYPE,
SDYN_CONN- SEATSMAX MODULE CHECK_PLANETYPE
ON CHAI N- REQUEST.
ENDCHAI N.
MODULE TRANS_FROM 100.
CALL SUBSCREEN SUB.
MODULE SAVE_OK_CCDE.
MODULE USER_COVMAND_100.

SCREEN 130

PROCESS BEFCRE OUTPUT.

*

MODULE GET_SBOCK.
LOOP AT | T_SDYN BOOK | NTO WA SDYN BOOK
W TH CONTROL MY_TABLE_CONTROL.
MODULE MOVE_TO DYNP,
ENDL OOP.

PROCESS AFTER | NPUT.

LOOP AT | T_SDYN_BOOK.

FI ELD SDYN_BOOK- MARK MODULE UPDATE_I TAB ON REQUEST.

ENDL OOP.

M odule pool

Add the following coding to your ABAP program.
Top include

TABLES sdyn_book.
* workarea and internal table for table control
DATA: wa_sdyn_book TYPE sdyn_book,

it _sdyn_book LIKE TABLE OF wa_sdyn_book.

* definition of table control structure
CONTROLS ny_tabl e_control TYPE TABLEVI EW

USI NG SCREEN ' 0130' .

PBO module

K R o o o e *
* & Modul e FILL_DYNNR OUTPUT

* *

MODULE FI LL_DYNNR QUTPUT.
CASE MY_TABSTRI P- ACTI VETAB.
VWHEN ' FC1' .
DYNNR = ' 0110'.
VWHEN ' FC2' .
DYNNR = ' 0120' .
VWHEN ' FC3' .
DYNNR = ' 0130' .
WHEN OTHERS.
MY_TABSTRI P- ACTI VETAB = ' FC1'.
DYNNR = ' 0110'.

ENDCASE.
ENDMODULE. " FI'LL_DYNNR OUTPUT
T % *
*& Modul e GET_SBOOK OUTPUT
* *

MODULE GET_SBOOK OUTPUT.
| F SDYN_CONN- CARRI D <> KEY_SFLI GHT- CARRI D OR
SDYN_CONN- CONNI D <> KEY_SFLI GHT- CONNI D OR
SDYN CONN- FLDATE <> KEY_SFLI GHT- FLDATE.

MOVE- CORRESPONDI NG SDYN_CONN TO KEY_SFLI GHT.

SELECT * | NTO CORRESPONDI NG FI ELDS OF TABLE
| T_SDYN_BOOK FROM SBOOK
WHERE CARRID = WA SFLI GHT- CARRI D
AND CONNID = WA SFLI GHT- CONNI D
AND FLDATE = WA SFLI GHT- FLDATE
AND CANCELLED = ' .
DESCRI BE TABLE | T_SDYN BOOK LI NES
MY_TABLE_CONTROL- LI NES.

ENDI F.
ENDMODULE. " GET_SBOOK QUTPUT

*& __ *

* & __ *
MCDULE MOVE_TO_DYNP QOUTPUT.

MOVE- CORRESPONDI NG WA_SDYN BOOK TO SDYN_BOOK.

ENDMODULE. " MOVE_TO DYNP OUTPUT

PAI module

K R o o o e *
*& Modul e USER COMMAND | NPUT

* *

MODULE USER_COMMAND_100 | NPUT.
CASE SAVE_CX.
WHEN ' FC1' OR 'FC2' OR 'FC3'.
MY_TABSTRI P- ACTI VETAB = SAVE_OK.

ENDCASE.
ENDMODULE. " USER_COMVAND | NPUT
K R o o o e M e *
*& Modul e UPDATE_I TAB | NPUT
* *

MODULE UPDATE | TAB | NPUT.
MOVE SDYN_BOOK- MARK TO WA SDYN_BOOK- MARK.
MODI FY | T_SDYN BOOK FROM WA SDYN_BOOK | NDEX
MY_TABLE_CONTROL- CURRENT LI NE.
ENDMODULE. " UPDATE_| TAB | NPUT

1-2 Model solution SAPBC410TABS TABLE_CONTROL?2
Add the coding in bold type, and create new modules where appropriate using forward
navigation.

SCREEN 130

PROCESS BEFORE OUTPUT.
MODULE MODI FY_BUTTON.
MODULE GET_SBOCK.
LOOP AT | T_SDYN BOOK | NTO WA SDYN BOOK
W TH CONTROL MY _TABLE_CONTROL.
MODULE MOVE_TO DYNP,
ENDL OOP.
*
PROCESS AFTER | NPUT,
LOOP AT | T_SDYN BOCK.
FI ELD SDYN BOOK- MARK MODULE UPDATE | TAB ON REQUEST.
ENDL OOP.
MODULE USER COMMAND 0130.

Module pool

Add the following coding to your ABAP program.

Top include

* workarea and internal table for update sbook
DATA: wa_sdyn_book upd TYPE sbook,
it_sdyn_book_upd LI KE TABLE OF wa_sdyn_book_upd.

* flag for update
DATA upd_fl ag.

PBO module

*& Modul e MODI FY_BUTTON OUTPUT
MODULE MCDI FY_BUTTON OUTPUT.
I F NOT MAI NTAI N_BOOKINGS |'S I NI TIAL.
LOOP AT SCREEN.
| F SCREEN-NAME = ' P_DELETE' .
SCREEN- | NVI SI BLE = 0.

ENDI F.
MODI FY SCREEN.
ENDL 0P,
ENDI F.
ENDMODULE. " MODI FY_BUTTON OUTPUT
K R o o o e
* & Mbdul e GET_SBOOK ~OUTPUT

MODULE GET_SBOOK OUTPUT.
| F SDYN_CONN- CARRI D <> KEY_SFLI GHT- CARRI D OR
SDYN_CONN- CONNI D <> KEY_SFLI GHT- CONNI D OR
SDYN_CONN- FLDATE <> KEY_SFLI GHT- FLDATE OR
UPD_FLAG = ' X'.

MOVE- CORRESPONDI NG SDYN_CONN TO KEY_SFLI GHT.

SELECT * | NTO CORRESPONDI NG FI ELDS OF TABLE
| T_SDYN_BOOK FROM SBOOK
WHERE CARRID = WA _SFLI GHT- CARRI D
AND CONNID = WA_SFLI GHT- CONNI D
AND FLDATE = WA _SFLI GHT- FLDATE
AND CANCELLED = ' .
DESCRI BE TABLE | T_SDYN BOOK LI NES
MY_TABLE_CONTROL- LI NES.

CLEAR UPD_FLAG
ENDI F.
ENDMODULE. " GET_SBOOK QUTPUT

PAI module

*& Modul e USER_COVNVAND | NPUT
MCDULE USER_COMVAND 100 | NPUT.
CASE SAVE_K
WHEN ' DELE' .
PERFORM UPDATE_SBOCK.
LEAVE TO SCREEN O.

ENDCASE.
ENDMODULE. " USER_COVMAND | NPUT
K o o e Y e e e e
* & Mbdul e USER_COMMAND 0130 | NPUT

MODULE USER _COMIVAND 0130 | NPUT.
CASE OK_CODE.
WHEN ' DELE'. used in USER _COVWWAND 0100 because of
* SET SCREEN
VWHEN ' DSELE' .
LOOP AT | T_SDYN _BOOK | NTO WA _SDYN_ BOOK
VWHERE MARK = ' X' .
WA SDYN BOOK- MARK = " ",
MODI FY | T_SDYN BOOK FROM WA SDYN_BOOK.
ENDL OCP.
VWHEN ' SELE' .
LOOP AT I T_SDYN BOOK | NTO WA _SDYN_BOCK
VWHERE MARK = ' ',
WA SDYN_BOOK- MARK = ' X' .
MODI FY | T_SDYN BOOK FROM WA _SDYN_BOCOK.
ENDL OCP.
ENDCASE.
ENDMODULE. " USER_COMVAND 0130 | NPUT

FORM routines

*

FORM UPDATE_SBOCOK.
* Check if entries have to be updated
READ TABLE | T_SDYN BOOK W TH KEY MARK = 'X
TRANSPORTI NG NO FI ELDS.
| F SY-SUBRC NE O.
MESSACGE S022.
* No update (no booking to cancel)
LEAVE TO SCREEN O.
ENDI F.

* Copy cancel | ed bookings to update table
LOOP AT | T_SDYN BOOK | NTO WA _SDYN_BOOK
VWHERE MARK = ' X'.
MOVE- CORRESPONDI NG WA SDYN BOOK TO WA SDYN BOOK UPD.

MOVE WA_SDYN_BOOK- MARK TO WA_SDYN_BOOK_UPD- CANCEL LED.
APPEND WA SDYN BOOK_UPD TO | T_SDYN BOOK_UPD.
ENDL OOP.

* Call function for update table SBOOK.
CALL FUNCTI ON ' BC_GLOBAL_UPDATE_BOOK'

TABLES
BOOKI NG _TAB = | T_SDYN BOOK
BOOKI NG_TAB_UPD = | T_SDYN BOOK_UPD
EXCEPTI ONS
OTHERS =1

CLEAR WA SDYN BOOK_UPD, |T_SDYN BOOK_UPD.
UPD FLAG = ' X' .

ENDFORM " UPDATE_SBOOK

Events

K R o o o e M e *
*& Event AT LI NE-SELECTI ON.

* *

AT LI NE- SELECTI ON.
CALL SCREEN 100.
* update list of flights if necessary
| F NOT PLANETYPE _CHANGED IS I NI TI AL.
CLEAR PLANETYPE_CHANGED.
PERFORM READ_FLI GHTS.
PERFORM DI SPLAY_FLI GHTS.
ELSEI F NOT UPD FLAG IS I NI TI AL.
PERFORM READ FLI GHTS.
PERFORM DI SPLAY_FLI GHTS.
ENDI F.
SY-LSIND = SY-LSIND - 1.

1-3 Modd solution SAPBC410TABS TABLE_CONTROLS3
Add the coding in bold type, and create new modules where appropriate using forward
navigation.

SCREEN 130

PROCESS BEFORE OUTPUT.
MODULE MODI FY_BUTTON.
MODULE GET_SBOOK.
LOOP AT | T_SDYN BOOK | NTO WA SDYN BOOK
W TH CONTROL MY TABLE CONTROL.
MODULE GET_LOOPLI NES.
MODULE MOVE_TO_DYNP.
ENDL OOP.
*
PROCESS AFTER | NPUT,
LOOP AT | T_SDYN BOCK.
FI ELD SDYN BOOK- MARK MODULE UPDATE | TAB ON REQUEST.
ENDL OOP.

AN I MAAAANNINDN N19DON

Module pool

Add the coding below to your ABAP program
TOP include

* sy-|loopc at PBO
DATA | ooplines LIKE sy-I oopc.
* workarea for Table Control structure COLS

DATA wa_cols LIKE LINE OF ny_table_control-cols.
PBO module

K o o o e
*& Modul e GET_LOOPLI NES QUTPUT

*

MODULE GET_LOOPLI NES OUTPUT.
LOOPLI NES = SY- LOOPC.

ENDMODULE. " GET_LOOPLINES QUTPUT

PAI module

K R o o o e
*& Modul e USER _COVWAND | NPUT

*

MODULE USER COMMAND 100 | NPUT.
CASE SAVE OX.
WHEN 'P--' OR 'P-' OR'P+ OR'P++' .
PERFORM TABLE_PAG NG
USI NG SAVE_OK MY_TABLE_CONTROL- TOP_LI NE
MY_TABLE_CONTROL- LI NES LOOPLI NES.

ENDCASE.
ENDMODULE. " USER_COMVAND | NPUT
K R o o e e o e e e e e e e e e e e
*& Modul e USER_COMVAND 0130 | NPUT
K R o o o e
MODULE USER_COMVAND_ 0130 | NPUT.

CASE OK_CODE.

VWHEN ' SRTU .

READ TABLE MY_TABLE CONTROL-COLS | NTO WA COLS
W TH KEY SELECTED = ' X' .
| F SY- SUBRC = 0.
SORT | T_SDYN_BOOK BY (WA COLS- SCREEN NAME+10)

ASCENDI NG,
ENDI F.
second net hod
* LOOP AT MY_TABLE CONTROL-COLS | NTO WA COLS WHERE

* SF FCTFD = ' X'

* SORT | T_SDYN_BOOK BY (WA _COLS- SCREEN- NAME+10)
* ASCENDI NG.
* ENDL OOP.
* determ ne fieldname dynamcally
* 1. '"slower' version
* DATA SORTFI ELD LI KE SCREEN NAME.
* | F WA_COLS- SCREEN- NAME CS ' -'.
* POS = SY- FDPCS + 1.
* SORTFI ELD = TC_COL- SCREEN- NAME+PCS.
* SORT | T_SDYN BOOK BY (SORTFI ELD) .
* ENDI F.
* 2. 'faster' version
* FI ELD_SYMBOLS <sort _fiel d>.
* | F WA COLS-SCREEN- NAME CS ' -'.
* POS = SY- FDPCS + 1.
* ASSI GN WA _COLS- SCREEN NAME+POS(*) TO
* <SORT_FI ELD>.
* SORT | T_SDYN BOOK BY (<SORT_FI ELD>).
* ENDI F.
VWHEN ' SRTD .
READ TABLE MY_TABLE CONTROL-COLS | NTO WA_COLS
W TH KEY SELECTED = ' X'.
| F SY- SUBRC = 0.
SORT | T_SDYN_BOOK BY (WA _COLS- SCREEN NAME+10)
DESCENDI NG
ENDI F.
* second net hod
* LOOP AT MY_TABLE CONTROL-COLS | NTO WA _COLS VWHERE
* SELECTED = ' X'.
* SORT | T_SDYN_BOOK BY (WA _COLS- SCREEN- NAME+10)
* DESCENDI NG,
* ENDL OOP.
ENDCASE.
ENDMODULE. " USER_COWVAND 0130 | NPUT
FORM routines
Lo <
_____ *
*& Form TABLE_PAGQ NG
*
_____ *
* | mpl ement ati on of tabl e paging
*
_____ *
* -->P_SAVE XK function
code
* -->P_MW_TABLE CONTROL_TOP_LINE table index
* (TOP_LI NE)
* -->P_MY_TABLE _CONTROL_LI NES itab rows
* (maxi mum

inA AN

* -->P_LOOPLI NES Screen rows
* (SY- LOOPC at

FORM TABLE_PAG NG USI NG P_SAVE_K

P_MY_TABLE CONTROL_TOP LI NE
P_MY_TABLE_CONTROL_LI NES
P_LOOPLI NES.

CALL FUNCTI ON ' SCROLLI NG I N TABLE'
EXPORTI NG
ENTRY_ACT =
P_MY_TABLE_CONTROL_TOP_LI NE
ENTRY_TO
P_MY_TABLE CONTROL_ LI NES
LOOPS
OK_CODE
| MPORTI NG
ENTRY_NEW
P_MY_TABLE_CONTROL_TOP_LI NE
EXCEPTI ONS
NO ENTRY_OR _PAGE ACT
NO _ENTRY_TO
NO OK_CODE_OR PAGE GO
OTHERS
| F SY- SUBRC <> 0.
* not required
ENDI F.
ENDFORM " TABLE PAG NG

P_LOOPLI NES
P_SAVE_OK

(I T
~owONPE

Context Menus on Screens F'
A

Contents:

® Creating, using and modifying context menus

8 SAP AG 1999

Unit 1
Unit 2
Unit 3
Unit

Unit 5
Unit 6
Unit 7
Unit 8
Unit 9
Unit 10
Unit 11
Unit 12

Course Overview
Basicsfor Interactive Lists
The Program Interface

Interactive List Techniques
Introduction to Screen Programming
Screen Elements for Output
Screen Elements for Input/Output
Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menuson Screens
Listsin Screen Programming
Preview: Control Framework

Context menus (right mouse key, SHIFT F10) are shortcuts for functions that are frequently used.

They can be used to display context-sensitive menus. The context is defined by the position (cursor
for SHIFT F10, mouse location for right mouse key) where the user called the context menu. If
needed, you can specify the context more precisely with the displayed contents. This permits the user
to select functions that are relevant for the current context using the context menu.

Y ou define whether a context menu should be offered when you create a screen object (screens,
input fields, table controls, boxes, ...). When the user selects a context menu on an object, an event
mechanism (as understood by ABAP objects) cdlls a certain subroutine in the application program.
The program is assigned a menu reference. The program uses this menu reference to build the
display menu. Menus defined with the Menu Painter and dynamic menus can be used here.

After the user executes a menu function, the application program regains control and can react to the
user input.

Context menus are assigned to output fields. When you assign a context menu to a box, table control
or screen (normal or subscreen), al the subordinate output fields that do not have a context menu
inherit that one.

m You can create a context menu from within the object list of the Object Navigator. Position the
cursor on GUI status and right-click. The Object Navigator automatically opens the Menu Painter.

m Of course you can aso create a context menu directly in the Menu Painter.

m A context menu isaspecia GUI status. Assign it a name, a descriptive text and status type Context
menu.

m In acontext menu you can link any function codes and function texts. In particular, you can take
advantage of your screen pushbuttons. The functions aready provided in the interface can be used as
an F4 input help.

m The link technique ensures consistent context menus in large applications.
m You should observe the following rules when designing context menus.
* Do not use any functions that cannot be found elsewhere in the system (pushbuttons or interface).
* Avoid using more than two hierarchy levelsin context menus.
* Do not use more than 10 entries, but map al the available pushbuttons.
* Use separators to structure the context menu opticaly.

* Place object-specific statements at the beginning of the menu.

m Pressing the right mouse key triggers a callback routine in your program. Y ou can cregate this
callback routine in your application program with forward navigation. It is named
ON_CTMENU_<narne>. You define which callback routine is called in the Screen Painter.

m You can directly assign a calback routine to input/output fields, text fields and status icons.
Checkboxes, radio buttons and pushbuttons do not have their own callback routines. However, these
fields can inherit context menus from boxes or screens.

m If you assign a callback routine to atable contral, it istriggered for al the fields of the table control
that do not have their own callback routine.

m The callback routine has the following form:
FORM ON_CTMENU <nane> USI NG p_nenu TYPE REF TO cl _ctnenu.

<definition of the context nenu>.
ENDFCRM

m The context menu is built with a method call for the instance of class cl _ct menu that was passed.

m Clicking with the right mouse key on an output field triggers the corresponding callback routine.

m You can now use the static method | oad_gui _st at us of classcl _ct menu to load a context
menu that was predefined in the Menu Painter. Using other methods of class cl_ctmenu (see next
dide) you can aso completely rebuild the context menu or modify a loaded menu.

m |f the user triggers afunction in the context menu, the corresponding function code is placed in the
command field and triggered depending on function type PAI of the screen.

m Theclasscl _ct menu provides a number of other methods in addition to the static method
| oad_gui _st at us. You can usethem to adjust the context menu at runtime (e.g. using the
vauesin datafields).

m The corresponding methods are called within the callback routine.

m You can find further information in the documentation for classcl _ct nmenu in the Class Builder.

Unit: Context Menus on Screens
Theme: Creating and Using a Context Menu

- At the conclusion of these exercises, you will be able to:
@ Use context menus in your programs.
&
Make the functions for your table control available in a context menu.
o,

10-1 Create a GUI status with type context menu and use it for the output fields on
screen 130.

10-1-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410TABS TABLE_CONTROL3).
Y ou can use the model solution SAPBC410CONS CONTEXTMENU for
orientation.

10-1-2 Create the GUI status sub130 with type context menu and the short
description Table control subscreen. Assign the following functions to the

menu:

Context menu | Function code: Function text
SELE Select all
DSELE Deselect all
DELE Delete line
SRTU Sort ascending
SRTD Sort descending
Separator First page
P- - Previous page
P- Next page
P+ Last page
P+ +

10-1-3 Assign function type * * (space) to all of the functions. Deactivate the
function DELE.

10-1-4 In the screen attributes of 130, declare that you want to use subroutine
on_ctmenu_sub130 to create the context menu.

10-1-5 Write the subroutine to create the context menu.

10-1-6 Additional task:
Activate the DELE function at runtime if the user is in booking maintenance
mode. Note that you must pass the function code to the method in a table
with type ui_functions.

Unit: Context Menus on Screens
/ Theme: Creating and Using a Context Menu

10-1 Modd solution: SAPBC410CONS CONTEXTMENU
Add the coding in bold type to your program, and create the subroutine.

*& ___ *
*& Form ON_CTMENU_SUB130
*& ___ *

FORM on_ctmenu_sub130 USING p_menu TYPE REF TO cl_ctmenu.
data fcodes type ui_Ffunctions.

load of the context menu defined in the menu painter

CALL METHOD cl_ctmenu=>load_gui_status
EXPORTING program = sy-cprog
status = "SUB130*

menu = p_menu.

activate DELE for deleting bookings in maintain booking mode
CHECK NOT maintain_bookings 1S INITIAL.

append "DELE" to fcodes.

CALL METHOD p_menu->enable_functions EXPORTING fcodes = fcodes.

ENDFORM. " ON_CTMENU_SUB130

Lists in Screen Programming H'
A

Contents:

® Lists on screens

8 SAP AG 1999

Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit 11
Unit 12

© 00 N oo 0o~ WwDN PP

5

Course Overview

Basicsfor Interactive Lists

The Program Interface

Interactive List Techniques
Introduction to Screen Programming
Screen Elements for Output

Screen Elements for Input/Output
Screen Elements. Subscreens and Tabstrip Controls
Screen Elements: Table Controls
Context Menus on Screens

Listsin Screen Programming
Preview: Control Framework

m A listis gererally used to output mass data. It can be output on either the screen or a printer.
m List may contain colors, symbols and icons as well as text.

m Thereisastandard GUI status for lists. Lists may aso have a header and up to four lines of column
headers. These are independent program objects, and are trandatable.

m You can aso program interactive lists, which allow usersto select lines or particular values. A
selection triggers further processing. This might, for example, generate a further list contaning a
detail list.

m To find out more about list processing, refer to the units Basics for Interactive Lists, The Program
Interface and Interactive List Techniques.

m You fill the corresponding basic list buffer with WRI TE statements at PBO or PAI. Y ou can create
your own list and column headers by programming a TOP- OF- PAGE event. Thisevent will be
triggered whenever anew page is created in the list buffer (NEW PAGE) .

m You can direct the output directly to the spool with the NEW PAGE PRI NT ON statement.

m To create interactive lists on screens, you can use the list events AT LI NE- SELECTI ON, AT
USER- COMVAND, TOP-COF- PAGE, END- OF PACE and TOP_OF_PAGE DURI NG LI NE-
SELECTI ON.

m Thereis no common list buffer outside of a CALL levdl.

m Thelist display is processed at the end of the screen in which LEAVE TO LI ST- PROCESSI NG
was programmed at PBO or PAI.

m Todirect the output to the spool, use the NEW PAGE PRI NT ON statement, but not LEAVE TO
LI ST- PROCESSI NG

To create alist that is displayed on a screen, use the ABAP statement LEAVE TO LI ST-
PROCESSI NG This sets a switch that ensures that the contents of the list buffer are output once
the current screen has been processed. The SET PF- STATUS SPACE statement ensures that the
list is displayed with the standard GUI status for lists.

Once the screen has been fully processed and LEAVE TO LI ST- PROCESSI NGwas executed,
the list is displayed on list screen 120 (screen for a basis program).

Y ou can aso use the following form: LEAVE TO LI ST- PROCESSI NG AND RETURN TO
SCREEN 0. SET PF- STATUS SPACE. WRITE ... LEAVE SCREEN

When the system exits list processing (user presses F3, or ABAP statement LEAVE LI ST-
PROCESSI NG), the system carries on processing the program with the screen following the one
from which the list processing was started. Y ou can override this by using the AND RETURN TO
SCREEN <scr > additioninthe LEAVE TO LI ST- PROCESSI NG statement.

If you include the ABAP statement SUPPRESS DI ALOGin a PBO module, the current screenis
not displayed.

m If you want to display alist in adiaog box within a transaction, you must call a screen, but include
the SUPPRESS DI ALOG statement in its PBO processing block.

m To return to the calling screen after leaving the list, declare: LEAVE TO LI ST- PROCESSI NG
AND RETURN TO SCREEN 0.

Unit: Listsin Screen Programming
Theme: Displaying alist on a screen

At the conclusion of these exercises, you will be able to:

Use lists on screens in your programs.

*e e

Extend your flight maintenance screen to display a booking list. Allow
: ~ the user to display the bookings by choosing a pushbutton or menu entry.
))) Makeit possible to sort thelist dynamically.

Program the booking list.

Extend your program Z##BC410_SOLUTION from the previous exercise (or copy the model
solution SAPBC410CONS_CONTEXTMENU). You can use the model solution
SAPBC410LISS LISTS ON_DYNPROS for orientation.

Create a function BOOK in status STATUS 100, assigning it to function key F5, a pushbutton,
and a menu entry. The function is already in the function list of your interface, so you can use
the F4 help.

Call screen 200 if the user chooses the BOOK function. Create the screen (type: normal). In
the PBO event of the screen, call amodule in which you create the list. Screen 200 isonly a
container — you should not actually display it. Use your subroutines to read and display the

booking data. Set the GUI status and GUI title BOOK and start list processing.

Use the TOP-OF-PAGE to create list headers in the same way you would in TOP-OFPAGE
DURING LINESELECTION. Make sure that the headings are not displayed on the flight list
aswell. Stop the standard list header from being displayed on the booking list. (NEW PAGE
NO- Tl TLE NO HEADI NG before the first display.) If there are no bookings for the selection
data, display message 186 from message class BC410 as an information message.

Test your program. Good work for just aweek, isn't it!

Unit: Listsin Screen Programming
/ Theme: Displaying alist on a screen

Modd solution: SAPBC410LISS LISTS ON_DYNPROS
Add the coding in bold type to your program, and create the module.

Flow logic for screen 200

PROCESS BEFORE OUTPUT.

MODULE list.

*

PROCESS AFTER INPUT.

Top include

number of lines of an internal table

DATA lines type i.

Event include

TOP-OF-PAGE.

CHECK sy-dynnr = 200.

FORMAT COLOR COL_HEADING.

ULINE.

WRITE: / "Flight:"(t0l1), wa_sbook-carrid, wa_sbook-connid,
AT sy-linsz space,

/ "Date:*"(t02), wa_sbook-fldate, AT sy-linsz space.

ULINE.

PBO moduleinclude

*& Module LIST OUTPUT

CHECK NOT wa_sflight-carrid 1S INITIAL.
CHECK NOT wa_sTflight-connid 1S INITIAL.
CHECK NOT wa_sflight-fldate 1S INITIAL.
REFRESH it_sbook.

PERFORM read_bookings

USING wa_sflight-carrid
wa_sflight-connid

wa_sflight-fldate

APPEND LINES OF it_sbook read TO it_sbook.

DESCRIBE TABLE it_sbook LINES lines.

IF lines = 0.

MESSAGE 1186(bc410).

ELSE.

SORT it_sbook BY carrid connid fldate bookid.
NEW-PAGE NO-TITLE NO-HEADING.

PERFORM display_bookings.

SET PF-STATUS "BOOK®.

SET TITLEBAR "BOOK™.

ENDIF.

CLEAR: wa_sbook-bookid.

LEAVE TO LIST-PROCESSING AND RETURN TO SCREEN O.
SUPPRESS DIALOG.

ENDMODULE. " LIST OUTPUT

Appendix H'
DA

[Q ® This section contains supplementary material
to be used for reference
This material is not part of the standard course

® Therefore, the instructor might not cover this
during the course presentation

8 SAP AG 1999

s Documentation Links

Ref. [f§Path in documentation

nuraber

ILB-1 SAP Library ® Basis Components® ABAP Programming and Runtime
Environment ® BC - ABAP Programming ® ABAP User Dialogs ® Selection
Screens

ILB-2 SAP Library ® Basis Components® ABAP Programming and Runtime
Environment ® BC - ABAP Programming ® ABAP User Dialogs ® Selection
Screens ® Defining Selection Screens

GUI-1 In the Menu Painter: Goto ® Interface objects;
Function key settings® <name> ® Pushbutton settings;
Interface ® Subobject ® Create

GU|l-2 |BC-Basis® ABAP Workbench ® BC - ABAP Workbench: Tools® ABAP
Workbench: Tools ® Menu Painter ® Functions

GUI-3 In the Menu Painter: Utilities ® Help texts ® Internal key numbers

ILS-1 In the Menu Painter: Utilities ® Help texts ® Standards/proposals

ILS-2 In the ABAP Editor: Utilities ® Help on..., ABAP term: READ

ILS-3 In the ABAP Editor: Utilities ® Help on... , ABAP term: MODIFY

ILS-3 In the ABAP Editor: Utilities ® Help on... , ABAP term: GET CURSOR

DIA-1 | SAP Library ® Getting Started with the SAP System® Layout Menu

DIA-2 | SAP Library ® Basis® ABAP Workbench® BC - ABAP Workbench: Tools ®
ABAP Workbench: Tools ® Screen Painter ® Working with element attributes

DIA-3 | SAP Library ® Basis® ABAP Workbench® BC - ABAP Workbench: Tools ®

ABAP Workbench: Tools® Screen Painter ® Creating screens.

OUT-1 |Inthe Screen Painter: Goto ® Trandation

OUT-2 | SAP Library ® Basis Components® ABAP Workbench® BC - SAP SyleGuide ® R/3
Icons and symbols® lcons® |cons as status displays.

INP-1 SAP Library ® Basis Components ® ABAP Workbench ® BC — SAP Style Guide ®
Interface elements® Input/output fields

INP-2 SAP Library ® Basis Components ® ABAP Workbench ® BC - ABAP Workbench:
Tools® ABAP Workbench: Tools® Screen Painter ® Defining the Element Attributes
® Choosing Field Formats

INP-3 SAP Library ® Basis Components® ABAP Workbench® BC - SAP Style Guide ®
Functions — General guidelines® Navigation functions- Overview.

INP-4 SAP Library ® Basis Components ® ABAP Workbench ® BC - SAP Syle Guide ®
Functions — General guidelines® Navigation Functions —Overview ® Comparison of
Exit, Back, and Cancel.

SUB-1 SAP Library ® Basis Components® ABAP Programming and Runtime Environment ®
BC - ABAP Programming® ABAP User Dialogs® Screens® Complex Screen
Elements ® Tabstrip Controls

SUB-2 SAP Library ® Basis Components® ABAP Programming and Runtime Environment ®
BC - ABAP Programming® ABAP User Dialogs® Sdlection Screens® Subscreens
and Tabstrip Controls on Selection Screens

TAB-1 SAP Library ® Basis Components® ABAP Programming and Runtime Environment ®

BC - ABAP Programming® ABAP User Dialogs® Screens® Complex Screen
Elements ® Table Controls

Each entry in the glossary contains a reference to the application component to which it belongs. Y ou can use this
path in the R/3 Library to find further information. For example, for more information about ABAP Dictionary,
ook under ABAP Workbench (application component BC-DWB).

A

ABAP Workbench (BC-DWB)

Central and redundancy -free storage facility for all data used in the R/3 System. The ABAP Dictionary describes
thelogical structure of application development objects and their representation in the structures of the underlying
relational database. All runtime environment components such as application programs or the database interface,
get information about these objects from the ABAP Dictionary. The ABAP Dictionary is an active data dictionary
and is fully integrated into the ABAP Workbench.

ABAP Workbench (BC-DWB)

ABAP Native SQL allowsyou to include database-specific SQL statementsin an ABAP program. Most ABAP
programs contai ning database-specific SQL statements do not run with different databases. If different databases
are involved, use Open SQL. To execute ABAP Native SQL in an A BAP program, use the statement EXEC.

ABAP Workbench (BC-DWB)
Subset of standard SQL statements.

To avoid conflicts between database tables and to keep ABAP programs independent from the database system
used, SAP has generated its own set of SQL statements known as Open SQL.

Using Open SQL allows you to access all database tables available in the R/3 System, regardless of the
manufacturer.

ABAP Workbench (BC-DWB)
Program written in the ABAP programming language.

An ABAP program consists of a collection of processing locks, which are processed sequentially as soon as they
are called by the runtime system.

There are two main kinds of ABAP program:
Report programs (ABAP reports)
Dialog programs
Basis Services’Communication Interfaces (BC-SRV)

ABAP Workbench tool that allows users without knowledge of the ABAP programming language, or table or
field names, to define and execute their own reports.

To determine the structure of reportsin ABAP Query, users only have to enter texts, and select fields and options.
Fields are selected from functional areas and can be assigned a sequence by numbering.

There are three types of report available:
Basic lists
Statistics
Ranked lists
ABAP Workbench (BC-DWB)
ABAP program that reads and analyzes the data in database tables without modifying the database.

ABAP report programs are defined as type '1' programs and are linked to a particular logical database. Both of
these values are specified in the program attributes.

When you execute an ABAP report program, you can display the resulting output list - also known as areport - on
the screen or send it to a printer.

ABAP Workbench (BC-DWB)
SAP'sintegrated graphical programming environment.
The ABAP Workbench supports the devel opment and modification of R/3 client/server applications written in

Y ou can use the tools of the ABAP Workbench to
write ABAP code
design screens
create user interfaces
use predefined functions
get access to database information
control accessto development objects
test applicationsfor efficiency
debug applications
ABAP Workbench (BC-DWB)
Process that makes an object available at runtime.

When you activate an object, the system generates aload version that application programs and screens can access
and use.

Graphical User Interface (BC-FES-GUI)

Dialog box, allowing the user to work on one screen without the previous screen first being closed.
Business Navigator (BC-BE-NAV)

Organizational tool for displaying all of the business applicationsin the R/3 System.

The application hierarchy has a user interface similar to that of afile manager, with a hierarchical structure. You
can display either the standard applications delivered with the system, or acompany-specific hierarchy.

Integration Technology ALE (CA-BFA-ALE)
Application Link Enabling (ALE) refersto the creation and operation of distributed applications.

The basic ideaisto guarantee a distributed, but integrated, R/3 installation. This involves business-controlled
message exchange with consistent data across loosely linked SAP applications.

Application integration is achieved not viaa central database, but via synchronous and asynchronous
communication.

ALE comprises the following three layers:
application services
distribution services
communication services
Graphical User Interface (BC-FES-GUI)
Element of the graphical user interface,

The application toolbar is situated below the standard toolbar on the screen. It contains pushbuttons, which allow
users quick access to application-specific functions, and occupies the whole of the primary window.

Before you can assign afunction to a pushbutton, you must assign it to afunction key.
Computing Center Management System (BC-CCM)
Authority to perform a particular action in the R/3 System.

Each authorization refers to one authorization object and defines one or more permissible values for each
authorization field listed in the authorization object.

Authorizations are combined in profiles which are entered in a user's master record.
Computing Center Management System (BC-CCM)
Element of an authorization object.

In authorization objects, authorization fields represent values for individual system elements which are supposed
to undergo authorization checking to verify a user's authorization.

Element of the authorization concept.
Authorization objects allow you to define complex authorizations.

An authorization object groups together up to 10 authorization fieldsin an AND relationship in order to check
whether a user is allowed to perform acertain action.

To pass an authorization test for an object, the user must satisfy the authorization check for each field in the
object.

Computing Center Management System (BC-CCM)
Element of the authorization concept.

An authorization profile gives auser access to the system. It contains authorizations, identified by the name of an
authorization object. Users have all of the authorizations contained in each profile entered in their user master
record.

B

Basis Services/Communications Interfaces (BC-SRV)

Interface allowing you to import large amounts of datainto an R/3 System.

Y ou use batch input to import legacy datainto your new R/3 System, and for periodic imports of external data.
Basis Services’Communications I nterfaces (BC-SRV)

Set of transactions supplied with data by a program.

The transactions are stored as a stack. Y ou can then run the session later in dialog mode. The database changes are
not made until you have run the session.

This method allows you to import large quantities of datainto an R/3 System in a short time.

C

ABAP Workbench (BC-DWB)

Information folder in the Workbench Organizer and Customizing Organizer for entering and administrating all
changes to Repository objects and Customizing settings made during a devel opment project.

ABAP Workbench (BC-DWB)
A change request that can be transported into other systems once it has been released.
Business Engineer (BC-BE)

In commercial, organizational and technical terms, a self-contained unit in an R/3 System with separate master
records and its own set of tables.

See also the glossary entry for "logical system".
Graphical User Interface (BC-FES-GUI)

Memory resource that stores a copy of the last information to be copied with the 'Copy' function, or cut with the
‘Cut' function.

Y ou can use the 'Paste’ function to copy data stored in the clipboard to the current program.

The clipboard is managed by the operating system.

Graphical User Interface (BC-FES-GUI)

Input field in the standard toolbar to the right of the ENTER pushbutton.

Y ou can enter fastpaths or transaction codesin thisfield, to choose menu entries or call transactions respectively.
ABAP Workbench (BC-DWB)

Point at which the system changes from one control group to another in areport.

The control group change represents a change in the value of whichever field is currently most significant. In an
ABAP program, you trigger it with the AT NEW statement.

D

ABAP Workbench (BC-DWB)

Language used to define all the attributes and properties of a database management system

The query language SQL (Structured Query Language) consists of two kinds of statements:
DDL (data definition language)
DML (data manipulation language)

ABAP Workbench (BC-DWB)

Sequential dataset in the memory area of areport.

ABAP Workbench (BC-DWB)

Language for processing datain a database management system.

The query language SQL (Structured Query Language) consists of two kinds of statements:
DDL (data definition language)

DML (data manipulation language)

DataModel (BC-RMG-DMO)

Structured description of data objects, their attributes, and the relationshi ps between them.

There are different types of data model, depending on the types of data structure you want to define (for example,
relational data model).

ABAP Workbench (BC-DWB)
Physical unit used by a program.

Each data object has a certain data type, which defines how ABAP processesit. All data object occupy memory
space.

ABAP Workbench (BC-DWB)
Attribute of a Data Object

Datatypes describe the technical attributes of data objects. They are purely descriptions, and occupy ho memory
space.

ABAP Workbench (BC-DWB)

In a database commit, all of the database update requests from the current logical unit of work (LUW) are written
to the database.

In the R/3 System, database commits are either triggered automatically or manually, using the ABAP statement
COMMIT WORK (or, in Native SQL, the databasespecific equivalent).

ABAP Workbench (BC-DWB)

If you discover an error within an LUW, you can undo all of the update requestsin the LUW (that is, since the last
commit) using a database rollback.

In the R/3 System, database rollbacks are either triggered automatically or manually, using the ABAP statement
ROLLBACK WORK (or, in Native SQL, the databasespecific equivalent).

ABAP Workbench (BC-DWB)

A type of view in the ABAP Dictionary.

Database views are implemented using an equivalent view in the underlying database system.
ABAP Workbench (BC-DWB)

Group of logically related development objects. A development class containsall the objects which must be
corrected and transported as awhole. The objects which make up atransaction usually belong to one development
class. Customer development classes begin with "Y' or 'Z'.

E

Electronic Data I nterchange.

Business-to-business electronic data interchange (for example, sales documents). The business partners may bein
different countries, and might be using different hardware, software, and communication services. The datais
formatted according to fixed standards.

I'n addition, SAP ALE enables companies to exchange datainternally.
ABAP Workbench (BC-DWB)
Type of ABAP keyword.

An event keyword defines a processing block in an ABAP program. The processing block is processed when the
particular event occurs.

Examples. GET, START -OF-SELECTION, AT SELECTION-SCREEN.

F

ABAP Workbench (BC-DWB)
Group of functions that logically belong together and use a shared program context at runtime.

The function group is a container program for the function modules that it contains. Functions that work with the
same data are usually all included in the same function group.

Function groups are an administrative unit within the Function Builder.
ABAP Workbench (BC-DWB)
Reusable function.

Function modules are external subroutines that you maintain centrally in the Function Builder, and which can be
called from any ABAP program. This alows you to avoid redundancy in your coding and makes programming
more efficient.

Unlike normal subroutines, function modules have a defined interface.
Basis Services/Communications Interfaces (BC-SRV)

Y ou can use ABAP Query to define reports without any previous programming knowledge. When you create a
query, you must assign it to afunctional area, which determines the tables and fields that the query can use.
Functional areasin ABAP Query are usually subsets of logical databases.

Basis Services’Communications I nterfaces (BC-SRV)
Element of ABAP Query

A functional group isacollection of fieldsthat formsalogical unit. Y ou use them to provide users with a
selection of fields so that he or she does not need to sort through all of the fieldsin alogical database in order to
create aquery.

Y ou must assign afield to afunctional group in order for it to be used later in aquery.

G

Graphical User Interface (BC-FES-GUI)
Main element of the graphical user interface.
A GUI status consists of:

A menu bar with menus

A standard toolbar

An application toolbar

Functions, and function key settings

H

ABAP Workbench (BC-DWB)

Main memory areafor storing key fields of alinein areport list.

If you want to select further data based on aline selection, the system can find the key fieldsthat it requiresin the
hide area.

Y ou must place the key fieldsinto the hide area yourself using the HIDE statement.

Graphical User Interface (BC-FES-GUI)

Graphical representation of an object or functions. Icons are small colored bitmaps that are used for pushbuttons,
checkboxes, and radio buttons, either with or without text.

Unlike symbols, icons always have the same size, which is one of two, selected automatically by the system
according to thefont size.

IMG (BC-BE-IMG)
The R/3 International Demonstration and Education System.

IDES contains several fictional companiesthat model the different business processesin the R/3 System. Simple
user guides and sample master and transaction data allow you to simulate awide range of scenarios. This makes
IDES auseful tool for training your project team.

ABAP Workbench (BC-DWB)

DataModeler (BC-RMC-DMO)

Passing of attributes from one data object to another.

Attributes can either be passed generally (all attributes), or by copying individual characteristics.
Workflow (BC-BMT-WFM)

»1sa" relationship between object types in which shared attributes and methods of supertypes are passed
automatically to subtypes.

Subtypes usually have the same key fields as the supertype, but a more wide-ranging function.
ABAP Workbench (BC-DWB)
Temporary data structure that exists during the runtime of a program.

Internal tables are one of two structured datatypesin ABAP. They consist of any number of tablelines, each of
which has the same structure. They may or may not have a header line.

The header lineis astructure, and serves as awork areafor the internal table. The data type of the line can be
either elementary or structured.

L

Graphical User Interface (BC-FES-GUI)

Standard function in the R/3 System used to display lists.
ABAP Workbench (BC-DWB)

First line of the screenin alist.

Thelist header is often the same as the title of the program. However, you can maintain it independently of the
program title.

ABAP Workbench (BC-DWB)
Special ABAP program that combines the contents of certain database tables.

Y ou can attach alogical database to an ABAP report program as one of the program attributes. It suppliesthe
report with a set of hierarchically-structured table lines, which can come from different database tables. This saves
the programmer from having to retrieve the data him- or herself.

Theterm ,logical database” applies not only to the program, but also tothe dataitself.
ABAP Workbench (BC-DWB)

Inseparabl e sequence of database operations, working on the all -or-nothing principle, where the operations are

RPN SRR | [S BRI | [P (I

From the point of view of the database system, logical units of work (LUWSs) are crucial to the integrity of the
datain the database.

M

Graphical User Interface (BC-FES-GUI)
Graphical element for choosing functions.

Menus are graphical elementsthat present the user with a series of options, each of which triggersafunctionin
the system. This can include opening a submenu.

There are two types of menu:
Menu bars
Action menus

To choose amenu entry, single-click it with the mouse, or position the cursor on it using the arrow keys and press
ENTER.

Graphical User Interface (BC-FES-GUI)
Element of the graphical user interface.
The menu bar appears directly below the title bar in the primary window.

When you choose an entry in the menu bar, the system opens the corresponding action menu below the entry. You
can put up to 6 menus in the menu bar, to which the system automatically adds the * System’ and ‘Help’ menus.

ABAP Workbench (BC-DWB)
Placeholder in the standard system for customers’ own menu entries.

Menu exits allow you to link your own functions to menu entries reserved in the standard system as part of the
enhancement concept (Transaction CMOD). Y ou use an associated function modul e exit to implement the
function.

ABAP Workbench (BC-DWB)

Development tool in the ABAP Workbench for designing the graphical user interface of an ABAP program. Each
GUI consists of atitle and a GUI status.

The GUI status contains the following elements:
Menu bar with menus
Standard toolbar
Application tool bar
Functions, assigned to function keys.
ABAP Workbench (BC-DWB)
Collection of messages that are used by a particular application.
Each ABAP program is linked to a message class. The name of the class can be up to 20 characters.
ABAP Workbench (BC-DWB)
Datathat describes other data.
M etadata are data definitions, usually stored in adata dictionary.
Graphical User Interface (BC-FES-GUI)
Dialog box that must be processed or canceled before the screen behind it can be processed further.
ABAP Workbench (BC-DWB)
Customer-specific change to an R/3 Repository object.

When you upgrade the system, you need to check, and possibly update, your modified objects.

P

ADAD\VAviZlhAanAlL DA MWAIDY

Group of program statements that are processed together as a unit at a particular point.

ABAP is an event-oriented language (the flow of a program is controlled by events). Program sections are
therefore grouped into processing blocks, which are assigned to particular events. Events are triggered in the
program using event keywords.

A processing block consists of all of the statements between two event keywords or between an event keyword
and aFORM statement.

ABAP Workbench (BC-DWB)
A set of statements that provides a solution to atask.

A program consists of a set of statementsthat are interpreted and executed by a computer.

Q

Basis Services/ Communication I nterfaces (BC-SRV)
Report that users without programming expertise can generate using ABA P Query.
There are three different types of query:
Basic list
Statistic
Ranked list

R

ABAP Workbench (BC-DWB)

Central store for development objectsin the ABAP Workbench.

Development objectsinclude ABAP programs, screens, documentation, and so on.
ABAP Workbench (BC-DWB)

Information system that enables you to find information about al of the development objectsin the R/3 System
and the relationships between them.

The user interface of the R/3 Repository Information System displays objectsin ahierarchical structure similar to
afile manager.

The R/3 Repository Information allows you to:
Create lists of programs, tables, fields, data elements, and domains.
Find out where tables and fields are usedin ABAP programs and screens.
Display foreign key relationships.
ABAP Workbench (BC-DWB)
Remote Function Call.

RFC isan SAP interface protocol based on CPI -C. This simplifies the process of programming communication
between systems.

RFC allows you to call and execute predefined functionsin aremote system. They have built-in communication
control, parameter passing, and error handling.

S

ABAP Workbench (BC-DWB)

Global, user-specific memory.

Y ou address the SAP memory using SPA/GPA parameters.

ABAP Workbench (BC-DWB)

A screen (in the sense of a'dynpro’ or DY Namic PROgram) consists of a screen and its underlying flow logic.

The main components of a screen are:

attributes (e.g. screen number, next screen)
layout (the arrangement of texts, fields, and other elements)
field attributes (definition of the properties of individual fields)
flow logic (calls the relevant ABAP modules)

Graphical User Interface (BC-FES-GUI)

Screen in an ABAP report program.

Y ou use the selection screen to enter the selection criteria by which the system should retrieve data from the
database.

ABAP Workbench (BC-DWB)
Internal table containing selection criteria

The system creates a selection table for each SELECT-OPTIONS statement that you use in an ABAP report
program. They allow you to save complex selectionsin a standard format.

T

ABAP Workbench (BC-DWB)

Tabular collection of data. The definition is stored in the ABAP Dictionary, the contents are stored in the
database.

A table consists of columns (sets of data values with the same type) and lines (data records).

Each line of atable can be identified uniquely using afield or acombination of fields.

ABAP Workbench (BC-DWB)

Dataobject created in an ABAP program using the TABLES statement.

A tablework areais a structure with the same construction as the corresponding table in the ABAP Dictionary.
ABAP Workbench (BC-DWB)

Information carrier in the Workbench Organizer for entering and managing all changes to Repository objects and
Customizing settings performed by employees within a devel opment project.

A task is assigned to a change request

ABAP Workbench (BC-DWB)

Text constant that you create and maintain outside programs.

Y ou use text symbolsinstead of text literals to make texts easier to maintain and translate.
Each text symbol isidentified by athree-character code.

Graphical User Interface (BC-FES-GUI)

Element in the graphical user interface.

Thetitle bar isthe top line of every primary window and dialog box in the R/3 System.
It contains the title of the window, and icons that allow you to control the window size.
ABAP Workbench (BC-DWB)

A logical processin the R/3 System.

From the user’ s point of view, atransaction isalogical unit (for example, to generate alist of customers, change a
customer’ s address, create areservation for aflight, or run a program). From the programmer’s point of view, it is
acomplex object, consisting of amodule pool and a set of screens. Y ou start transactions using a transaction code.

After logging onto the R/3 System, there are three levels- the SAP level, work arealevel, and application level. A
transaction is a process at application level. To start the transaction, you can either use the menus or enter afour-
character transaction code. Using the transaction code saves you having to remember the menu path.

To start a program from the ABAP Workbench, you can either choose Tools® ABAP Workbench® ABAP
Editor, or enter SE38 in the command field.

ABAP Workbench (BC-DWB)

Sequence of up to twenty characters that identifies an SAP transaction.

When you enter atransaction code in the command field, the corresponding transaction is started in the R/3
System.

For example, the transaction code SM 31 identifies the transaction ,, Display Table".

ABAP Workbench (BC-DWB)

Table typein the ABAP Dictionary.

You define transparent tablesin the ABAP Dictionary. They are created in the database.

Computing Center Management System (BC-CCM)

Document for copying corrections between different kinds of system.

Released corrections are collected in atransport request. When you release the request, it is transported.
For example, you can transport corrections from an integration system into a consolidation system.
ABAP Workbench (BC-DWB)

Function in the ABAP Editor that enables you to avoid unnecessary type conversionsin ABAP programs.

When the function is called, the system analyzes the parametersin the PERFORM statements and searchesin the
FORM statements for formal parameters with similar technical attributes (type and length). Whenever it finds
two parameters that correspond, it suggests atype for the formal parameter in the FORM statement. Y ou can then
change your coding accordingly.

Basis Services/Communication Interfaces (BC-SRV)

Object in ABAP Query.

The assignment to a user group determines which queries a user is allowed to execute and/or maintain.
ABAP Workbench (BC-DWB)

Technical features and functions available to the user to exchange information with the computer system.

In the R/3 System, you design the user interface in the ABAP Workbench with the Screen Painter and the Menu
Painter.

V

ABAP Workbench (BC-DWB)
Application-specific view of different tablesin the ABAP Dictionary.

When you create atable, you assign akey according to technical criteria. However, the key fields may be
insufficient for solving certain problems, or some of them may be irrelevant. In this case, you can use aview to
access part of atable or aseries of tables.

W

Web Basis (CA-B-WEB)
WebRFC applicat allowing Internet users to access information in the R/3 System.
Users can access SAP reports, display lists, and navigate through reporting trees using URLSs.

