

 TABC42 ABAP Programmiertechniken 1/2
 TABC42 1/2

R/3 System

Release 46B

30.05.2000

TABC42 ABAP Programming Techniques 1/2..0-1

Copyright...0-2

Section Overview..0-4

Section: Techniques for List Creation and SAP Query ...1-1

Content: Techniques for List Creation and SAP Query ..1-2

Introduction...2-1

Course Objectives..2-2

Course Overview Diagram ..2-3

Business Scenario ..2-4

Demonstrations, Copy Templates, and Solutions..2-5

Exercises and Units...2-6

QuickViewer...3-1

QuickViewer: Principle ..3-2

QuickViewer: Initial Access..3-3

Creating a QuickView..3-4

Join Definition: Graphical..3-5

Basis Mode: Principle Structure ...3-6

Structuring a QuickView in the Basis Mode..3-7

Using the QuickView..3-8

Summary ...3-9

SAP Query - Creating Lists..4-1

SAP Query - Creating Lists ...4-2

Overview: Programs and Query ..4-3

Organization of Query ..4-4

Creating a Query ..4-5

SAP Query - Creating Lists ...4-6

Defining a Query ...4-7

Selecting the Work Area and Functional Area...4-8

Creating Local Fields..4-9

Assigning Short Descriptions..4-10

Defining Local Fields ...4-11

Statistics ..4-12

Ranked List...4-13

Basic List: Layout Mode..4-14

Designing a Basic List: Example ..4-15

Basic List: Control Level Processing...4-16

Interactive Functions...4-17

Saving Lists ..4-18

Comparison: SAP Query - QuickView..4-19

Summary ...4-20

Solutions..4-23

Outputting Data in Lists..5-1

Generating a List ...5-2

Setting the List Format ...5-3

Page and Column Headers ...5-4

Defining Line and Field Formats..5-5

WRITE Statement: General Syntax...5-6

Outputting Icons, Symbols, and Lines...5-7

Scrolling in Lists and Lead Columns...5-8

Additional Statements for Page Layout...5-9

Multilingual List Elements ..5-10

System Fields in List Creation ..5-11

Standard List Functions..5-12

Summary ...5-13

Exercises ...5-14

Solutions..5-17

Selection Screen ...6-1

Selection Screen: Overview..6-2

Declaring Fields with PARAMETERS ...6-3

Selections with SELECT -OPTIONS ...6-4

Selection Options and Multiple Selections...6-5

Syntax of the SELECT -OPTIONS Statement..6-6

Designing the Selection Screen I ..6-7

Designing the Selection Screen II...6-8

Initializing the Selection Screen ...6-9

Input Checks: AT SELECTION-SCREEN...6-10

CALL SELECTION-SCREEN ...6-11

Selection Screen: Variants I...6-12

Selection Screen: Variants II ...6-13

Summary ...6-14

Exercises ...6-15

Solutions..6-17

Logical Database..7-1

Generating Lists...7-2

Advantages of a Logical Database...7-3

Logical Database: Overview...7-4

Logical Database: F1S Nodes ...7-5

Sample Program for a Logical Database...7-6

LDB Sub-Objects: Structure..7-7

Events in Logical Databases..7-8

Program Flow and Termination Alternatives ...7-9

LDB Sub-Objects: Selections..7-10

Selection Screen for the Logical Database..7-11

Logical Database: Dynamic Selections..7-12

LDB Sub-Objects: Database Programs ..7-13

Interaction: LDB and Program..7-14

Checking Internal Program Selections...7-15

Summary ...7-16

Exercises ...7-17

Solutions..7-19

Programming Data Retrieval..8-1

Data Retrieval: Internal ..8-2

Reading Multiple Database Tables...8-3

Reading Multiple Database Tables I ..8-4

Reading Multiple Database Tables IIa...8-5

Reading Multiple Database Tables IIb ..8-6

Reading Multiple Database Tables III ...8-7

Reading Multiple Database Tables IV...8-8

Summary ...8-9

Exercises ...8-10

Solutions..8-11

SAP Query - Administration..9-1

ABAP Query - Administration..9-2

Maintaining User Groups...9-3

Authorizations and ABAP Query ...9-4

ABAP Query - Administration..9-5

Defining Functional Areas ...9-6

Overview: Creating Functional Areas..9-7

Defining Functional Areas: Example ...9-8

Defining Functional Areas ...9-9

Allocating Fields..9-10

Additional Information...9-11

Allocating Additional Tables ..9-12

Allocating Additional Fields ...9-13

Selection Options...9-14

Allocating ABAP Statements..9-15

Summary ...9-16

Exercises ...9-17

Data Formatting and Control Level Processing..10-1

Control Level Processing...10-2

Creating an Internal Table ..10-3

Filling an Internal Table ...10-4

Sorting and Editing an Internal Table ..10-5

Control Level Processing for Internal Tables ...10-6

Control Level Processing Schema for Internal Tables..10-7

Summary ...10-8

Exercises ...10-9

Solutions..10-13

Saving Lists and Background Processing..11-1

Saving Lists and Background Processing ...11-2

Options for Saving Lists...11-3

Saving Lists in SAPoffice ..11-4

Saving Lists as PC Files ...11-5

Saved Lists in the Area Menu ...11-6

Saving Lists and Background Processing...11-7

List Printing Options...11-8

Print Parameters ...11-9

Program-Controlled Printing ...11-10

Printing with GET_PRINT_PARAMETERS...11-11

GET_PRINT_PARAMETERS: Applications..11-12

Saving Lists and Background Processing...11-13

The Phases of Background Processing..11-14

Defining Steps..11-15

Determining the Start Date and Releasing the Job..11-16

Summary ...11-17

Optional Exercises...11-18

Solutions..11-19

ALV Grid Control..12-1

ALV Grid Control ...12-2

Controls:Technical Background I...12-3

Controls:Technical Background II ...12-4

ALV Example and Standard Functions ...12-5

ALV Grid Control: Principle ...12-6

Implementing the Control: Screen...12-7

Implementation in the Program...12-8

Generating and Linking Objects ...12-9

Program Flow...12-10

Displaying the Data in the Control ...12-11

ALV Grid Control ...12-12

Field catalog ...12-13

Selected Fields in the Field Catalog...12-14

Filling and Passing On the Field Catalog..12-15

Saving Display Variants...12-16

Filling and Passing On the Layout Structure ..12-17

Interface to Display Method..12-18

ALV Grid Control ...12-19

Outlook: Handling Events I ...12-20

Outlook: Handling Events II..12-21

Summary ...12-22

Appendix...13-1

Generating an Extract: Steps ...13-2

Example: Generating an Extract ...13-3

Sorting and Processing an Extract ..13-4

Example: Control Level Processing...13-5

Schema of Control Level Processing for Extracts ...13-6

Comparing Internal Tables and Extracts ...13-7

Section: Transaction Programming...14-1

Content: Transaction Programming ...14-2

Course Overview..15-1

Course Goals ..15-2

User Dialogs...15-3

Course Overview Diagram: BC410 ...15-4

Main Business Scenario ...15-5

Data Model ...15-6

Implementation in the ABAP Dictionary ..15-7

ABAP Program Types ..15-8

Program Organization...15-9

Basics for Interactive Lists ...16-1

Overview Diagram..16-2

Creating Lists: Overview ..16-3

Selection Screen...16-4

Entering Value Ranges ...16-5

Defining and Calling Selection Screens..16-6

Events: Selection Screen ..16-7

Events: Executable Program / Basic List ..16-8

User Dialogs on Lists..16-9

Events: Detail List...16-10

Potential Problems ...16-11

Placing Global Data in the Hide Area..16-12

Retrieving Data From the Hide Area ...16-13

Valid Line Selection..16-14

Interactive Lists: Unit Summary ...16-15

Basics for Interactive Lists: Exercises ...16-16

Basics for Interactive Lists: Solutions ...16-18

The Program Interface...17-1

Overview Diagram..17-2

User Interfaces: Overview...17-3

Overview: The Screen ..17-4

GUI Title ...17-5

Status: Technical View (1)...17-6

Status: Technical View (2)...17-7

Functions...17-8

Function Key Settings...17-9

Menus and Menu Bars ..17-10

User Interfaces: Creating a GUI status ..17-11

Creating a GUI status..17-12

Adjusting Statuses...17-13

Including Existing Elements..17-14

Creating a GUI Status: Function Key Settings...17-15

Standard Toolbar: Automatic Assignments..17-16

Creating a GUI Status: Application Toolbar ..17-17

Creating a GUI Status: Menu Bar...17-18

User Interfaces: Using a GUI status...17-19

Activating Title and Status...17-20

Event: AT USER-COMMAND..17-21

User Interfaces: Unit Summary ...17-22

The Program Interface: Exercises...17-23

The Program Interface: Solutions...17-25

Interactive List Techniques ..18-1

Overview Diagram..18-2

Flow Control in Details Lists ..18-3

Selecting Multiple Lines ..18-4

Selecting Multiple Lines ..18-5

Reading From the List Buffer ...18-6

Changing the List Buffer..18-7

Sorting lists...18-8

Sorting lists...18-9

Finding Out the Sort Field ...18-10

Sorting Lists: Program..18-11

Controlling the List Sequence and Messages ...18-12

List Navigation...18-13

Messages in Interactive Lists...18-14

Topic Summary..18-15

Interactive List Techniques: Exercises ..18-16

Interactive List Techniques: Solutions...18-18

Introduction to Screen Programming..19-1

Overview Diagram..19-2

Screen Programming: Principles...19-3

Strengths of Screens..19-4

Screens in Dialog Programs ...19-5

Screen Programs: Screen Objects..19-6

Screen Objects..19-7

General Attributes ...19-8

Attributes of Screen Objects (Key) ..19-9

Dynamically Modifiable Static Attributes ..19-10

Screen Programs: Screen Modifications ..19-11

The System Table SCREEN..19-12

Modifying Attributes Dynamically: Example ..19-13

Object Attributes: Modification Groups..19-14

Modifying Attributes Dynamically: Program...19-15

Screen Programs: Screen Processing..19-16

Screens...19-17

Screen: Definition and Use..19-18

Screen: Attributes..19-19

Creating Screen..19-20

Creating a Screen: Screen Attributes ...19-21

Creating a Screen: Element List: ..19-22

Creating a Screen: Layout..19-23

Creating a Screen: Flow Logic ..19-24

Communication: Screen - ABAP Program...19-25

Static Screen Sequence...19-26

Setting the Next Screen Dynamically ..19-27

Inserting a Sequence of Screens Dynamically ...19-28

Calling a Dialog Box Dynamically ..19-29

Window Coordinates ..19-30

Setting the Cursor Position Dynamically ..19-31

Screen Programs: GUI Status for Screens ...19-32

GUI Status for Screens...19-33

Display Standards..19-34

Processing the Function Code...19-35

Screen Programming: Summary ...19-36

Introduction to Screen Programming: Exercises..19-37

Introduction to Screen Programming: Solutions..19-39

Screen Elements for Output ...20-1

Overview Diagram..20-2

Output Elements: Text Fields...20-3

Text Fields..20-4

Text Field: Attributes..20-5

Creating Text Fields..20-6

Hiding a Text Field Dynamically ...20-7

Dynamically Modifiable Attributes: Text Field ...20-8

Dynamic Screen Modifications: Program...20-9

Output Elements: Status Icons ...20-10

Status Icons...20-11

Status Icons: Attributes...20-12

Creating Status Icons ..20-13

Filling a Status Icon..20-14

Output Elements: Group Boxes ...20-15

Group Boxes...20-16

Group Box: Attributes ..20-17

Creating Group Boxes ..20-18

Output Elements: Unit Summary...20-19

Screen Elements for Input/Output...21-1

Overview Diagram..21-2

Input/Output Elements: Input/Output Fields ..21-3

Input/Output Fields ...21-4

Input/Output Fields: Attributes ...21-5

Creating Input/Output Fields...21-6

Default Values in SAP Memory ...21-7

Defining SET/GET Parameter Attributes..21-8

Automatic Field Input Checks...21-9

Field Input Checks with Error Dialog..21-10

Checking Groups of Fields ..21-11

Controlling Error Dialogs ..21-12

Dialog Message Categories ...21-13

The FIELD Statement and Data Transport ...21-14

Conditional Module Calls ..21-15

Execution on Input ..21-16

Execution on Change..21-17

Avoiding the Field Input Checks ..21-18

Navigation - Targets..21-19

Navigation - Dialogs...21-20

Input/Output Elements: Input Help ..21-21

Input Help ...21-22

Dropdown List Boxes ...21-23

Requirements of F4 Help ...21-24

ABAP Dictionary Object: Search Help ...21-25

Using Search Helps...21-26

Search Help Assignment in ABAP Dictionary ..21-27

Overview: Input Help Mechanisms ..21-28

Input/Output Elements: Checkboxes and Radio Button Groups..21-29

Checkboxes and Radio Button Groups..21-30

Radio Buttons and Checkboxes: Attributes ..21-31

Creating a Checkbox...21-32

Creating a Radio Button Group...21-33

Input/Output Elements: Pushbuttons..21-34

Pushbuttons...21-35

Pushbuttons: Attributes ..21-36

Creating Pushbuttons..21-37

Pushbutton Processing..21-38

Input/Output Objects: Summary ..21-39

Screen Elements for Input/Output: Exercises...21-40

Screen Elements for Input/Output: Solutions...21-43

Screen Elements: Subscreens and Tabstrip Controls ...22-1

Overview Diagram VIII ...22-2

Subscreen..22-3

Subscreen (1)..22-4

Subscreen (2)..22-5

Subscreen Area: Attributes ..22-6

Creating a Subscreen Area...22-7

Calling a Subscreen...22-8

Subscreens From External Programs ...22-9

Subscreens: Encapsulation in Function Groups...22-10

Subscreens in Function Groups: Call Sequence...22-11

Subscreens in Function Groups: Data Transport ...22-12

Tabstrip Control...22-13

Screen Element: Tabstrip Control ..22-14

Tabstrip Elements..22-15

Tab Page: Technical View...22-16

Tabstrip Control: Attributes...22-17

Creating a Tabstrip Control ...22-18

Creating a Tabstrip Control: Tabstrip Area ..22-19

Creating a Tabstrip Control: Tab Title ...22-20

Creating a Tabstrip Control: Tabstrip Subscreens...22-21

Scrolling Locally in a Tabstrip Control...22-22

Scrolling Locally in a Tabstrip Control: Coding..22-23

Scrolling in Tabstrip Controls ...22-24

Scrolling in Tabstrip Controls: Coding..22-25

Tabstrip Control on the Selection Screen..22-26

Selection Screens as Subscreens...22-27

Defining A Tabstrip Control on the Selection Screen...22-28

Selection Screen as a Subscreen on the Screen..22-29

Subscreen and Tabstrip Control: Unit Summary ..22-30

Subscreen and Tabstrip Control: Exercises...22-31

Subscreen and Tabstrip Control: Solutions...22-34

Screen Element: Table Controls ..23-1

Overview Diagram..23-2

Table Control: Overview..23-3

Table Control..23-4

Table Control: Features ..23-5

Table Control: Table Settings..23-6

Actions in Table Controls ..23-7

Creating a Table Control..23-8

Table Control: Attributes ...23-9

Creating a Table Control..23-10

Creating a Table Control: Table Control Area ...23-11

Creating a Table Control: Fields...23-12

Creating a Table Control: Selection Column ..23-13

Table Control Attributes at Runtime ..23-14

Table Control Attributes (Structure)..23-15

Processing a Table Control ..23-16

Processing a Table Control (Principle)..23-17

Table Control: Applications (Principle) ..23-18

Filling a Table Control ...23-19

Table Controls: Field Transport in the PBO...23-20

Coding: Filling a Table Control ..23-21

Changing the Contents of a Table Control..23-22

Table Controls: Field Transport in the PAI...23-23

Coding: Changing the Contents of a Table Control ..23-24

Table Control: Further Techniques ..23-25

Changing a Table Control..23-26

Changing the Attributes of a Table Control (1) ...23-27

Changing the Attributes of a Table Control (2) ...23-28

Table Control: Changing Field Attributes Temporarily ...23-29

Table Control: Sorting (Example) ..23-30

Table Control: Scrolling Page By Page (Example) ...23-31

Table Control: Cursor Position (Example)...23-32

Table Control: Unit Summary ...23-33

Table Control: Exercises ..23-34

Table Control: Solutions ..23-39

Context Menus on Screens ...24-1

Overview Diagram..24-2

Context Menus...24-3

Creating a Context Menu ...24-4

Creating a Context Menu: Assigning Functions ..24-5

Linking Screen Objects ..24-6

Using the Context Menu ..24-7

Modifying Context Menus Dynamically ...24-8

Context Menu: Unit Summary ..24-9

Context Menus on Screens: Exercises ...24-10

Context Menus on Screens: Solutions ...24-12

Lists in Screen Programming ...25-1

Overview Diagram..25-2

Screen Object: List...25-3

Creating a List Buffer ...25-4

Events for the List ...25-5

List Display at the Frontend ..25-6

List Display on the Screen ...25-7

Lists in Modal Dialog Boxes ...25-8

Lists: Unit Summary ..25-9

Lists in Screen Programming: Exercises...25-10

Lists in Screen Programming: Solutions...25-11

Appendix...26-1

-...26-2

ABAP Glossary..26-4

 SAP AG 1999

TABC42 ABAP Programming Techniques 1/2

TABC42 1/2TABC42 1/2
ABAP Programming
Techniques

Part 1 of 2

ABAP Programming
Techniques

Part 1 of 2
 SAP AG

n R/3 System

n Release 4.6B

n May 2000

n Material number 50039584

 SAP AG 1999

Copyright 2000 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may
be copied or reproduced in any form or by any means,
or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

Copyright

n Trademarks:

n Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®,
Multimedia Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ®
are registered trademarks of Microsoft Corporation.

n Lotus ScreenCam ® is a registered trademark of Lotus Development Corporation.

n Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.

n ARIS Toolset ® is a registered Trademark of IDS Prof. Scheer GmbH, Saarbrücken

n Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.

n TouchSend Index ® is a registered trademark of TouchSend Corporation.

n Visio ® is a registered trademark of Visio Corporation.

n IBM ®, OS/2 ®, DB2/6000 ® and AIX ® are a registered trademark of IBM Corporation.

n Indeo ® is a registered trademark of Intel Corporation.

n Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.

n OSF/Motif ® is a registered trademark of Open Software Foundation.

n ORACLE ® is a registered trademark of ORACLE Corporation, California, USA.

n INFORMIX ®-OnLine for SAP is a registered trademark of Informix Software Incorporated.

n UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.

n ADABAS ® is a registered trademark of Software AG

n The following are trademarks or registered trademarks of SAP AG; ABAP/4, InterSAP, RIVA, R/2,

R/3, R/3 Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript,
SAPtime, SAPtronic, SAP-EDI, SAP EarlyWatch, SAP ArchiveLink, SAP Business Workflow, and
ALE/WEB. The SAP logo and all other SAP products, services, logos, or brand names included
herein are also trademarks or registered trademarks of SAP AG.

n Other products, services, logos, or brand names included herein are trademarks or registered
trademarks of their respective owners.

 SAP AG 1999

Section Overview

Section Basis Technology Overview

Section ABAP Workbench Concepts and Tools

Section Managing ABAP Development Projects
Section ABAP Dictionary

Section ABAP Programming Techniques

Section Techniques for List Creation and SAP Query

Section Transaction Programming
Section Programming Database Updates

Section Enhancements and Modifications

Section Data Transfer

 SAP AG 1999

Section: Techniques for List Creation and SAP Query

 SAP AG 1999

Unit SAP Query
Administration

Unit Data Formatting and
Control Level Processing

Unit Storing Lists and
Background Processing

Unit ALV Grid Control

Unit Introduction

Unit Quick Viewer

Unit SAP Query - Creating Lists

Unit Outputting Data to Lists

Unit Selection Screens

Unit Logical Databases

Unit Programming Data
Retrieval

Content:
Techniques for List Creation and SAP Query

Appendix

 SAP AG 1999

l Course Goals

l Course Objectives

l Course Content

l Course Overview Diagram

l Main Business Scenario

l Getting Started

Introduction

 SAP AG 1999

l Use utilities to create lists

l Create print lists

l Create both simple and interactive lists

In this course, you will learn how to:

Course Objectives

 SAP AG 1999

Tools Simple lists Interactive Lists ALV Grid Control

Course Overview Diagram

CAR Id Departure Arrival

AA 0017 New York San Francisco
AA 0064 San Francisco New York
LH 0400 Frankfurt New York
LH 0402 Frankfurt Berlin

Connections of airline L H 1
AZ ROME TOKYO
AZ TOKYO ROME
AZ
DL
DL
LH
LH
LH
LH

0789
12/29/2000 2,667,445 ITL
12/09/2000 2,667,445 ITL

AZ

 SAP AG 1999

Business Scenario

l You are an employee of a very large tour company

l The tour company wants to increase its offerings

l To allow for the increased number of tours, the
company needs a list of the most current flight data

l You are assigned the task of writing a program that
outputs the required flight data to a list

 SAP AG 1999

Demonstrations, Copy Templates, and Solutions

l Development class BC405 with the following naming conventions:

n Demonstrations SAPBC405_xxxD_...

n Copy templates SAPBC405_xxxT_...

n Solutions SAPBC405_xxxS_...

n xxx Individual unit code

n Abbreviations for individual units:

- QUV Unit 2: QuickViewer

- AQL Unit 3: SAP Query - Creating Lists

- FOL Unit 4: Outputting Data in Lists

- SSC Unit 5: Selection Screen

- LDB Unit 6: Logical database

- GDA Unit 7: Internal Data Collection

- AQA Unit 8: SAP Query - Administration

- DAP Unit 9: Data Formatting and Control Level Processing

- STL Unit 10: Saving Lists and Background Processing

- ILB Unit 11: Basic Techniques in Interactive Lists

- ALV Unit 12: ALV Grid Control

 SAP AG 1999

l Without LDB (with copy template)

n Outputting Data in Lists

n Selection Screen

n Internal Data Collection

n Data Formatting and Group

Level Processing (Internal Table)

n Basic Techniques in Interactive Lists

n ALV Grid Control

l With LDB (F1S)

n Logical database

n Data Formatting and Group

Level Processing (Extracts)

n Saving Lists and

Background Processing

Exercises and Units

l QuickViewer

l SAP Query (Lists, Administration)

l ALV Grid Control

n The exercises stretch across several units. Each intermediate step has a sample solution that can be
used for the subsequent exercise.

 SAP AG 1999

l Generating QuickViews

Contents:

QuickViewer

 SAP AG 1999

QuickViewer: Principle

Data source

Table
Database view
Table join
Functional area
Logical database

Structure list

Basis or
layout mode

4Field sequence
4Sort
4Selections
4 ...

Execute

Save list
Interface to Word, ABC analysis
representation in the ALV Control
and so on

n The QuickViewer is a tool for developing ad hoc reports that is new in Release 4.6A. You can start
the QuickViewer using the menu path QUV-1.

n The QuickViewer can use a database table or a database view as a data source. Lists can be
generated using the fields in the data source specified. Two modes are available for this: basis mode
and layout mode

n The QuickViewer provides interfaces, for example, to the EIS, ABC analysis or the ALV Grid
Control. The list can also be processed further in external programs, such as Word.

n The generated list can be saved and then displayed again in the QuickViewer. Selection criteria are
also saved along with the list, and can be queried again at any time.

 SAP AG 1999

Welcome to the QuickViewer

1. Please enter your name and
select Create
2. Choose a title and
comments.
3. Name a data source. It can
be a table, a logical database, a
join, or a functional area of the
SAP query.
4. Choose layout mode to
design the QuickView graphics
Choose basic mode to
directly export the selected
fields in the report

Help subjects: Selection fields; Output options in
list: Width of list

QuickView DEMO Change Create

SAP Query Execute

QuickViews of user TRAINER

BC405_D1 Demo in BC405

QuickViewer: Initial Access

n Each user defines their own user-specific QuickViews which only they can display. This means that
you cannot copy other users' QuickViews. You can, however, compile an SAP Query from a
QuickView, if the QuickView uses a functional area from the standard system as a data source (see
unit 'SAP Query - Creating Lists'). The query is then visible to the user group.

n QuickViews are not connected to the correction and transport system.

 SAP AG 1999

Creating a QuickView

Create QuickView DEMO: Determine Data Source

Example in BC405

DEMOQuickView

Title

Comments

1. Data source:

Join via tables SCARR and SPFLI

Basis... Layout m...

Table join

n You must name a data source in order to generate a QuickView. The data source can be a database
table, a database view, a logical database, a table join, or even a functional area of SAP query. The
functional area must lie in the (client-specific) standard area.

n You can access the specified data, but you cannot extend it with additional fields (also see Local
fields under SAP Query).

 SAP AG 1999

Join Definition: Graphical

Join definition

Short ID...
Code...
Country code
Departure city
Departure airport
Country code
Arrival city
...

SCARR

Short ID...
Name of a ...
Local currency ...
URL ...

SPFLI

Check Add table Delete table Alias table

INNER or LEFT OUTER link

n When you specify a table join as the data source, you have to define the join before you can structure
the list in Query Painter.

n You define the table join graphically. You have to specify the links between the tables, and you can
have the system propose a value. It does this using information from the Dictionary .

n You determine the resulting quantity by deciding on either Inner or Left Outer Join logic. For
example, if you only want to output airlines from table SCARR in a list when these airlines have
flights in table SPFLI, this corresponds to the Inner Join logic. In contrast, if you want to output all
the airlines regardless of whether flights exist in table SPFLI, then you would link both tables using
Left Outer Join logic. In this case, the left table is SCARR.

n Alias tables enable you to use the same (database) table several times when defining the join

 SAP AG 1999

Basis Mode: Principle Structure

Data source
QuickView

Setup

Online Documentation
Information

n In basic mode, the screen is divided into four areas. The available fields (data source) are displayed
to the left in tree form. Further information on how to work in the basic mode is displayed in the
lower left window. You can maintain the title and comments and control the output (list or Excel) in
the upper right area. This is also where you control the list structure, set the sort sequence and define
the selection criteria. You can branch to the online documentation from the lower right window.

 SAP AG 1999

Structuring a QuickView in the Basis Mode

List field selection Sort sequence Selection fields Data source

List fields Available fields

Example in BC405

DEMOQuickView

Title

Comments Join via tables SCARR and SPFLI

n You can structure your QuickView using two table controls. Select the fields you want in your list in
the right table control and use the transfer functions to move them to the left table control ('List
fields'). You can also control how many lines the list should have (using the 'Add line' function) in
the left table control ('List fields').

n Follow the same procedure for the sort and selection fields: select the fields you require in the right
table control and copy them to the left control.

 SAP AG 1999

Using the QuickView

l User ad hoc reports

l Each user defines their own QuickViews which only they
can display

l Uses existing data

l No administrative effort (user group, functional area)

l QuickView can be converted to a SAP query

l Interface to internal (EIS, ABC, ALV) and external
applications

l Less functionality than SAP Query

l No transports

 SAP AG 1999

l Use the QuickViewer to generate ad hoc reports

You are now able to:

Summary

 SAP AG 1999

l Overview

l Generating Queries

SAP Query - Creating Lists

 SAP AG 1999

SAP Query - Creating Lists

OverviewOverview

QueriesQueries

 SAP AG 1999

Describe list

REPORT ...

START-OF-SELECTION.
...
WRITE ...

ABAP
program

Overview: Programs and Query

. . . Output
options
Line 3

Output options
Field

Title
Format

Classic

Query Painter

Generate program

n When you create a list with a report, the data is usually retrieved via a logical database, processed by
the report and then output as a list.

n Queries evaluate data and can be created without any prior programming knowledge using the SAP
Query tool.

n The query results in a sequence of screen fields which you use to describe the line structure and list
layout. Starting in Release 4.6A, you can use the Query Painter to add graphics to query lists.

n When the query is started, an internal report generator creates a program that corresponds to the list
definition. That program then reads the data, processes it, and outputs the data as a list. The program
is named AQmmbbbbbbbbbbbbqqqqqqqqqqqqqq. You can display the report names with the menu
path displayed in appendix documentation AQL-1.

mm - encoded client (standard area) or ZZ (global area)
bbbbbbbbbbbb - Name of user group (12 places)
qqqqqqqqqqqqqq - Name of query (14 places)

Spaces in query program names are replaced with '='.

 SAP AG 1999

Queries
for

SG2

Queries
for

SG3

Administration

User group
UG2

Queries
for

FA1

User group
UG1

Functional area
FA1

Functional area
SG2

Functional area
SG3

Distributes Creates

Assigns
Generate

Organization of Query

n The administrative tasks in the query environment include creating functional areas and user groups,
as well as assigning the functional areas to the user groups.

n The functional area determines the tables (and the fields of those tables) to which a query can refer.
Functional areas are frequently based on logical databases.

n Users may create and start queries only when they belong to at least one user group. A given user
can belong to several user groups. Users in a user group all have the same privileges.

n Functional areas are allocated to a user group; the members of a group can access the functional area
to which the group is allocated.

n A functional area can be allocated to several user groups.

n Several functional areas can be allocated to a user group.

n Queries are always created for a specific user group and a specific functional area. Users in a user
group have access to all the queries allocated to that group.

 SAP AG 1999

Functional area
FA1

User group
UG2

Functional area
FA1

User group
UG1

Query Query

New query
in FA1

Query Query

Copy CopyCreates

Changes

Creating a Query

n If you have been allocated to several user groups, you can switch within these groups.

n A query is always created from a specific functional area. The functional area must be allocated to
the user group in which the query was created.

n You can access all queries that have been allocated to your user group.

n If you are authorized to define a query with a functional area, you can list all the queries for that
functional area.

n You can only copy a query from a different user group to your user group when the functional area
of the query to be copied has also been allocated to your user group.

 SAP AG 1999

SAP Query - Creating Lists

OverviewOverview

QueriesQueries

 SAP AG 1999

Layout of list:
 Arrangement of fields

Sorting, summation
Output options (formats, masks, output lengths ...)
Texts (headings)

Layout of list:
 Arrangement of fields

Sorting, summation
Output options (formats, masks, output lengths ...)
Texts (headings)

Type of list

 Local fields

Field Selection

Basic list
(optional)
(sorting, summation)

Statistics
(optional, poss. multiple)

Functional groups

Ranked list
(optional, poss. multiple)

Defining a Query

Functional
area

n The query results in a sequence of screen fields in which you use

� Selection (checkboxes)

� Number assignment (sequence, sort, ...)

� Texts (headers, group level texts)

to determine the line structure and the list layout.

n Starting in Release 4.6A, you can use the Query Painter to add graphics to basic lists.

n You can use SAP Query to generate different types of lists (partial lists):

� Basic List: Single line or multiline. Multiline basic lists can be compressed.

� Statistics, ranked lists: Require a numeric field. Data can be compressed.

� You can combine different partial lists in a single query. Starting in 4.6A, you can also print the
individual partial lists.

n You can also define local fields within a query, which means you can calculate new values from the
collected data.

n While you cannot generate interactive lists you have defined yourself, some standard interaction
functions are available. For example, you can pass on the generated lists for further processing
(Excel, EIS, ABC analysis), display them in graphical form (SAP Graphics), save them, or edit them
in table form (table control and ALV grid control).

 SAP AG 1999

Selecting the Work Area and Functional Area

F1SBCS1 Flight connections (LDB: F1S)

 BCS3 Table join SPFLI, SFLIGHT

 BCS4 Connections

 Name Logical database Description of functional area

Functional Areas of User Group BC_TRAINER

Query

Global area (client-independent)

DEMO

Work area

Change Create

QuickViewer Execute Display Description

Query of User Group BC_TRAINER

n You can use the menu paths displayed in appendix documentation AQL-2 to create, change, and
execute queries with the ABAP Workbench.

n Queries are created either in the standard area or the global area. A query area covers a set of query
objects that are internally complete and consistent - this means objects with the same name but with
a different meaning can exist in the various query areas. The global and standard areas have separate
namespaces.

n The standard area is client-specific and is not linked to the Workbench Organizer (WBO). The query
objects in the global area are available in all clients and linked to the WBO. If you create a query in
the global area, you have to assign it to a development class.

n When creating a query, you must first choose a functional area. The system displays all the
functional areas that have been assigned to your user group. Once you have chosen a functional area,
you cannot modify your choice: the functional area is the basis for data retrieval.

n SET/GET parameters AQW and AQB are available and can be used in your user parameters to
define default settings for the query area (global area: AQW = G) and your user group.

 SAP AG 1999

Local fields

Creating Local Fields

Title
Format

Functional
area

Field
Selection

Selection fields

Basic list Ranked list Statistics

n When selecting fields, the system leads you through the following screens:

­ Title, format:

Used to assign the query title You can set the page layout by making entries for the format. You
can also set additional characteristics for the query with special attributes.

­ Functional area

Functional areas are divided into functional groups. These form logical groups of data. You
choose the required functional groups here.

­ Field Selection

Here you choose the required data fields of the previously selected functional groups. If you
require local fields, you can also define them here.

­ Selection fields:

You can define fields to add to the selection screen and further limit the selection criteria.

n Depending on which type of list you want to generate, edit the screen fields or use layout mode
(Query Painter) for the basic list. You always have to use the Field selection screen field to create
local fields.

n By defining local fields, you can generate additional information from the fields that are available in
a functional area.

n If pre-existing fields are required for the definition of a local field, short descriptions must be
provided (see the menu path displayed in appendix documentation AQL-3).

n A short description can be assigned for each field.

n Short descriptions are also used to retrieve values of the corresponding fields in the list headers.

n You can define local fields for a query (menu path AQL-4)

n Local fields are defined with calculation rules. In the simplest case, calculation rules consist of a
single formula formed with normal mathematical rules and consisting of operands and operators.

n The calculation of a field's value can be made condition-dependent. In this case, values are calculated
according to certain rules only when a particular condition is met. If the condition remains unmet,
the field receives a default value. Multiple conditions are allowed.

n You can sort the values of key columns of statistics in ascending or descending order.

n Numerical fields in statistics are accumulated. Statistics only make sense with numerical fields.

n Statistics allow you to display the average value, the percentage breakdown, and the number of
records read for each numerical field.

n You can define up to 9 statistics individually or as a supplement to a basic list.

n If you work with different currency or quantity fie lds within statistics, you must enter a reference
currency or a reference unit for each field, so that the system can convert it into that currency or unit.

n The list displays the conversions processed by the system. In the event of an error, the system logs
any conversions that did not take place. In addition, the system highlights the affected currency or
quantity fields within the statistics.

n With the appropriate definition, subtotal lines can also appear within statistics. If you compress the
statistics, the system displays only the subtotal lines and the grand total.

n Ranked lists are special forms of statistics. However, they are always sorted based on one numerical
value. This value is referred to as the ranked list criterion. In addition, the system only outputs a
certain number of records. As a result, ranked lists are appropriate for tasks like: "Which 10 flight
connections have the highest sales"?

n Ranked lists are sorted according to only one fie ld, and the number of output lines is limited.

n You can define up to 9 ranked lists individually or as supplements to a basic list.

n You can also define each ranked list as statistics.

n The rules for conversions of currency and quantity fields also apply to ranked lists.

n To create basic lists, use the Query Painter. In the Query Painter, the screen is divided into four
areas. The available fields (data source) are displayed to the left in tree form. The list structure is
displayed with sample data in the upper right area. Information for the currently active element is
displayed in the lower left portion of the window. Links to documentation and any warnings that are
output while formatting the list are displayed in the lower right section of the window.

n You can edit list characteristics (frame, width) by selecting a field, right-clicking with the mouse and
choosing 'List options' from the menu. While editing, you are working in the lower left window. If
you have created new characteristics, then you need to confirm the values you have changed using
the APPLY function.

n You can edit list line characteristics (color, separators, and so on) by selecting a field, right-clicking
with the mouse and choosing 'Line options' from the menu. While editing, you are working in the
lower left window. If you have created new characteristics, then you need to confirm the values you
have changed using the APPLY function.

n You can edit field characteristics in the lower left window by selecting the appropriate field. Further
field characteristics are available in the menu displayed with the right mouse button.

n You can move column and list headers to a mode that is ready for input by double -clicking.

n Selecting a field in the upper left window automatically adds that field to the list (is appended at the
end of the current line). The individual fields are represented by field values. Sample data records are
read from the source. If this is not possible, field values are simulated. The structure of the layout
determines the structure of the subsequent list - that is, it contains the order of the fields, the headers,
the colors, totals lines, and so on. To display the list structure for multiline hierarchy lists, several
sample records are read and displayed.

n In addition, tools are available in the Query Painter to design the list. You can change the
arrangement of the tools with drag and drop. Select the tool, such as the trash (a frame is displayed),
with the left mouse button. You can now drag the selected area to the new position as long as you
keep pressing the left mouse button.

n You can also use drag and drop to edit the list. Example: You want to change the field sequence. To
do this, point the mouse at the field you want to move, click and hold the left mouse button (the
cursor changes), drag the field to the desired location, and release the mouse button. To delete a
field, just drag it to the trash.

n You can also change the output position and output length with entries in the lower left window.
Press Apply to apply your values to the list structure.

n You can set up control level lists. To do this, you have to determine the sort fields. The sort sequence
can be defined in either ascending or descending order separately for each field. To create a sort
field, drag a field from the list to the Sort tool.

n You can define control levels with or without a total at the end of the control level (subtotal). You
can change the text accompanying the subtotals.

n If you total a field, the total is output to the same column as the field, with the same output length.
Accordingly, the output length may be too short and result in an overflow (an asterisk appears in the
first position of the value). To prevent overflows of totals, you can simply increase the output length
of the field you wish to total.

n You can output blank lines and/or force a page break before outputting control levels.

n You can hide and change introductory and concluding texts for control levels.

n The system automatically creates a currency distribution for currency totals.

n List overview: If your list consists of several partial lists, for example a basic list, two statistical lists
and a ranked list, the system offers you the ability to display the partial lists individually. The partial
lists can also be printed separately.

n Report/report interface (RRI): You can use this interface to call query programs (receiver) and
other reports (sender). Additional information is available in the online documentation.

n Table display: The list is displayed as a table control or using the ALV grid control. Starting in
Release 4.6A, you can also display multiline lists. The different lines are summarized in one line.

n Graphics: The information contained in a list can be displayed with SAP Presentation Graphics.

n File s torage, private storage: Saves the data as a file on the presentation server or in the private
folders. For more information, please refer to online documentation QD02.

n Word processing and spreadsheets: Transfer data to MS Word or Excel (for example)

n ABC analysis, EIS: Additional information is available in appendix documentation QD02.

n Selection: Indicates which selections were input in the selection screen.

n Drilldown functions: For expanding and collapsing the list.

n Totaling: Totals for numeric fields.

n You can save a list generated by a query using the menu path AQL-5 and re-display it later.

n Subsequent display of a saved list does not require database access to retrieve data. Such a display is
therefore much quicker than restructuring the data running the query again.

n Saving a list stores the list itself and supplemental information. Storage of additional information is a
special function of saving lists that is supported only by query. This makes it possible to perform
interactive functions in the saved list.

n When a query is integrated in an area menu (not the AQ... query program), then all the saved lists are
automatically passed on to the area menu, and can be displayed there. All interactive functions
remain available.

n If you save the list 'normally' (using menu path AQL-6), then no interactive functions are available in
the saved list.

Unit: SAP Query - Creating Lists

Topic: Creating a Query List

When you have completed these exercises, you will be able to:

• Create a multi- line query list with local fields

1-1 Create a query QE1-## in user group BC_STUDENTS using functional area
BCS1 in the global work area. Note: ## stands for your group number. The sample
solution, EXERS_01, is available in the global work area under user group
BC_TRAINER.

1-2 Maintain the short texts for the query and set the column width to 90 columns.

1-3 Create a local field.

1-3-1 Assign short names for the fields Occupied seats (OCC) and Maximum
occupancy (MAX).

1-3-2 Create a local field, Empty seats with short name FREE and header Free in
functional group Flights. The field should have the same attributes as the
Maximum occupancy field.

1-3-3 Use this field to calculate the number of available seats as the difference
between the maximum occupancy and the number of occupied seats.

2-1 Create a multi- line basic list in the Query Painter (layout mode).

Line 1 Airline and flight code

Line 2 Departure city, Arrival city, Departure time, Distance, Distance unit of
measure

Line 3 Flight date, Occupied seats, Available seats, Maximum occupancy,
Percentage occupancy of the flight, Price, Current total revenue for the
flight

3-1 List format

3-1-1 Output the list with frames.

3-1-2 Line 1: Color Header(intensify), one blank line before the line

 Line 2: Color Header

Line 3: Color Normal

Field Available seats: Color Positive

3-1-3 Modify the standard length for the following fields:

Occupied seats to 8 places

Available seats to 8 places

Maximum occupancy to 8 places

Percentage occupancy to 6 places

Current total revenue for the flight to 15 places

Flight price to 10 places

3-1-4 Change the header of field “Percentage occupancy” to “%”.

Optional (sample solution EXERS_01_OPT, see above)

4-1 Copy query QE1-## to QE1-##_OPT.

4-1-1 Instead of outputting the number of available seats, you can use a traffic
signal icon to display the information.

4-1-2 Now assign property Icon to local field Available seats, and use the complex
calculations to determine the logical conditions under which
ICON_RED_LIGHT (red light) or ICON_GREEN_LIGHT (green light)
will be displayed. You can reduce the output length of the field to 6 places,
and make the field color identical to the line color.

4-1-3 Specify the Flight connection code as a sort field. Sort in descending order.

4-1-4 Display the group level header in a frame. Do not total or count at the end of
the group level.

Unit: SAP Query - Creating Lists

Topic: Creating a Query List

1-1 Start SAP Query from the Workbench. Use menu Environment -> Query areas to
switch to the global query area. Press the Change user group button and change to
user group BC_STUDENTS. Create a query named QE1-## (## stands for the
group number). Create a query using functional area BCS1.

1-1-1 Maintain the short text and list width in the initial screen.

1-1-2 Press the Next screen pushbutton and scroll forward to screen FIELD
SELECTION.

1-1-3 Activate the short names under menu Edit -> Short names and enter short
names for all specified fields.

1-1-4 Use menu item Edit -> Local field to create the required field. Enter short
name MAX in field Same attributes as field. Model the difference between
MAX and OCC in the calculation formula. Save the local field.

2-1 Now press the Basic list pushbutton. Start the Query Painter.

2-1-1 Select the required fields in the upper left corner of the Query Painter (data
fields). Make sure that you set up the list in the order in which you selected
the fields. Otherwise you will have to re-sort the fields accordingly.

2-1-2 To change the attributes of a field, select the field. This displays the field in
the lower left window, and you can now change its attributes. Press APPLY
to activate your changes.

2-1-3 Choose item Line options from the context menu (right mouse button).
Choose Line options from the context menu.

2-1-4 Double-click on a header text to change it. The text field is displayed ready
for input.

2-1-5 Save the Query.

3-1 Optional

3-1-1 Branch to the maintenance of the local fields (see above). Change the
attribute of the local field to Icon. Press the Complex calculations
pushbutton. Enter MAX = OCC under the first condition and enter
ICON_RED_LIGHT under the corresponding formula. Enter OCC < MAX
under the second condition and enter ICON_GREEN_LIGHT under the
corresponding formula.

3-1-2 Start the Query Painter. Select the required sort field and drag it to the Sort
fields box. When you select a field in the Sort fields box, the attributes of the
selected control level appear in the lower left window. Press APPLY to
activate your changes.

3-1-3 Save the Query.

 SAP AG 1999

Outputting Data in Lists

l Simple Lists

l List Formats

l Page Layout

l Output Design

l Tools

 SAP AG 1999

Generating a List

REPORT sapbc405_fold_list_creation .

DATA: wa_spfli LIKE spfli.

SELECT carrid connid cityfrom cityto
 INTO CORRESPONDING FIELDS OF wa_spfli
 FROM spfli.

WRITE: / wa_spfli-carrid, wa_spfli-connid,
 wa_spfli-cityfrom, wa_spfli-cityto.

ENDSELECT.
DEMO: Generating a list 1

AA 0017 NEW YORK SAN FRANCISCO
AA 0064 SAN FRANCISCO NEW YORK
AZ 0555 ROME FRANKFURT
AZ 0788 ROME TOKYO
 : :

WRITE:WRITE:

n The first WRITE statement in an ABAP program triggers list generation. The system first writes the
data intended for output to a list buffer. Once all the data has accumulated in the list buffer and the
system has processed all events, the system generates the screen image from the list buffer.

n By default, the list consists of a "continuous" page (maximum 60,000 lines).

n The maximum length of a line is 1,023 characters. To support maintenance and improve
performance, lists should be only as long as necessary.

n As a standard function, the system generates two header lines (standard header). The first header line
contains the program title in the upper left corner and the page number in the upper right corner. The
second header line consists of an unbroken line. Both header lines remain in the window when you
scroll.

n When you print a list, the first line of the header appears as follows: Upper left: System date Center:
Program title Upper right: Page number

 SAP AG 1999

DEMO: List format design 1

: :

DEMO: List format design 2

: :

50

12

Setting the List Format

REPORT <name> LINE-SIZE <s> LINE-COUNT <m[(n)]>.

REPORTREPORT sapbc405_fold_list_layoutlayout .

...
WRITE: ...

REPORTREPORT LINE-SIZE 50LINE-SIZE 50
LINE-COUNT 12LINE-COUNT 12.

n Use the additions LINE-SIZE <s> and LINE-COUNT <m> with the REPORT statement to
create global definitions for column and line length for all list levels. The different list levels
are created during interactive reporting.

n Within a list level, you can use NEW-PAGE LINE-COUNT <s> to change the number of
lines on a page - this value overrides the definition in the REPORT statement. The width of
a list can only be changed by creating a new list level. If you want to use the default values,
then set <s> and/or <m> to zero.

n You cannot use variables for <s> or <m>.

n An optional addition in the REPORT statement, n, reserves a line for the footer. To create a
footer, you have to program the END-OF-PAGE event.

 SAP AG 1999

Page and Column Headers

List header

Column header

Standard headers TOP-OF-PAGE

REPORT sapbc405_fold_top_of_page
NO STANDARD PAGE HEADING.NO STANDARD PAGE HEADING.

 WRITE: / '************ ... '

START-OF-SELECTION.
...

Text elements

Title/Headings

Goto

List

System

List headers

EDITOR LIST

NO STANDARD PAGE HEADING.NO STANDARD PAGE HEADING.

TOP-OF-PAGE.TOP-OF-PAGE.

n You can maintain a list header (page header) and up to four column headers for a list. You
can maintain the headers with the Editor or from the list itself. Maintenance from the list
itself offers an advantage: since it is displayed on the screen, positioning of elements,
especially column headers, is simpler. Headers appear automatically the next time the
program is started in that list. If you have not maintained a list title, the system uses the
program name as a default (system field SY-TITLE).

n The addition NO STANDARD PAGE HEADING in the REPORT/PROGRAM statement
suppresses the output of list/column headers. You can override this global setting with
NEW-PAGE NO-TITLE/WITH-TITLE and NO-HEADING/WITH-HEADING. All texts that
you enter in the standard list headers are saved language-specifically, and can be
translated later.

n The TOP-OF-PAGE event can be used to generate any page headers. TOP-OF-PAGE is
especially useful when you want to output variables in the headers. All texts should be
written as text elements, to allow them to be translated later.

n TOP-OF-PAGE is triggered whenever a new page is created (WRITE, ULINE, and so on).
If you do not suppress the standard list headers, they appear above the lines generated by
TOP-OF-PAGE. Lines generated by TOP-OF-PAGE remain in the window during vertical
scrolling.

 SAP AG 1999

REPORT sapbc405_fold_format
...
TOP-OF-PAGE.
 FORMAT COLOR COL_HEADING INTENSIFIED ONFORMAT COLOR COL_HEADING INTENSIFIED ON.
 WRITE: ...
 FORMAT COLOR COL_HEADING INTENSIFIED OFF.
 WRITE: ...
START-OF-SELECTION.
 SELECT carrid connid cityfrom cityto deptime arrtime
 INTO CORRESPONDING FIELDS OF wa_spfli FROM spfli.
 WRITE: / wawa__spflispfli--carridcarrid COLOR COL_KEY INTENSIFIED ONCOLOR COL_KEY INTENSIFIED ON,
 wawa__spflispfli--connidconnid COLOR COL_KEY INTENSIFIED ON COLOR COL_KEY INTENSIFIED ON.
 FORMAT COLOR COL_NORMAL INTENSIFIED ON.
 WRITE: wa_spfli-cityfrom HOTSPOT ON,
 wa_spfli-cityto,
 wa_spfli-deptime HOTSPOT ON,
 wa_spfli-arrtime.
 FORMAT RESETFORMAT RESET.
 ENDSELECT.

Defining Line and Field Formats

FORMAT COLOR COL_HEADING INTENSIFIED ONFORMAT COLOR COL_HEADING INTENSIFIED ON.

wawa__spflispfli--carridcarrid COLOR COL_KEY INTENSIFIED ONCOLOR COL_KEY INTENSIFIED ON,
wawa__spflispfli--connidconnid COLOR COL_KEY INTENSIFIED ON COLOR COL_KEY INTENSIFIED ON.

FORMAT RESET.FORMAT RESET.

n You can use any of the following FORMAT options:

COLOR <n> [ON|OFF] Colors the line background

INTENSIFIED [ON|OFF] Intensify colors YES|NO

INVERSE [ON|OFF] Inverse: Background/text color

HOTSPOT [ON|OFF] Display mouse pointer as hand and single
 click with mouse button (see
 AT LINE-SELECTION)

INPUT [ON|OFF] Input field

RESET Resets all formats to their default values

n The formats set with FORMAT take effect with the next WRITE statement.

n You can use all FORMAT options with the WRITE statement, but the options will affect only the
one field in which they appear.

n FORMAT options in a WRITE statement change the global formatting instructions (set with a
FORMAT statement) for the field.

n At each new event, the system resets all FORMAT options to their default values.

 SAP AG 1999

REPORT sapbc405_fold_write
* constants for positions of outputs
CONSTANTS: POS2 TYPE I VALUE 12,
 LEN_FDT TYPE I VALUE 10, "sflight-fldate

 ...
WRITE ATAT: / sy-vline,
 pos2(pos2(lenlen__fdtfdt)) wa_sflight-fldate COLOR COL_KEY,
 ...
 (len_pri) wa_sflight-price CURRENCYCURRENCY wa_sflight-currency,
 (len_cur) wa_sflight-currency.
...

WRITE Statement: General Syntax

WRITE [AT] [/<pos(len)>] <f> <option1> <option2>

CURRENCYCURRENCY

ATAT:
pos2(pos2(lenlen__fdtfdt))

­ NO-GAP Suppresses output of spaces after the <f> field.
Fields output directly after each other appear without gaps.

­ NO-ZERO If the contents of field <f> are equal to zero, only spaces are output.
If f is of type C or N, spaces replace leading zeros.

­ DD/MM/YY If <f> is a date field (type D), its contents are not processed according to
user parameters (and according to the option).

­ CURRENCY <key> determines the number of decimal places for currency amounts in
the list output. The specified key is used to read the number of decimal places in table
TCURX.

­ UNIT <key> determines the number of decimal places for quantities in the list output.
The specified key is used to read the number of decimal places in table T006.

­ USING EDIT MASK <mask> Outputs according to the formatting template<mask>.

­ UNDER <g> The output begins at the column in which field <g> was output.

­ LEFT-JUSTIFIED Left-justified output (default for types C, N, D, T, X).

­ CENTERED Centered output within the output length.

­ RIGHT-JUSTIFIED Right-justified output (standard for all number fields: I, P and F)

n You can find a complete list of all WRITE options in the online documentation.

 SAP AG 1999

REPORT sapbc405_fold_icon_symbol_line.
* INCLUDE <icon>
* INCLUDE <symbol>.
INCLUDE <list>.INCLUDE <list>.
...

* state of free seats
 IF SEATSFREE < 1.
 WRITE ICON_RED_LIGHT AS ICON.ICON_RED_LIGHT AS ICON.
 ELSEIF SEATSFREE > 1.
 WRITE ICON_GREEN_LIGHT AS ICON.ICON_GREEN_LIGHT AS ICON.
 ENDIF.
* state of booked seats
 IF WA_SFLIGHT-SEATSOCC < 10.
 WRITE SYM_LEFT_HAND AS SYMBOL.SYM_LEFT_HAND AS SYMBOL.
 ENDIF.

Outputting Icons, Symbols, and Lines

INCLUDE <list>.INCLUDE <list>.

ICON_RED_LIGHT AS ICON.ICON_RED_LIGHT AS ICON.

ICON_GREEN_LIGHT AS ICON.ICON_GREEN_LIGHT AS ICON.

SYM_LEFT_HAND AS SYMBOL.SYM_LEFT_HAND AS SYMBOL.

n You can use the AS SYMBOL option of the WRITE statement to include symbols in lists. The
symbolic names of these characters are defined in include program <symbol>.

n You can also insert icons into the list with WRITE <f> AS ICON. To do this, you have to link the
include program <icon> in your program.

n You can link the include program <list> to use both symbols and icons in the list.

n You can find an overview of available symbols and icons in the online documentation or in the
statement examples for WRITE.

n To generate a horizontal line, use the ULINE statement, system field sy-uline in a WRITE
statement, or several minus signs in a WRITE statement

n To generate a vertical line, use system field sy-vline in a WRITE statement

n To generate special lines, like the upper-right corner, use line_top_right_corner AS LINE .

n You can use these elements to frame a list, to separate titles from a list with horizontal lines, to
separate columns with vertical lines, and to create table and trees.

 SAP AG 1999

Scrolling in Lists and Lead Columns

 SCROLL LIST [TO PAGE <p>][TO COLUMN <c>][TO LAST PAGE]
[<option>]...

SET LEFT SCROLL-BOUNDARY [COLUMN <c>].

REPORT sapbc405_fold_scroll_boundary ...

DATA: lsblsb_column_column TYPE i VALUE 10.

TOP-OF-PAGE.
...
SET LEFT SCROLL-BOUNDARYSET LEFT SCROLL-BOUNDARY
COLUMNCOLUMN lsb lsb_column_column.

START-OF-SELECTION.
...

SCROLL LIST TO LAST PAGESCROLL LIST TO LAST PAGE.

9

SET LEFT SCROLL-BOUNDARYSET LEFT SCROLL-BOUNDARY
COLUMNCOLUMN lsb lsb_column_column.

SCROLL LIST TO LAST PAGESCROLL LIST TO LAST PAGE.

n You can use SET LEFT SCROLL-BOUNDARY to set hard lead columns for a list: the lead
columns remain in place during horizontal scrolling. Without an additional parameter, the system
uses the current write position (SY-COLNO) as the left margin. The margin (limit) must be reset for
every new page (at TOP-OF-PAGE for example).

n You can use NEW-LINE NO-SCROLLING to prevent shifting the next list line during horizontal
scrolling. For example, you can use this function to ensure that the comment lines are always visible.

n You can use the SCROLL statement to scroll to any place in the list at runtime; for example, the
system could automatically display the last page of the list.

 SAP AG 1999

Additional Statements for Page Layout

SET BLANK LINES ON|OFF}.

POSITION <n>.

BACK.

SKIP [TO LINE] <n>.

NEW-LINE.

RESERVE <n> LINES.

n NEW-LINE new line, corresponds to "/" in the WRITE statement.

n RESERVE <n> LINES If the current page does not have space for at least <n> more lines
 in the list structure, a page feed is generated.

n SKIP <n> <n> blank lines are output
SKIP TO LINE <n> Next output in line n (you can also skip backwards in the list)

n BACK without RESERVE Return to the first line in the current page after TOP-OF-PAGE
 With RESERVE: Return to the first line output after RESERVE

n POSITION <n> Next output position in column <n> of the current line

n SET BLANK LINES ON Any blank lines created through the output of blank fields are output

n SET BLANK LINES OFF No blank lines are output (default setting)

n Text elements include the standard headers, text symbols, and selection texts. The text elements are
saved language-specifically, separate from the source text. This allows subsequent translation. The
logon language determines the language in which the system displays text elements.

n You should define the output length of the text symbols as large as possible, as this determines how
much space is available for the translations.

n Text symbols can be addressed in programs in the following ways:

• TEXT-xxx (xxx is a three-character string)

• 'string' (xxx)

n You can reconcile the text symbols and the program when you use the second method of creating the
text symbols. If a text symbol has been maintained, it is always output in the list. The extended
syntax check returns an error if you forgot to maintain the text symbols.

n During generation of a list, the ABAP runtime system fills the following system fields:

SY-LINCT Number of lines from REPORT statement (LINE-COUNT)

SY-LINSZ Line width from REPORT statement (LINE-SIZE)

SY-SROWS Number of lines in the display window

SY-SCOLS Number of columns in the display window

SY-PAGNO Page number of the current page

SY-LINNO Line number of the current line of the current page (SY-PAGNO)

SY-COLNO Column number of the current column

n During generation of the list, the system fills the last three system fields continuously.

n A number of standard list functions are available in the standard list interface.

Unit: Outputting Data in Lists

Topic: Formatting

When you have completed these exercises, you will be able to:

• Define list formats

• Set headers

• Set Hard Lead Columns

• Create a page break

1-1 Copy program template SAPBC405_FOLT_1 to Z##FOL1_... Sample solution for
exercise: SAPBC405_FOLS_1.

The following functionality has been implemented in the template: A selection
screen is displayed with a selection for the airline codes. The data is read from the
database to an internal table, it_flights, using a database view at START-OF-
SELECTION, and should be output in subroutine DATA_OUTPUT at END-OF-
SELECTION.

The objective of this exercise is to insert the data output in subroutine
DATA_OUTPUT in the LOOP … ENDLOOP loop.

1-1-1 In the TOP include, define the list width as 100 columns and suppress the
standard list header.

1-1-2 Output the following data in the list:

 Airline code wa_flights-carrid

 Flight number wa_flights-connid

 Flight date wa_flights-fldate

 Departure city wa_flights-cityfrom

 Arrival location wa_flights-cityto

 Flight price wa_flights-price

 Local currency of airline wa_flights-currency

 Display the data according to the template.

1-1-3 Output the list header in color COL_HEADING with intensive display, and
the column headers in color COL_HEADING with a less intensive display.
Output the key information (CARRID, CONNID) in color COL_KEY with
intensive display and the list body in COL_NORMAL with intensive
display. Use horizontal lines to separate the headers from the list body.
Output the price as a currency amount.

 Optional: Add a frame (sy-vline) as shown in the template.

1-1-4 Flag the international flights (wa_flights-countryto <> wa_flights-countryfr)
with an icon (ICON_BW_GIS).

1-1-5 Set the page break so that the data for one flight connection fits on exactly
one page. To do this, use the control structure: ON CHANGE OF …
ENDON.

1-2 Implement event TOP-OF-PAGE.

1-2-1 Output the list and column headers there. Refer to the template for details.
Use text elements to allow your texts to be translated. To position the
elements, use constants that you declare in the TOP include.

1-2-1 Make sure that the airline code and connection number are fixed during
horizontal scrolling. Ensure that the statement SET LEFT SCROLL-
BOUNDARY is only valid for a single page.

Template (Displaying Data in Lists):

Flight data

 Flight Date Departure city Arrival location Price

 @ AZ 0555 30.09.1999 ROME FRANKFURT

 360.202 ITL
 @ AZ 0555 19.11.1999 ROME FRANKFURT

 360.202 ITL
 @ AZ 0555 22.11.1999 ROME FRANKFURT

 360.202 ITL
 @ AZ 0555 29.11.1999 ROME FRANKFURT

 360.202 ITL
 @ AZ 0555 19.12.1999 ROME FRANKFURT

 360.202 ITL

Flight data

 Flight Date Departure city Arrival location Price

 @ LH 0400 30.09.1999 FRANKFURT NEW YORK

 672.50 DEM
 @ LH 0400 19.11.1999 FRANKFURT NEW YORK

 672.50 DEM
 @ LH 0400 22.11.1999 FRANKFURT NEW YORK

 672.50 DEM
 @ LH 0400 29.11.1999 FRANKFURT NEW YORK

 672.50 DEM
 @ LH 0400 19.12.1999 FRANKFURT NEW YORK

 672.50 DEM
 @ LH 0400 21.12.1999 FRANKFURT NEW YORK

 672.50 DEM

@ = ICON_ BW_GIS

Unit: Outputting Data in Lists

Topic: Formatting

&---

*& Report SAPBC405_FOLS_1 *

*& *

&---

*& Exercise 1; Outputting Data in Lists *

*& *

&---

INCLUDE bc405_fols_1top.

&---

*& Event TOP-OF-PAGE

&---

TOP-OF-PAGE.

* Title

 FORMAT COLOR COL_HEADING INTENSIFIED ON.

 ULINE.

 WRITE: / sy-vline,

'Flight data'(001),

AT line_size sy-vline.

 ULINE.

* Column header

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary

 SET LEFT SCROLL-BOUNDARY.

 WRITE: 'Date'(003) ,

 'Departure location'(004),

 'Arrival location'(005),

 'Price'(006),

 AT line_size sy-vline.

 ULINE.

&---

*& Event START-OF-SELECTION

&---

START-OF-SELECTION.

* Filling internal table with flight data using a DDIC view.

 SELECT * FROM dv_flights INTO TABLE it_flights

 WHERE carrid IN so_car.

&---

*& Event END-OF-SELECTION

&---

END-OF-SELECTION.

SORT it_flights BY carrid connid fldate.

* Data output

 PERFORM data_output.

&---

*& Form DATA_OUTPUT

&---

* List output of flight data

--

FORM data_output.

* Loop at the internal table for writing data

 LOOP AT it_flights INTO wa_flights.

* Get a new page if CONNID has changed.

 ON CHANGE OF wa_flights-connid.

 NEW-PAGE.

 ENDON.

* Mark international flights

 FORMAT COLOR COL_KEY INTENSIFIED ON.

 IF wa_flights-countryfr EQ wa_flights-countryto.

 WRITE: / sy-vline, icon_space AS ICON CENTERED.

 ELSE.

 WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.

 ENDIF.

* Data output

 WRITE: wa_flights-carrid,

 wa_flights-connid.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: wa_flights-fldate,

 wa_flights-cityfrom,

 wa_flights-cityto,

 wa_flights-price CURRENCY wa_flights-currency,

 wa_flights-currency,

 AT line_size sy-vline.

 ENDLOOP.

ENDFORM. " DATA_OUTPUT

&---

*& Include BC405_FOLS_1TOP *

*& *

&---

REPORT bc405_fols_1top LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons

INCLUDE <icon>.

* Constants for writing position

CONSTANTS: pos_c1 TYPE i VALUE 6,

 line_size TYPE i VALUE 100.

* Internal table like DDIC view DV_FLIGHTS

DATA: it_flights LIKE TABLE OF dv_flights,

 wa_flights LIKE dv_flights.

* Selection screen

SELECT-OPTIONS so_car FOR wa_flights-carrid.

 SAP AG 1999

Selection Screen

l Generate

l Design

l Input checks

l Variants

 SAP AG 1999

Selection Screen: Overview

SELECTION-SCREEN BEGIN OF SCREEN 1100.BEGIN OF SCREEN 1100.
 PARAMETERS:
 SELECT-OPTIONS:
SELECTION-SCREEN END OF SCREEN 1100.END OF SCREEN 1100.
 . . .

CALL SELECTION-SCREEN 1100.CALL SELECTION-SCREEN 1100.

Default selection screen

Screen: 1000

Default selection screen

Screen: 1000

Selection Screen

Screen: 1100

Log. DBLog. DB

Program-internalProgram-internal

Variant 1

Variant 1

Variant 1

Version 1

CALL SELECTION-SCREEN 1100.

BEGIN OF SCREEN 1100.

END OF SCREEN 1100.

SELECT-OPTIONS: ...

PARAMETERS: ...

NODES: ...

n Selection screens serve as the interface between the program and the user, and allow, for example,
limitation of the amount of data to be read from the database.

n Logical databases supply selection screens whose concrete appearance is dependent on the specified
node name (NODES<name>). Selection screen versions (if supplied by the logical database) offer a
subset of default selection screens.

n You can use the declarative language elements PARAMETERS and SELECT-OPTIONS to
generate a default selection screen (screen 1000) with input-ready fields.

n In addition to the default selection screen, you can generate additional selection screens with
SELECTION-SCREEN BEGIN and call them with CALL SELECTION-SCREEN.

n You can create variants of a selection screen. A variant is a user-specific selection variant. You
would create a screen variant if you frequently start a program with the same selection variants or
start in background processing.

 SAP AG 1999

Airline AA

 Output name

 Output local currency

Price (local currency): up to 500

 500 to 1000

 1000 to 1500

Declaring Fields with PARAMETERS

PARAMETERS: <f>[TYPE <type>][DECIMALS <n>][LIKE <f1>][MEMORY ID <pid>]
 [OBLIGATORY][DEFAULT <wert>]
 [AS CHECKBOX]
 [RADIOBUTTON GROUP <grp>]

REPORT sapbc405_sscd_checkbox_radiobutton.
... .
PARAMETERS: pa_carr LIKE sflight-carrid,
 pa_name AS CHECKBOX DEFAULT 'X',
 pa_curr AS CHECKBOX DEFAULT 'X',
 pa_lim_1 RADIOBUTTON GROUP lim,
 pa_lim_2 RADIOBUTTON GROUP lim,
 pa_lim_3 RADIOBUTTON GROUP lim.
CONSTANTS mark VALUE 'X'.

* Check, if any checkbox has been selected
IF pa_name EQ mark. ENDDIF.
IF pa_curr EQ mark. ENDDIF.

* Check, which radiobutton has been selected
CASE mark.
 WHEN pa_lim_1.
 WHEN pa_lim_2.
 WHEN pa_lim_3.
ENDCASE.

!

!

n The PARAMETERS statement is a declarative language element. As in the case of the DATA
statement, you can declare the fields with TYPE or LIKE. The system generates input-ready fields
in the selection screen. The names of PARAMETERS fields can be up to 8 characters long. You can
maintain selection texts (parameter names) with the function Text elements/Selection texts.

n You can set a default value with the DEFAULT <value> addition. If you assign a MEMORY ID
<pid>, the system uses SAP Memory and the SET/GET parameter to set the default value. If you
declare mandatory fields with the OBLIGATORY addition, users cannot leave the selection screen
until values have been entered in these fields.

n You can also define parameters as checkboxes (AS CHECKBOX). Doing so creates a one-character
field that can contain a " "(SPACE) or an "X". You can evaluate the contents of checkboxes using
IF/ENDIF control structures.

n You can also define a series of radio buttons for the selection screen with the addition
RADIOBUTTON GROUP <grp>. The maximum length name for a RADIOBUTTON GROUP
<grp> is 4 characters. Only one radio button in a group can be active and can be evaluated during
program processing. You can evaluate the contents of radio buttons using CASE/ENDCASE control
structures.

 SAP AG 1999

Selections with SELECT-OPTIONS

SELECT-OPTIONS: <seltab> FOR <f>.

Internal Table
 so_carr

REPORT sapbc405_sscd_select_options .
... .

SELECT-OPTIONS: so_carr FOR sflight-carrid DEFAULT 'AA',
 so_fldt FOR sflight-fldate.

Airline AA

Flight date

to

toSign Option Low High

 I EQ AA

n The SELECT-OPTIONS statement is a declarative language element. In contrast to the
PARAMETERS statement, it allows complex selections instead of just one input-ready
field.

n SELECT-OPTIONS generates an internal table <seltab> with a standard structure. This
consists of 4 fields: seltab-sign, seltab-option, seltab-low, and seltab-high. The name of
selection table <seltab> can contain up to 8 characters. You can maintain selection texts
(name of the selections) with the function Text elements/Selection texts.

n Use the addition FOR to specify the field against which the system should check the
selection entries. This field must be declared in a DATA or TABLES statement. The fields
seltab-low and seltab-high possess the same field characteristics as the check field.

n Each line of the selection table <seltab> formulates a condition using one of the following
relational operators. The following values are possible:

 SIGN: I (Include), E (Exclude)
 OPTION: EQ, NE, LE, LT, GE, GT, BT(Between), NB (Not Between),
 CP (Contains Pattern), NP (Contains Pattern not)

n The selection set is the union of all includes (I1,..., In) minus the union of all excludes (E1,
..., Em). If the table remains empty, selection is performed using the total selection set, if
you are working in the SELECT statement with WHERE IN <seltab>.

 SAP AG 1999

Selection Options and Multiple Selections

Selection options

Multiple selections

Sign Option Low High

 I EQ AA
 I BT DL LH

1 E... 1 I... E... I...

AA

Airline AA to
 = Single value

Select

Greater than or equal

Less than or equal

n When you make entries on a selection screen, the system populates the internal table <seltab>.
Standard entries for the fields seltab-sign and seltab-option are I and EQ for individual selections,
and I and BT for ranges.

n To change the default entries for seltab-sign and seltab-option, choose Selection options (double
click on the appropriate entry field or activate the pushbutton). The system offers all the alternatives
for fields seltab-sign and seltab-option that are appropriate for the selection. If the traffic signal icon
is green during Select, there is an I in seltab-sign; a red light indicates E.

n To delete a table entry, use the appropriate pushbutton (Delete selection).

n Every selection criterion can be used to make multiple selections unless defined otherwise. If
multiple selections are present, the color of the arrow changes from white to green.

 SAP AG 1999

Syntax of the SELECT-OPTIONS Statement

 SELECT-OPTIONS <seltab> FOR <f>

 DEFAULT <value>

 DEFAULT <value1> TO <value2>
 OPTION <xx> SIGN <x>

 MEMORY ID <pid>

 LOWER CASE

 OBLIGATORY

 NO-EXTENSION

 NO INTERVALS.

n Additions to the SELECT-OPTIONS statement:

­ DEFAULT enables you to set default values for seltab-low (single value) or seltab-low
and seltab-high (interval). You can use OPTION and SIGN to set default values for
seltab-option and seltab-sign that differ from the normal defaults.

­ MEMORY ID <pid> allocates a SPA/GPA parameter. The value stored in SAP Memory
with the ID <pid> is placed in seltab-low (lower interval limit) when you call the
selection screen.

­ LOWER CASE suppresses conversion of the entry into upper-case. This addition is
not permitted for Dictionary fields, since the attribute set in the Dictionary takes
precedence.

­ OBLIGATORY generates a mandatory field. A question mark appears in the entry field
in the selection screen, and the user must enter a value.

­ NO-EXTENSION suppresses multiple single or multiple range selections.

­ NO INTERVALS suppresses the seltab-high (upper interval limit) entry on the selection
screen. You can use the additional screen, Multiple selection, to enter ranges.

n If you entered a logical database in the attributes of the type 1 program, the selection
screen of the logical database is processed. If you have programmed additional
SELECTION-OPTIONS or PARAMETERS statements, the system displays them after the
selections of the logical database.

 SAP AG 1999

Designing the Selection Screen I

SELECTION-SCREEN BEGIN OF BLOCK <block>

WITH FRAME TITLE <text>

SELECTION-SCREEN END OF BLOCK <block>

REPORT sapbc405_sscd_sel_screen_i.
...
SELECTION-SCREEN BEGIN OF BLOCK carr WITH FRAME.
 SELECT-OPTIONS: so_carr FOR wa_sflight-carrid.
SELECTION-SCREEN END OF BLOCK carr.

SELECTION-SCREEN BEGIN OF BLOCK limit WITH FRAME TITLE text-001.
 PARAMETERS: pa_lim_1 RADIOBUTTON GROUP lim,
 pa_lim_2 RADIOBUTTON GROUP lim,
 pa_lim_3 RADIOBUTTON GROUP lim.
SELECTION-SCREEN END OF BLOCK limit.
...

BEGIN OF BLOCKBEGIN OF BLOCK WITH FRAME TITLEWITH FRAME TITLE

END OF BLOCKEND OF BLOCK

Price ...

n You can use the SELECTION-SCREEN statement to design the layout of the selection screen. You
can group selections that belong together logically with the supplemental BEGIN OF BLOCK
<block> and place a frame around them using WITH FRAME. You can assign a title to the block,
but you can only use the addition TITLE <text> together with a frame.

n You can nest framed blocks to a maximum of 5 frames.

n Before designing a selection screen, you should orient yourself to the screen design guidelines found
in the sample transaction BIBS.

 SAP AG 1999

Designing the Selection Screen II

REPORT sapbc405_sscd_sel_screen_ii.
...
* Parameters displayed in one line
 SELECTION-SCREEN BEGIN OF LINE.
 SELECTION-SCREEN COMMENT 1(20) text-s03.
 SELECTION-SCREEN COMMENT pos_low(8) text-s04.
 PARAMETERS pa_col AS CHECKBOX.
 SELECTION-SCREEN COMMENT pos_high(8) text-s05.
 PARAMETERS pa_ico AS CHECKBOX.
 SELECTION-SCREEN END OF LINE.
 ...

SELECTION-SCREEN:

END OF LINE

COMMENT pos(len) <text> [FOR FIELD <f>]

POSITION pos

BEGIN OF LINE

Seats ...

Output ...

n You can display multiple parameters and comments in one output line. To do so, you must enclose
them between the SELECTION-SCREEN BEGIN OF LINE and SELECTION-SCREEN END
OF LINE statements. The COMMENT parameter enables you to include text in the line.

n Comment texts must always have a format (position and output length). The position can be set with
a data field, pos_low or pos_high. These are the positions for fields seltab-low and seltab-high on the
selection screen.

n Adding COMMENT ... FOR FIELD <f> ensures that the F1 Help for field <f> is displayed for the
comment text and for the parameter itself. If you hide the parameter (selection variant: attribute
invisible) the comment text is also hidden.

n You can use POSITION <pos> to set the cursor for the next output position (only within ... BEGIN
OF LINE ... END OF LINE).

 SAP AG 1999

Initializing the Selection Screen

REPORT sapbc405_sscd_initialization.
...

INITIALIZATION.
 MOVE: mark TO pa_all.

 MOVE: 'I' TO so_carr-sign,
 'BT' TO so_carr-option,
 'AA' TO so_carr-low,
 'LH' TO so_carr-high.
 APPEND so_carr.
 CLEAR so_carr.
 MOVE: 'E' TO so_carr-sign,
 'EQ' TO so_carr-option,
 'DL' TO so_carr-low.
 APPEND so_carr.
...

 INITIALIZATION.

Output ...

Selection Colors Icons

INITIALIZATION.INITIALIZATION.

Airline

Flight date

LHAA to

to

All
Available
Occupied

Seats ...

n The INITIALIZATION event is processed exactly once in an executable program. You can
supply default values to the selection screen fields of the logical database during this event.
You can use F1 Help (Technical help) to determine the names of the selection fields.

n You can use the addition DEFAULT <value> to supply additional report-specific default
values to selection screen fields in a selection-option statement. The value sets are entered
in the internal table <seltab> during this event.

n The selection screen can generally be initialized during event AT SELECTION-SCREEN
OUTPUT . This event corresponds to event Process Before Output (PBO) of the selection
screen, and therefore may be passed several times. A typical task for the selection
screen's PBO event is dynamic screen modification (LOOP AT SCREEN), that is, showing
or hiding fields, enabling or preventing input, and so on.

n You can perform an error dialog check of the selection screen fields within the AT SELECTION-
SCREEN processing block. The event belongs to the PAI (Process After Input) processing of the
selection screen. In case of errors (MESSAGE Exxx or MESSAGE Wxxx), all fields are made
ready for input again.

n You can refer to individual selections with the parameters ON <f> or ON <seltab> . In case of errors,
only these selections are made input-ready again.

n To check the entry combinations of a logical group, you can use the event AT SELECTION-
SCREEN ON BLOCK <block>. Fields in this block are made ready for input when an error
message is issued.

n The event AT SELECTION-SCREEN ON END OF <field> belongs to the PAI processing of the
selection screen for Multiple selections.

n You can perform entry checks for selection criteria of the logical database and for your own
program-specific selections.

n You can work with several selection screens in one program. The default selection screen
always has the screen number 1000.

n You can also define a selection screen with SELECTION-SCREEN BEGIN OF SCREEN
<nnnn> ... END OF SCREEN <nnnn>. Between the BEGIN ... END ... statements, you
declare the required selections with SELECT-OPTIONS and PARAMETERS. The
selection screen is assigned the screen number <nnnn> and is called with CALL
SELECTION-SCREEN <nnnn>.

n The system takes care of the return from the selection screen, which means you do not
have to program it yourself with LEAVE SCREEN (as is the case with CALL SCREEN).
The program is continued immediately after the call. However, you must use system field
sy-subrc to query whether the user chose Execute (F8) or Cancel (green and yellow
arrows, red X). Execute (F8) returns sy-subrc = 0; Cancel returns sy-subrc = 4.

n You can supply the selection screen with default values at INITIALIZATION.

n You can determine which selection screen is currently processing with the AT
SELECTION-SCREEN event. You can do so with a CASE control structure and evaluate
the system field sy-dynnr.

n You can create any number of selection sets (variants) for a program. The variants are allocated to
the program uniquely.

n Creating variants makes sense when you frequently start a program with the same selection default
values.

n You can mark Start with variants in the program attributes. Users (system, services, reporting) can
then start the program only with a variant.

n If the program uses several selection screens, you can choose to create a variant for all the selection
screens or individually for each selection screen.

n Naming conventions and transporting variants

­ "SAP&xxx" are supplied by SAP

­ "CUS&xxx" are created by customers (in client 000)

Variants that follow these naming conventions are client-independent and will automatically be
transported along with the report. If these naming conventions are not followed, an entry for a
request (task) must be added to the object list: LIMU VARI <variant_name>.

n You have to assign a name and a description to each variant. By default, variants are
available for both online and background processing. You can also define a variant
exclusively for use with background processing.

n You can protect the variant itself and the individual selection criteria and parameters
against unauthorized changes. If you select Display only in catalog, this variant will not be
displayed in the general value help (F4).

n The type of a selection is determined in its declaration: Type s for SELECT-OPTIONS, type
p for PARAMETERS. If you select Selections protected, then the field(s) will not be ready
for input. You can use the hide attribute to suppress selection criteria and parameters on
the screen, if required, resulting in a less cluttered selection screen.

n When you use selection variables, there are three basic ways of supplying your selections
with values at runtime:

­ From table TVARV (type T)

­ Date fields using dynamic date calculation (type D), such as today's date

­ User-specific variables (type B); Prerequisite: The selection must be declared with the
MEMORY ID <pid> addition.

Unit: Selection Screen

Topic: Designing, initializing (optional) and

 checking (optional) a selection screen

When you have completed these exercises, you will be able to:

• Use the SELECT-OPTIONS statement

• Use the PARAMETERS statement

• Design a selection screen

• Initialize and check (optional)

1-1 Copy or enhance your program Z##FOL1_..., or copy the sample solution,
SAPBC405_FOLS_1, to program Z##SSC1_... . Sample solution for exercise:
SAPBC405_SSCS_1.

Extend the selection screen with selections (SELECT-OPTIONS) for the
connection number and the flight date, as well as parameters for output control.

1-1-1 Extend the selection screen with one selection each for the connection
number and the flight date.

1-1-2 Suppress the multiple selection option for the flight date.

1-1-3 Group the selections for the codes of the airline and the connection number
to a block. Create a frame with a title around the block.

 Group the flight date into a block. Create a frame with a title around the
block.

1-1-4 Maintain the selection texts.

1-2 Implement a group of parameters for output control

1-2-1 Generate a set of radio buttons with three possible settings

• all flights are read

• domestic flights only are read

• international flights only are read

The standard setting is that international flights are read.

1-2-2 Allow the user to enter a country code for domestic flights in an additional
parameter. To do this, use field wa_flights-countryfr.

1-2-3 Create a frame without a title around the radio button set. Create a frame
around the complete display parameters and assign a title and selection
texts. Arrange the frames and texts as shown in the template.

1-3 Make sure that only the data records requested are read from the database.

1-3-1 To do this, supplement the WHERE clause of the SELECT statement with
the conditions that result from the selections.

1-3-2 Implement the logic for the radio button group.

 Note: You need three separate SELECT statements with different WHERE
conditions. You can map the national/international condition directly on the
database:countryto = dv_flights~countryfr or countryto <>
dv_flights~countryfr. You use the tilde (~) to address the database field.

2-1 OPTIONAL

2-1-1 Initialize the selection table for the airline name such that the flights of
airlines AA through QF will be displayed, but not AZ.

2-1-2 Output error message 003 in message class BC405 if the user has selected
“domestic flights ” and the input parameter for the country is initial. In case
of error, only the radio button group and the country parameter should be
ready for input.

Unit: Selection Screen

Topic: Designing, initializing (optional) and

 checking (optional) a selection screen

&---

*& Report SAPBC405_SSCS_1 *

*& *

&---

*& Solution: Exercise 1; Selection Screen *

*& *

&---

INCLUDE bc405_sscs_1top.

&---

*& Event TOP-OF-PAGE

&---

TOP-OF-PAGE.

* Title

 FORMAT COLOR COL_HEADING INTENSIFIED ON.

 ULINE.

 WRITE: / sy-vline,

 'Flight data'(001),

 AT line_size sy-vline.

 ULINE.

* Column header

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary

 SET LEFT SCROLL-BOUNDARY.

 WRITE: 'Date'(003) ,

 'Departure location'(004),

 'Arrival location'(005),

 'Price'(006),

 AT line_size sy-vline.

 ULINE.

Optional parts: Initializing and checking a selection screen

&---

*& Event INITIALIZATION

&---

INITIALIZATION. " OPTIONAL

* Initialize select-options for CARRID

 MOVE: 'AA' TO so_car-low,

 'QF' TO so_car-high,

 'BT' TO so_car-option,

 'I' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

 MOVE: 'AZ' TO so_car-low

 'EQ' TO so_car-option,

 'E' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

&---

*& Event AT SELECTION-SCREEN ON BLOCK PARAM

&---

AT SELECTION-SCREEN ON BLOCK param. " OPTIONAL

* check country for national flights is not empty

 CHECK national = 'X' AND country = space.

 MESSAGE e003(bc405).

&---

*& Event START-OF-SELECTION

&---

START-OF-SELECTION.

* Checking the output parameters

 CASE mark.

 WHEN all.

* Radiobutton ALL is marked

 SELECT * FROM dv_flights INTO TABLE it_flights

 WHERE carrid IN so_car

 AND connid IN so_con

 AND fldate IN so_fdt.

 WHEN national.

* Radiobutton NATIONAL is marked

 SELECT * FROM dv_flights INTO TABLE it_flights

 WHERE carrid IN so_car

 AND connid IN so_con

 AND fldate IN so_fdt

 AND countryto = dv_flights~countryfr

 AND countryto = country.

WHEN internat.

* Radiobutton INTERNAT is marked

 SELECT * FROM dv_flights INTO TABLE it_flights

 WHERE carrid IN so_car

 AND connid IN so_con

 AND fldate IN so_fdt

 AND countryto <> dv_flights~countryfr.

ENDCASE.

&---

*& Event END-OF-SELECTION

&---

END-OF-SELECTION.

SORT it_flights BY carrid connid fldate.

* Data output

 PERFORM data_output.

&---

*& Form DATA_OUTPUT

&---

* List output of flight data

--

FORM data_output.

* Loop at the internal table for writing data

 LOOP AT it_flights INTO wa_flights.

* Get a new page if CONNID has changed.

 ON CHANGE OF wa_flights-connid.

 NEW-PAGE.

 ENDON.

* Mark international flights

 FORMAT COLOR COL_KEY INTENSIFIED ON.

 IF wa_flights-countryfr EQ wa_flights-countryto.

 WRITE: / sy-vline, icon_space AS ICON CENTERED.

 ELSE.

 WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.

 ENDIF.

* Data output

 WRITE: wa_flights-carrid,

 wa_flights-connid.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: wa_flights-fldate,

 wa_flights-cityfrom,

 wa_flights-cityto,

 wa_flights-price CURRENCY wa_flights-currency,

 wa_flights-currency,

 AT line_size sy-vline.

 ENDLOOP.

ENDFORM. " DATA_OUTPUT

&---

*& Include BC405_SSCS_1TOP *

*& *

&---

REPORT bc405_sscs_1top LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons

INCLUDE <icon>.

* Constants for writing position

CONSTANTS : pos_c1 TYPE i VALUE 6,

 line_size TYPE i VALUE 100.

* Constant for CASE statement

CONSTANTS mark VALUE 'X'.

* Internal table like DDIC view DV_FLIGHTS

DATA: it_flights LIKE TABLE OF dv_flights,

 wa_flights LIKE dv_flights.

* Selections for connections

SELECTION-SCREEN BEGIN OF BLOCK conn

WITH FRAME TITLE text-tl1.

SELECT-OPTIONS: so_car FOR wa_flights-carrid,

 so_con FOR wa_flights-connid.

SELECTION-SCREEN END OF BLOCK conn.

* Selections for flights

SELECTION-SCREEN BEGIN OF BLOCK flight

WITH FRAME TITLE text-tl2.

SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.

SELECTION-SCREEN END OF BLOCK flight.

* Output parameter

SELECTION-SCREEN BEGIN OF BLOCK param

WITH FRAME TITLE text-tl3.

SELECTION-SCREEN BEGIN OF BLOCK radio WITH FRAME.

PARAMETERS: all RADIOBUTTON GROUP rbg1,

 national RADIOBUTTON GROUP rbg1,

 internat RADIOBUTTON GROUP rbg1 DEFAULT
'X'.

SELECTION-SCREEN END OF BLOCK radio.

PARAMETERS country LIKE wa_flights-countryfr.

SELECTION-SCREEN END OF BLOCK param.

 SAP AG 1999

l Advantages and Uses of Logical Databases

l Sub-Objects of the Logical Database

l Data Retrieval with Logical Databases

Logical Database

 SAP AG 1999

DatabaseDatabase

Logical
database

ABAP Program
GET <node>

ABAP program
OPEN SQL

ABAP program
NATIVE SQL

Generating Lists

n In general, the system reads data that will appear in a list from the database.

n You can use OPEN SQL or NATIVE SQL statements to read data from the database.

n The use of a logical database provides you with an alternative to having to program database
accesses individua lly. Logical databases retrieve data records and make them available to ABAP
programs.

 SAP AG 1999

Program 1
Query 1

Logical database

Query 2

Program 2

Program 3

Program 6

Program 5

QuickView 1

Query 3

Query 4

QuickView 2

Program 4 - Provides a selection screen
- Input and authorization
 checks
- Reads data records

Advantages of a Logical Database

n The same logical database can be the data source for several QuickViews, queries, and programs. In
the QuickView, the LDB can be specified directly as a data source. A query works with the logical
database when the functional area that generated the query is defined with a logical database. In the
case of type 1 programs, the LDB is entered in the attributes or called using function module
LDB_PROCESS. See appendix for information on how to use the function module.

n Logical databases offer several advantages:

� The system generates a selection screen. The use of selection screen versions or variants provides
the required flexibility.

� The user does not have to know the exact structure of the tables involved (especially the foreign
key dependencies); the data is made available in the correct order at GET events.

� Performance improvements within logical databases directly affect all programs linked to the
logical database, without having to change the programs themselves.

� Maintenance can be performed at a central location.

� Authorization checks can also be performed centrally.

 SAP AG 1999

ABAP DictionaryABAP Dictionary

F1SF1S

Multilevel
view

Multilevel
view

SPFLISPFLI

SFLIGHTSFLIGHT

SBOOKSBOOK

Logical Database: Overview

n A logical database is an ABAP program that reads predefined data from the database and makes it
available to other programs.

n A hierarchical structure determines the order in which the data is supplied to the programs. A logical
database also provides a selection screen that checks user entries and conducts error dialogs. These
can be extended in programs.

n SAP provides some 200 logical databases in Release 4.6. The names of logical databases have been
extended to 20 places in Release 4.0 (namespace prefix max. 10 characters).

 SAP AG 1999

Logical Database: F1S Nodes

Flight booking

MANDT

CARRID

CONNID

FLDATE

BOOKID

CUSTOMID

Timetable

MANDT

CARRID

CONNID

 COUNTRYFR
 CITYFROM
 AIRPFROM
 COUNTRYTO
 CITYTO
 AIRPTO
 FLTIME
 DEPTIME
 ARRTIME
 DISTANCE
 DISTID
 FLTYPE

SBOOKSPFLI SFLIGHT

Flights

MANDT

CARRID

CONNID

FLDATE

PRICE
CURRENCY
PLANETYPE
SEATSMAX
SEATSOCC
PAYMENTSUM

CUSTTYPE
SMOKER
LUGGWEIGHT
WUNIT
INVOICE
CLASS
FORCURAM
FORCURKEY
LOCCURAM
LOCCURKEY
ORDER_DATE
COUNTER
AGENCYNUM
CANCELLED

n The demo programs and exercises for SAP courses and ABAP documentation refer to SAP's
BC_TRAVEL flight data model, which is found in development class BC_DATAMODEL.

n The tables

SPFLI: Flight connections

SFLIGHT: Flights

SBOOK: Bookings

form the nodes of logical database F1S.

 SAP AG 1999

REPORT sapbc405_ldbd_simple_example.

NODES: spfli, sflight.

* Processing of SPFLI records
GET spfli FIELDS

* Processing of SFLIGHT records
GET sflight FIELDS

Sample Program for a Logical Database

ABAP: Program Properties

Logical database

Selection screen version

F1S

n In the case of executable programs, you can enter a logical database in the attributes.

n Use the NODES <node> statement to specify the nodes of the logical database that you
want to use in the program. NODES allocates the appropriate storage space for the node -
that is, a work area or a table area depending on the node type.

n The logical database makes the data records available for the corresponding GET events.
The sequence in which these events are processed is determined by the structure of the
logical database.

 SAP AG 1999

Establishes a data hierarchy (read sequence)Establishes a data hierarchy (read sequence)

Possible node types:Possible node types:

 Database tableDatabase table Table or structure from the DDICTable or structure from the DDIC Name must beName must be
identical to the node nameidentical to the node name

 DDIC type DDIC type DDIC type:DDIC type: Table or structure.Table or structure. Name canName can
differ from node name; deep structuresdiffer from node name; deep structures
are possible.are possible.

 Data type Data type Type that was defined in a type groupType that was defined in a type group
Dynamic typeDynamic type Type is specified in programType is specified in program

LDB Sub-Objects: Structure

SPFLI

SBOOK

SFLIGHT

Table

Table

Table

Timetable

Flight table

Bookings

Name of node Node type Short text

n Logical databases are made up of several sub-objects. The structure determines the hierarchy, and
thus the read sequence of the data records.

n Node names can contain up to 14 characters. There are four different node types.

� Table (type T): The node name is the name of a transparent table (this type corresponds to the
concept prior to Release 4.0A). The table name must be identical to the node name. Deep types
(complex) are not allowed.

� DDIC type (type S): Any node name is possible. It is assigned a structure or a table type from the
Dictionary. The node name can differ from the type name. Deep structures are possible.

� Type groups (type C): The node type is defined in a type group. The name of the type group must
be maintained in the "Type group" field. You should generally prefer DDIC types, as the other
applications that use the logical database (such as SAP Query) can access them (short texts, and so
on).

� Dynamic nodes (type A): These nodes do not have a fixed type; they are not classified until the
program runtime. Which types are generally allowed is determined when the structure is created.

n Nodes are declared using language element NODES.

 SAP AG 1999

START-OF-SELECTION

END-OF-SELECTION

SBOOK SBOOK SBOOK SBOOK

111

222

333

444

555

333 333 333 333

222
444

111

SFLIGHT

SPFLI SPFLI

START-OF-SELECTION

GET SPFLI

GET SFLIGHT

GET SBOOK

GET SFLIGHT LATE

GET SFLIGHT

GET SBOOK

GET SBOOK

GET SBOOK

GET SBOOK

GET SFLIGHT LATE

GET SPFLI LATE

GET SPFLI

END-OF-SELECTION

DL 1699

25.02.2000

00002568

27.03.2000

00002569

00002570

00002590

00002591

DL 1984

 REPORT sapbc405_ldbd_events.
...

11

22

33

44

22

33

44

55

11

33

33

33

Events in Logical Databases

SBOOK

SFLIGHT

n Processing blocks are always allocated to an event. A processing block is closed by the
next event key word, the start of form routines, or by the end of the program.

n The START-OF-SELECTION event is triggered before control is given to the read routine
of the logical database. The END-OF-SELECTION event is triggered after all GET events
have been processed - that is, all data records have been read and processed.

n The GET <node> event is triggered whenever the logical database supplies data for this
node. This means that GET events are processed several times, and that data has already
been read from the database for these events. The sequence in which the GET events are
processed is determined by the structure of the logical database.

n The GET <node> LATE event is triggered when all subordinate nodes of node <node>
have been processed, before the data is read for the next <node>; that is, whenever a
hierarchy level has been completed.

n At the start of the event, the system automatically adds a line feed and configures the
default formats (for example, INTENSIFIED ON).

 SAP AG 1999

START-OF-SELECTIONSTART-OF-SELECTION

GET <node>GET <node>

END-OF-SELECTIONEND-OF-SELECTION

Program Flow

Display list

Event Block Termination

Ends
event block.

 List
Display

CHECKCHECK STOPSTOP EXITEXIT

Program Flow and Termination Alternatives

Ends
event block.

END-OF
-SELECTION
is performed

n CHECK statements end the current processing block.

n STOP statements end program processing. However, in contrast to the EXIT statement, the
processing block END-OF-SELECTION is processed first (if it exists).

n If there is a STOP statement within the END-OF-SELECTION processing block, program
processing ends immediately and a list is displayed.

n The EXIT statement exits the program and displays the list.

n You can also use the REJECT statement. The data record is not processed further.
Processing continues on the same hierarchy level when the next data record is read.
REJECT , unlike the CHECK statement, can also be used within a subroutine.

n Use the selection include db<name>sel to define selection screens for logical databases.
The addition FOR NODE assigns selections to individual logical nodes. The appearance of
a selection screen thus directly depends on the NODES statement contained within your
program.

n A field selection can be defined for the individual nodes. To do this, you have to specify
the addition FIELD SELECTION FOR NODE in the SELECTION-SCREEN statement. You
can then use GET <node> FIELDS <field list> to restrict the amount of data returned.

n You can designate individual nodes for dynamic selection using the addition DYNAMIC
SELECTIONS FOR NODE. The Dynamic selection pushbutton then appears on your
selection screen. You can determine which selection fields can be set by choosing a
particular selection view yourself (type: CUS) or by using the selection view delivered by
SAP (type: SAP).

n With large logical databases you can define several selection screen versions. Each
selection screen version contains a subset of your selection criteria (language element:
EXCLUDE). Specify the name of a selection screen version in the program attributes.

n When you enter a logical database in the attributes of your type 1 program, the system
processes the selection screen of the logical database. The concrete characteristics of the
selection screen depend upon the node specified in the NODES statement. If you specify a
node of type T (table), you can also declare the table work area with the TABLES
statement.

n If you address only subordinate nodes (in the hierarchy) of the logical database in the
program (for example sflight), the selection screen criteria for the superior node in the
hierarchy (spfli) also appear. You can thus restrict the dataset to be read so that it meets
your specific requirements.

n Note: A logical database always reads in accordance with its structure. This means that
if you only need data from a node deep in the hierarchy, you will achieve better
performance by programming the access yourself. This avoids unnecessary reading of the
database.

n If the logical database supports dynamic selections, the pushbutton for Dynamic selections appears
on the selection screen. When the user presses this button, a second selection screen is displayed.
This screen allows the user to select additional database fields. The system transfers the selections
directly to the logical database program and therefore to the database (dynamic selections).

n The selection view determines which fields are displayed on the selection screen. Create your own
view with type CUS, and have it override the view with type SAP.

n Database program sapdb<ldbname> for logical database <ldbname> is a collection of
subroutines, each of which is performed for specific events. For example, subroutine <init>
is processed once at the start of the database program. This program can be used to define
default values for the selection screen of the LDB.

n Other subroutines also exist that are processed during events PBO (Process Before
Output) and PAI (Process After Input) of the selection screen. Checks, such as
authorization checks (AUTHORITY-CHECK), are usually performed during event PAI.

n The database accesses (SELECT statements) are programmed in the put_<node>
subroutines. These subroutines may be processed several times, depending on which
selection criteria the user specifies. The sequence in which these subroutines are
processed is determined by the structure of the logical database.

n Database access (SELECT statements) should be programmed with optimal performance
in mind. When creating a logical database you generate the corresponding database
program after first having determined its structure and selection attributes. You can find
performance tips in the comment lines.

n When a program that has been assigned a logical database is started, control is initially
passed to the database program of the logical database. Each event has a corresponding
subroutine in the database program - for example, subroutine init for event
INITIALIZATION. During the interaction between the LDB and the associated program, the
subroutine is always processed first, followed by the event (if there is one in the report).

n Logical database programs read data from a database according to the structure declared
for the logical database. They begin with the root node and then process the individual
"branches" consecutively from top to bottom.

n The logical database reads the data in the put_<node> subroutines. During event PUT,
control is passed from the database program to the GET event of the associated report.
The data is made available in the corresponding work areas in the report. The processing
block defined for the GET event is performed. Control then returns to the logical database.
PUT activates the next form subroutine found in the structure. This flow is continued until
the report has collected all the available data.

n The depth of data read in the structure depends upon a program's GET events. A logical
database reads to the lowest GET event contained within the structure attributes. Only
those GET events for which processing is supposed to take place are written into the report
program. Logical databases read all data records found on the direct access path.

n If you specify a logical database and declare additional selections in the program attributes
that refer to the fields of a node not designated for dynamic selection, you must use the
CHECK <seltab> statement to see if the current data record fulfills the selection criteria.

n If the data record does not fulfill these selection criteria, current event block processing
ends.

Unit: Logical database

Topic: GET Events

When you have completed these exercises, you will be able to:

• Create a list whose data is read from a logical database

1-1 Create program Z##LDB1_... with TOP include (Z##LDB1_...TOP) and enter
logical database F1S in the program attributes. Make sure you specify Executable
program as the program type. Sample solution for exercise: SAPBC405_LDBS_1.

1-1-1 The logical database should supply the program with data for nodes SPFLI,
SFLIGHT, and SBOOK.

1-2-2 Create a list that displays the following data:

 Table SPFLI: CARRID, CONNID, CITYFROM,

 AIRPFROM, CITYTO, AIRPTO.

 Table SFLIGHT: FLDATE, SPRICE, CURRENCY,

 PLANETYPE, SEATSMAX,
SEATSOCC,

 FREE_SEATS.

 Table SBOOK: BOOKID, CUSTOMID, SMOKER,

 LUGGWEIGHT, WUNIT.

 Field FREE_SEATS is not a table field – it has to be calculated in the
program. The price and luggage weight should be output with the
appropriate units.

1-2-3 Formatting the list (optional)

 Create a three- line list in which each line outputs the information for one
node (see above).

Output the first line in color COL_HEADING not intensified, the second
line in COL_NORMAL intensified, and the third line in COL_NORMAL
not intensified. The list should have 83 columns and have a frame. Maintain
the column headers (standard list header).

Note: You will have to program the events GET spfli, GET sflight, GET sbook, and
END-OF-SELECTION. To output the fields, use the pattern functions available in
the ABAP Editor.

Exercises

Unit: Logical database

Topic: GET LATE Events and Checks from Internal
Program Selections

When you have completed these exercises, you will be able to:

• Create a list whose data is read from a logical database

• Check internal selections for their validity

1-1 Copy program Z##LDB1_... or the sample solution, SAPBC405_LDBS_1, from
exercise 1 to program Z##LDB2_... . Sample solution for exercise:
SAPBC405_LDBS_2.

1-1-1 Add a SELECT-OPTIONS statement for the posting date (table SBOOK) to
the selection screen. Frame the selection and maintain the selection text.

1-2-2 Make sure that only bookings that meet the specified selection criteria are
output in the list. Include the booking date in the list output. Maintain the
column header (standard list header).

1-2-3 In the list, output a solid line when all the bookings for a date have been
output, and when a flight has been completely output. Output each flight on
a new page.

Optional: Sample solution for exercise: SAPBC405_LDBS_2_OPT.

2-1 Enhance your program.

2-1-1 Add a radio button group with two radio buttons to the selection screen.
Draw a frame around the group and maintain the selection texts.

The group has to model the following functionality: The user can select
between charter flights only and regular flights only in the list. Whether a
flight is a charter or not is determined in field SPFLI-FLTYPE: Charter
flight: SPFLI –FLTYPE = 'X'.

2-2-2 Make sure that only dates and bookings that meet the specified selection
criteria are output in the list. You will need an auxiliary variable to evaluate
the radio button group.

Unit: Logical database

Topic: GET Events

&---

*& Report SAPBC405_LDBS_2 *

*& *

&---

*& *

*& *

&---

INCLUDE bc405_ldbs_2top.

&---

*& Event GET SPFLI

&---

GET spfli.

* Data output SPFLI

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: / sy-vline, spfli-carrid,

 spfli-connid,

 spfli-cityfrom,

 spfli-airpfrom,

 spfli-cityto,

 spfli-airpto,

 AT line_size sy-vline.

&---

*& Event GET SFLIGHT

&---

GET sflight.

* Calculate free seats

 free_seats = sflight-seatsmax - sflight-seatsocc.

* Data output SFLIGHT

 FORMAT COLOR COL_NORMAL INTENSIFIED ON.

 WRITE: / sy-vline, sflight-fldate,

 sflight-price CURRENCY sflight-currency,

 sflight-currency,

 sflight-planetype,

 sflight-seatsmax,

 sflight-seatsocc,

 free_seats,

 AT line_size sy-vline.

&---

*& Event GET SBOOK

&---

GET sbook.

* Check select-option

 CHECK so_odat.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: / sy-vline, sbook-bookid,

 sbook-customid,

 sbook-smoker,

 sbook-luggweight UNIT sbook-wunit,

 sbook-wunit,

 sbook-order_date,

 AT line_size sy-vline.

&---

*& Event GET SPFLI LATE

&---

GET spfli LATE.

 ULINE.

 NEW-PAGE.

&---

*& Event GET SFLIGHT LATE

&---

GET sflight LATE.

 ULINE.

&---

*& Include BC405_LDBS_2TOP *

*& *

&---

REPORT sapbc405_ldbs_2 LINE-SIZE 83.

* Used nodes of the structure of the logical database F1S

NODES: spfli, sflight, sbook.

* Additional selections

SELECTION-SCREEN BEGIN OF BLOCK order WITH FRAME.

SELECT-OPTIONS: so_odat FOR sbook-order_date.

SELECTION-SCREEN END OF BLOCK order.

* Variables

DATA: free_seats LIKE sflight-seatsocc.

* Constants

CONSTANTS: line_size LIKE sy-linsz VALUE 83.

Solutions

Unit: Logical database

Topic: GET LATE Events and Checks from Internal
Program Selections

&---

*& Report SAPBC405_LDBS_2_OPT *

*& *

&---

*& *

*& *

&---

INCLUDE BC405_LDBS_2_OPTTOP.

&---

*& Event GET SPFLI

&---

GET spfli.

*+++++++++++++++++++++++++++++++++++++> optional

* Check radio button group using a help variable

* Flight type charter or scheduled)

 CLEAR check_negative.

 IF pa_fty1 = 'X'.

 IF NOT spfli-fltype = pa_fty1.

 check_negative = 'X'.

 ENDIF.

 ELSEIF pa_fty2 = 'X'.

 IF NOT spfli-fltype = space.

 check_negative = 'X'.

 ENDIF.

 ENDIF.

 CHECK check_negative = space.

*<--- optional

* Data output SPFLI

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: / sy-vline, spfli-carrid,

 spfli-connid,

 spfli-cityfrom,

 spfli-airpfrom,

 spfli-cityto,

 spfli-airpto,

 AT line_size sy-vline.

&---

*& Event GET SFLIGHT

&---

GET sflight.

* Calculate free seats

 free_seats = sflight-seatsmax - sflight-seatsocc.

* Data output SFLIGHT

 FORMAT COLOR COL_NORMAL INTENSIFIED ON.

 WRITE: / sy-vline, sflight-fldate,

 sflight-price CURRENCY sflight-currency,

 sflight-currency,

 sflight-planetype,

 sflight-seatsmax,

 sflight-seatsocc,

 free_seats,

 AT line_size sy-vline.

&---

*& Event GET SBOOK

&---

GET sbook.

* Check select-option

 CHECK so_odat.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: / sy-vline, sbook-bookid,

 sbook-customid,

 sbook-smoker,

 sbook-luggweight UNIT sbook-wunit,

 sbook-wunit,

 sbook-order_date,

 AT line_size sy-vline.

&---

*& Event GET SPFLI LATE

&---

GET spfli LATE.

 ULINE.

 NEW-PAGE.

&---

*& Event GET SFLIGHT LATE

&---

GET sflight LATE.

 ULINE.

&---

*& Include BC405_LDBS_2OPTTOP *

*& *

&---

REPORT sapbc405_ldbs_2_opt LINE-SIZE 83.

* Used nodes of the structure of the logical database F1S

NODES: spfli, sflight, sbook.

* Additional selections

SELECTION-SCREEN BEGIN OF BLOCK order WITH FRAME.

SELECT-OPTIONS: so_odat FOR sbook-order_date.

SELECTION-SCREEN END OF BLOCK order.

* Additional selections (optional part)

SELECTION-SCREEN BEGIN OF BLOCK type WITH FRAME.

PARAMETERS: pa_fty1 RADIOBUTTON GROUP ftyp,

 pa_fty2 RADIOBUTTON GROUP ftyp.

SELECTION-SCREEN: END OF BLOCK type.

* Variables

DATA: free_seats LIKE sflight-seatsocc.

DATA check_negative.

* Constants

CONSTANTS: line_size LIKE sy-linsz VALUE 83.

 SAP AG 1999

Programming Data Retrieval

 SAP AG 1999

ABAP program

GET PUT

Logical Database
Open SQL
Native SQL

DatabaseDatabase

Data Retrieval: Internal

n Whenever a logical database cannot supply your program with all necessary data, you must program
database access directly into the program itself. This can be done using either Open SQL or Native
SQL statements.

n Open SQL statements offer several advantages. These include being able to program independent of
your underlying database, access to a syntax check, and the use of a local SAP buffer.

n Native SQL statements are bound into a program using

EXEC SQL [PERFORMING <form>].

<Native SQL statements>.

ENDEXEC

n Pay attention to the following when programming Native SQL:

­ Try not to use update operations (INSERT, DELETE, UPDATE)

­ Group EXEC SQL statements together (in an include) in order to be able to alter them centrally
for different database systems

­ Restrict yourself to Standard SQL (ISO9075:1992)

n In order to optimize performance, choose your SQL statements carefully when accessing several
(dependent) tables at a time.

 SAP AG 1999

 Database View in the ABAP DictionaryDatabase View in the ABAP Dictionary

INNER JOIN, OUTER JOININNER JOIN, OUTER JOIN

FOR ALL ENTRIESFOR ALL ENTRIES

Nested SELECT StatementsNested SELECT Statements

Reading Multiple Database Tables

n To insure optimal database performance:

n Follow these general rules:

­ Keep the amount of selected data as small as possible (use WHERE conditions, for
example)

­ Keep data transfer between the application server and the database to a minimum (use
field lists, for example)

­ Reduce the number of database inquiries if possible (use table joins instead of nested
SELECT statements, for example)

­ Reduce search size (this optimizes your database index)

­ Minimize database server load (use SAP buffers, for example).

n Always subject programs containing SQL statements to an SQL trace. Which processing
sequence is chosen by the Optimizer? Are indices used? If so, are the right ones used? Is a
FULL TABLE SCAN performed? Based on the results of this analysis, you should
reprogram your SQL statements (WHERE) conditions, create a database index, or buffer
the tables better. To start the SQL trace, use menu path GDA-1.

 SAP AG 1999

Database View in the ABAP DictionaryDatabase View in the ABAP Dictionary

REPORT sapbc405_gdad_db_view.
...
SELECT carrid carrname connid
 cityfrom cityto fldate
 seatsmax seatsocc
 INTO TABLE itab_flights
 FROM sv_flights
 WHERE cityfrom IN so_cityf
 AND cityto IN so_cityt
 AND seatsocc < sv_flights~seatsmax
ORDER BY carrid connid fldate.
...

Dictionary: Database view sv_flights

Table Join conditions

 View fields

svsv_flights_flights

Reading Multiple Database Tables I

n You can create database views in the ABAP Dictionary. Views (aggregate objects) are application
specific and allow you to work with multiple database tables. The link is mapped in an INNER JOIN
LOGIC (see slide on INNER JOIN).

n From Release 4.0 you can buffer database views. You can then read from views using the SAP
buffer on the relevant application server. The same rules apply when buffering views as when
buffering tables.

n Database view advantages:

­ Central maintenance

­ Accessible to all users

­ Only one SELECT statement is required in the program

n One disadvantage of the view is its low flexibility.

 SAP AG 1999

REPORT sapbc405_gdad_inner_join_2tab.
...
SELECT spfli~carrid spfli~connid
 spfli~cityfrom spfli~cityto
 sflight~fldate sflight~seatsmax
 sflight~seatsocc
 INTO TABLE itab_flights
 FROM spfli INNER JOIN sflight
 ON spfli~carrid = sflight~carrid
 AND spfli~connid = sflight~connid
 WHERE spfli~carrid IN so_carr
 AND spfli~connid IN so_conn.
...

INNER JOININNER JOIN

INNER JOIN

A

a1

a2

a3

B

b1

b2

b3

C

c1

c2

c3

A

a1

a3

a3

B

b1

b2

b3

D

d1

d2

d3

D

d1

d3

A

a1

a3

B

b1

b3

C

c1

c3

INNER JOININNER JOIN
ONON

Reading Multiple Database Tables IIa

n In a join, the tables (base tables) are combined to form one results table. The join conditions are
applied to this results table. The resulting composite for an inner join logic contains only those
records for which matching records exist in each base table.

n Join conditions are not limited to key fields.

n If columns from two tables have the same name, then you have to ensure that the field labels are
unique by prefixing the table name or a table alias.

n A table join is generally the most efficient way to read from the database. The database is
responsible for deciding which table is read first and which index is used (DB Optimizer).

n

 SAP AG 1999

REPORT sapbc405_gdad_outer_join.
...
SELECT scarr~carrid scarr~carrname
 spfli~connid spfli~cityfrom
 spfli~cityto
 INTO TABLE itab_flights
 FROM scarr LEFT outer JOIN spfli
 ON scarr~carrid = spfli~carrid
 ORDER BY scarr~carrid spfli~connid.
...

 OUTER JOIN OUTER JOIN

LEFT OUTER JOIN

D

d1

d2

d3

E

e1

e2

e3

A

a1

a2

a3

B

b1

b2

b3

C

c1

c2

c3

A

a1

a3

a3

D

d1

d2

d3

E

e1

e2

e3

A

a1

a2

a3

a3

B

b1

b2

b3

b3

C

c1

c2

c3

c3

LEFT OUTER JOINLEFT OUTER JOIN
ONON

Reading Multiple Database Tables IIb

n At LEFT OUTER JOIN, results tables can also contain entries from the designated left-
hand table without the presence of corresponding data records (join conditions) from the
table on the right. These table fields are filled by the database with null values and are then
initialized according to ABAP type.

n It makes sense to use a LEFT OUTER JOIN when data from the table on the left is needed
for which there are no corresponding entries in the table on the right. Example:
sapbc405_gdad_outer_join: not all airlines (table scarr) have flights listed (table spfli), but
all airline names are supposed to be displayed in the list.

n The following limitations apply for the Left Outer Join:

� you can only have a table or a view to the right of the JOIN operator, you cannot have
another join statement

� Only AND can be used as a logical operator in an ON condition.

� every comparison in the ON condition must contain a field from the table on the right.

� if the FROM clause contains an Outer Join, then all ON conditions must contain at least
one 'true' JOIN condition (a condition that contains a field from tab1 and a field from
tab2).

 SAP AG 1999

FOR ALL ENTRIESFOR ALL ENTRIES

REPORT sapbc405_gdad_for_all_entries.
... .
SELECT carrid connid ...
 INTO TABLE itab_spfli FROM spfli
 WHERE cityfrom IN so_cityf
 AND cityto IN so_cityt.

* Check, if at least one dataset is found
 IF sy-subrc ne 0. EXIT. ENDIF.

 SELECT carrid connid fldate ...
 INTO TABLE itab_sflight FROM sflight
 FOR ALL ENTRIES itab_spfli
 WHERE carrid = itab_spfli-carrid
 AND connid = itab_spfli-connid.
.... .

itab_spli

where (carrid = 'LH'
 and connid = '0400')

 or (carrid = 'LH'
 and connid = '0402')
 or (. . .

Executed according to:

 LH

 LH

 0400 ...

 0402 ...

FOR ALL ENTRIES INFOR ALL ENTRIES IN

IFIF sy sy--subrc nesubrc ne 0. EXIT. 0. EXIT. ENDIF.ENDIF.

Reading Multiple Database Tables III

n FOR ALL ENTRIES works with a database in a quantity-oriented manner. Initially all data is
collected in an internal table. Make sure that this table contains at least one entry (query
sy-subrc or DESCRIBE), otherwise the subsequent transaction will be carried out without any
restrictions).

n SELECT...FOR ALL ENTRIES IN <itab> is treated like a SELECT statement with an external
OR condition. The system only selects those table entries that meet the logical condition (WHERE
carrid = itab_sflight-carrid), replacing the placeholders (itab_spfli-carrid) with values from each
entry in the internal table itab_spfli. Note that itab_spfli-carrid is a placeholder, and not a
component of the internal table. Duplicates are not allowed. The internal table can, in principle, be as
large as you want it to be.

n Using FOR ALL ENTRIES is recommended when data is not being read from the database, that is,
it is already available in the program, for example, if the user has input the data. Otherwise a join is
recommended.

 SAP AG 1999

Reading Multiple Database Tables IV

Nested SELECT StatementsNested SELECT Statements

REPORT sapbc405_gdad_nested_selects.
... .
 SELECT carrid connid cityfrom ...
 INTO wa_spfli FROM spfli
 WHERE cityfrom IN so_cityf
 AND cityto IN so_cityt.
 APPEND wa_spfli TO itab_spfli.
 SELECT carrid connid fldate ...
 INTO wa_sflight FROM sflight
 WHERE carrid = wa_spfli-carrid
 AND connid = wa_spfli-connid.
 APPEND wa_sflight TO itab_sflight.
 SELECT bookid customid custtype class
 INTO wa_sbook FROM sbook
 WHERE carrid = wa_sflight-carrid
 AND connid = wa_sflight-connid
 AND fldate = wa_sflight-fldate.
 APPEND wa_sbook TO itab_sbook.
 ENDSELECT.
 ENDSELECT.
 ENDSELECT.
... .

SELECTSELECT

SELECTSELECT

SELECTSELECT

ENDSELECT.ENDSELECT.
ENDSELECT.ENDSELECT.

ENDSELECT.ENDSELECT.

n The easiest technical option for reading from multiple (dependent) tables is to use nested SELECT
statements. The biggest disadvantage of this method is that for every data record contained in the
external loop a SELECT statement is run using the database. This leads to a considerably worse
performance in client/server systems.

n From Release 4.0 you can also work with sub-queries. For more information, refer to the online
documentation.

 SAP AG 1999

Summary

l When data in the database is read from several
independent tables, it is important to optimize the
performance of the database accesses.

Unit: Internal Data Collection

Topic: Inner Join

When you have completed these exercises, you will be able to:

• Use an ABAP join to read data from several different DB
tables

1-1 Copy or enhance your program Z##SSC1_..., or copy the sample solution,
SAPBC405_SSCS_1, to program Z##GDA1_... . Sample solution for exercise:
SAPBC405_GDAS_1.

1-1-1 Replace the data collected through database view dv_flights with an internal
INNER JOIN performed on the database.

2-1 Deactivate (mark with "*") the three SELECT statements at START-OF-
SELECTION. Program INNER JOINs that fill internal table it_flights with data
from tables SPFLI and SFLIGHT in the database.

Note:

The structure of the internal table it_flights does not correspond exactly to the
combination of tables SPFLI and SFLIGHT. You must ensure that the fields are
copied to the fields of the same name in the target table.

Unit: Programming Data Retrieval

Topic: Inner Join

&---

*& Report SAPBC405_GDAS_1 *

*& *

&---

*& Solution: Exercise 1, Internal Data Collection

*& *

&---

INCLUDE bc405_gdas_1top.

&---

*& Event TOP-OF-PAGE

&---

TOP-OF-PAGE.

* Title

 FORMAT COLOR COL_HEADING INTENSIFIED ON.

 ULINE.

 WRITE: / sy-vline,

 'Flight data'(001),

 AT line_size sy-vline.

 ULINE.

* Column header

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary

 SET LEFT SCROLL-BOUNDARY.

 WRITE: 'Date'(003) ,

 'Departure location'(004),

 'Arrival location'(005),

 'Price'(006),

 AT line_size sy-vline.

 ULINE.

&---

*& Event INITIALIZATION

&---

INITIALIZATION. " OPTIONAL

* Initialize select-options for CARRID

 MOVE: 'AA' TO so_car-low,

 'QF' TO so_car-high,

 'BT' TO so_car-option,

 'I' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

 MOVE: 'AZ' TO so_car-low,

 'EQ' TO so_car-option,

 'E' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

&---

*& Event AT SELECTION-SCREEN ON BLOCK PARAM

&---

AT SELECTION-SCREEN ON BLOCK param. " OPTIONAL

* check country for national flights is not empty

 CHECK national = 'X' AND country = space.

 MESSAGE e003(bc405).

&---

*& Event START-OF-SELECTION

&---

START-OF-SELECTION.

* Checking the output parameters

 CASE mark.

 WHEN all.

* Radiobutton ALL is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt.

 SORT it_flights BY carrid connid fldate.

 WHEN national.

* Radiobutton NATIONAL is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt

 AND spfli~countryfr = spfli~countryto

 AND spfli~countryfr = country.

 SORT it_flights BY carrid connid fldate.

 WHEN internat.

* Radiobutton INTERNAT is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt

 AND spfli~countryfr NE spfli~countryto.

 SORT it_flights BY carrid connid fldate.

 ENDCASE.

* Additional solution: dynamical WHERE condition

* PERFORM get_data.

&---

*& Event END-OF-SELECTION

&---

END-OF-SELECTION.

* Data output

 PERFORM data_output.

&---

*& Form DATA_OUTPUT

&---

* List output of flight data

--

FORM data_output.

* Loop at the internal table for writing data

 LOOP AT it_flights INTO wa_flights.

* Get a new page if CONNID has changed.

 ON CHANGE OF wa_flights-connid.

 NEW-PAGE.

 ENDON.

* Mark international flights

 FORMAT COLOR COL_KEY INTENSIFIED ON.

 IF wa_flights-countryfr EQ wa_flights-countryto.

 WRITE: / sy-vline, icon_space AS ICON CENTERED.

 ELSE.

 WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.

 ENDIF.

* Data output

 WRITE: wa_flights-carrid,

 wa_flights-connid.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: wa_flights-fldate,

 wa_flights-cityfrom,

 wa_flights-cityto,

 wa_flights-price CURRENCY wa_flights-currency,

 wa_flights-currency,

 AT line_size sy-vline.

 ENDLOOP.

ENDFORM. " DATA_OUTPUT

* <-------------- ADDITIONAL --------------> *

&---

*& Form GET_DATA

&---

* Instead of programming three different SELECT statements, these

* SELECTs can be combined in one dynamical WHERE condition.

**--

*

*FORM GET_DATA. "#EC CALLED

*

* DATA: WHERE_LINE(40),

* WHERE_TAB LIKE TABLE OF WHERE_LINE.

*

** only national flights requested

* IF NATIONAL NE SPACE.

* WHERE_LINE = 'p~countryfr = p~countryto'. "#EC NOTEXT

* APPEND WHERE_LINE TO WHERE_TAB.

* CONCATENATE 'AND p~countryfr =' "#EC NOTEXT

* '''' INTO WHERE_LINE

* SEPARATED BY SPACE.

* CONCATENATE WHERE_LINE COUNTRY '''' INTO WHERE_LINE.

* APPEND WHERE_LINE TO WHERE_TAB.

* ENDIF.

*

** only international flights requested

* IF INTERNAT NE SPACE.

* WHERE_LINE = 'p~countryfr NE p~countryto'. "#EC NOTEXT

* APPEND WHERE_LINE TO WHERE_TAB.

* ENDIF.

*

** Close WHERE-clause by dot

* WHERE_LINE = '.'.

* APPEND WHERE_LINE TO WHERE_TAB.

*

** Inner join with dynamical where clause

* SELECT P~CARRID P~CONNID

* P~COUNTRYFR P~CITYFROM P~AIRPFROM

* P~COUNTRYTO P~CITYTO P~AIRPTO

* F~FLDATE F~PRICE F~CURRENCY

* FROM SPFLI AS P JOIN SFLIGHT AS F

* ON P~CARRID = F~CARRID AND P~CONNID = F~CONNID

* INTO CORRESPONDING FIELDS OF TABLE IT_FLIGHTS

* WHERE P~CARRID IN SO_CAR

* AND P~CONNID IN SO_CON

* AND F~FLDATE IN SO_FDT

* AND (WHERE_TAB).

*

*ENDFORM. " GET_DATA

&---

*& Include BC405_GDAS_1TOP *

*& *

&---

REPORT sapbc405_gdas_1 LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons

INCLUDE <icon>.

* Constants for writing position

CONSTANTS: pos_c1 TYPE i VALUE 6,

 line_size TYPE i VALUE 100.

* Constant for CASE statement

CONSTANTS mark VALUE 'X'.

* Internal table like DDIC view DV_FLIGHTS

DATA: it_flights LIKE TABLE OF dv_flights,

 wa_flights LIKE dv_flights.

* Selections for connections

SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-tl1.

SELECT-OPTIONS: so_car FOR wa_flights-carrid,

 so_con FOR wa_flights-connid.

SELECTION-SCREEN END OF BLOCK conn.

* Selections fo r flights

SELECTION-SCREEN BEGIN OF BLOCK flight WITH FRAME TITLE text-tl2.

SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.

SELECTION-SCREEN END OF BLOCK flight.

* Output parameter

SELECTION-SCREEN BEGIN OF BLOCK param WITH FRAME TITLE text -tl3.

SELECTION-SCREEN BEGIN OF BLOCK radio WITH FRAME.

PARAMETERS: all RADIOBUTTON GROUP rbg1,

 national RADIOBUTTON GROUP rbg1,

 internat RADIOBUTTON GROUP rbg1 DEFAULT 'X'.

SELECTION-SCREEN END OF BLOCK radio.

PARAMETERS country LIKE wa_flights-countryfr.

SELECTION-SCREEN END OF BLOCK param.

 SAP AG 1999

SAP Query - Administration

l User groups

l Functional areas

 SAP AG 1999

ABAP Query - Administration

User groupsUser groups

Functional areasFunctional areas

 SAP AG 1999

Assign a userAssign a user

Assign a functional areaAssign a functional area

Change / Create / Delete ...Change / Create / Delete ...

Assign user groups
Assign functional areas

Assign user groups
Assign functional areasUser

group

Maintaining User Groups

n When you create a user group, you must assign a name and a description to the user group.

n To maintain a user group, you can use the following options:

­ You can assign users and functional areas to a user group.

­ You can assign a user to various user groups.

­ You can assign a functional area to various user groups.

n You can assign every user in the SAP System to one or more user groups.

 SAP AG 1999

S_QUERY
(ACTVT)

UG
allocated User activities

NO

YES

YES

YES

NO

NO

Cannot use query---

Change (02)

Maintain (23)

Change (02)

Compile (67)

Maintain (23)

Start queries

Start and change queries

Start queries,
Maintain UG and FA

Start and change queries,
Maintain UG and FA

Language comparison for query

Authorizations and ABAP Query

n There are basically two mechanisms for determining who can do what with a query.

n The first restriction involves the assignment to a user group. Users who have not been assigned to
any user groups cannot use the query. Users who have been assigned to at least one user group can
start queries.

n The second mechanism is field ACTVT in authorization object S_QUERY. You can use this field to
authorize users to change queries as well (ACTVT = 02).

n ACTVT = 23 is required to maintain functional areas and user groups (typical administration tasks).
An administrator does not necessarily have to be assigned to a user group.

n A separate authorization (ACTVT = 67) is required to compile the query.

 SAP AG 1999

ABAP Query - Administration

User groupsUser groups

Functional areasFunctional areas

 SAP AG 1999

......

Secondary data
Is assigned to a functional

area

Additional tables
 and

additional fields
 (separate authorizations)

Primary data
Logically separated into

functional areas

Funct. area 1 Funct. area 2

Primary data is determined by the functional area type

• Logical database
• Table join (inner, outer)
• Table
• Sequential dataset
• Data collection program

Defining Functional Areas

n When you define a functional area, you must first decide on a primary dataset (functional area type).

n You can assign secondary datasets (tables, supplementary fields) to the primary dataset.

n You can choose all the fields of the primary dataset and the secondary dataset. You choose fields by
assigning them to a functional group.

n Users cannot access fields that are not assigned to a functional group.

n For the end user it is irrelevant whether a field belongs to primary or secondary data.

n There are different types of functional areas:

­ Creating a functional area from a logical database provides data retrieval for logical databases
(GET <node>).

­ Creating a functional area from a table join allows access to data in tables that are linked with
an INNER or OUTER JOIN (SELECT).

­ Creating a functional area from a table evaluates data from a table or from a database view
(SELECT).

­ Creating a functional area from a program evaluates data read by a predefined program.

­ Creating a functional area from a sequential file reads data stored in a sequential file (READ
DATASET).

n For the enduser, it is irrelevant which type of functional area is used.

 SAP AG 1999

Allocating Fields

Maintain titles

Defining Functional Areas

Selection:
Parameters / selection options

Additional Information

Determine the functional area type

Overview: Creating Functional Areas

n When you create a functional area, you have to enter a title and select the type of functional area.
You can force every query in a functional area to be allocated to an authorization group (provides
protection of the generated program, object S_PROGRAM).

n After header maintenance, you can divide the available fields into functional groups.

n You can read additional tables and use additional fields.

n You can define parameters and selection options (determination of the selection screen).

n When you create a functional area, you must allocate it to the user group with which it is to work.

n The system administers every functional area in two versions: a generated version and a revised
version. After you change a functional area, you must generate it so that the changes become known.
Queries work only with the generated versions of functional areas.

n You can delete a functional area only when it contains no queries.

n You can user the directory function to see an overview of the available functional areas along with
their contents and all queries created from a given functional area (menu path AQA-1).

 SAP AG 1999

Table
SCARR
Table

SCARR
SFLIGHTSFLIGHT

...SELECT
SINGLE ..

SBOOKSBOOK

...

SPFLISPFLI

...

ABAP
statements,

such as
GET SFLIGHT

Defining Functional Areas: Example

 Functional
area

 with LDB
F1S

Selection of fields
and grouping

to functional groups

n For practical purposes, retrieval of supplemental data (table accesses, supplemental fields) is an
extension of the tables already present.

n When you define table accesses and supplemental fields, you must specify the time and the order (of
access).

n You can also use ABAP statements to allocate various events.

 SAP AG 1999

BCS1

Functional area

SPFLI

SFLIGHT

SBOOK

Logical database F1S

ID Meaning

10 Connections

20 Flights

30 Bookings

Create

Defining Functional Areas

Change functional area BCS1

Create functional areas

n A functional group is the grouping of several fields into a logical unit. They serve to simplify field
selection for the user.

n The functional group is displayed using a two-part tree structure:

­ The first sub-tree contains the functional groups. This sub-tree is flat: all functional groups exist
next to each other at the same level. Each functional group contains the fields that have been
assigned to it.

­ The second sub-tree describes the structure of the data that will be read. The structure of
functional areas with logical databases corresponds to the structure of the logical database and
contains all the nodes and the hierarchical relationships defined between the nodes. In the case
of a table join, the structure contains all the tables of the join in a flat structure.

n Functional groups can be created using the Create icon or from the menu. You must assign an ID
code and a long text when creating a functional group.

n To allocate fields to a functional area, you must choose or select it. The system highlights the
selected functional areas in color.

n To allocate a field to a functional area, you must first make the field visible by expanding the
corresponding table in the second partial tree. A special icon next to the field name indicates if the
field has been allocated to a functional area. If the icon is a minus sign, the field has not been
allocated to a functional group. A single click on the icon allocates the field to the currently marked
functional area. The icon behind the ID code of the functional group then changes from a minus sign
to a plus sign.

n A single click on a plus-icon cancels the allocation. You can only cancel the field-functional area
allocation if the field has not yet been used in queries.

n You can define additional tables, additional fields, and ABAP statements either at the GET event or
during record processing for each table in the second sub-tree.

n You can reach these enhancements with the Extras function. The enhancements are summarized for
each table.

n To maintain additions for a particular table, you must position the cursor on a field in the table and
then call the function. A window appears that displays all additional tables, additional fields, and
statements allocated to the table.

n The number in the first column indicates the order of the code sections in the generated program.
This number becomes important when individual enhancements are dependent upon each other.

n Multiple allocation of additional tables (alias tables):

­ Alias tables enable repeated use of a table.

­ You can assign multiple alias names for a table. You can then address the table with its various
names.

n You allocate an additional table as follows:

­ Call the Create function on the screen.

­ Enter the name of the additional table and set the selection button on the additional table.

­ Enter the order of the coding section and the WHERE clause in the following screen.

n A query performs a table access only when the query requires this table field.

n You allocate an additional field as follows:

­ Call the Create function on the screen.

­ Enter the name of the additional field and select the Additional field radio button.

­ On the following screen, define the code section's sequence and the field itself.

n You can enter the format specifications directly using the data type or by referring to an ABAP
Dictionary field.

n This screen does not contain ABAP statements for the additional field. To maintain such statements,
you must branch to the Editor using the Editor function. The Editor syntax check is available there.
You can use include programs, external form routines, and function modules.

n Selection criteria must always refer to primary data fields or to fields that have been defined in a
DATA statement in the functional area.

n When you specify the order, you also determine the output sequence of individual selection criteria
and parameters. However, all the standard selections of the logical database appear in the lead
positions on the selection screen.

n If selections have been defined in addition to the logical database, and these selections refer to a
node that does not support free selections, then you have to use a CHECK statement to check the
collected data.

Unit: SAP Query – Administration

Topic: Creating Functional Areas

When you have completed these exercises, you will be able to:

Create a functional area with a logical database

Include additional fields

Include additional tables

1-1 Create a functional area, BCS2-##, with logical database F1S in the global query
area (note: ## is the group number).

1-1-1 Create the following functional groups:

 Connections

 Flights

 Bookings

1-1-2 Assign the following fields to the functional groups:

Connections: SPFLI-CARRID

SPFLI-CONNID

SPFLI-CITYFROM

SPFLI-AIRPFROM

SPFLI-CITYTO

SPFLI-DEPTIME

SPFLI-ARRTIME

SPFLI-FLTYPE

Flights: SFLIGHT-PRICE

SFLIGHT-CURRENCY

SFLIGHT-PLANETYPE

SFLIGHT-SEATSMAX

SFLIGHT-SEATSOCC

SFLIGHT-PAYMENTSUM

SFLIGHT-FLDATE

 Bookings: SBOOK-BOOKID

SBOOK-CUSTOMID

SBOOK-CUSTTYPE

SBOOK-SMOKER

SBOOK-LUGGWEIGHT

SBOOK-WUNIT

1-2 Create the additional field FREE (with the description free seats) for table
SFLIGHT.

1-2-1 Assign the field FREE to the functional group Flights.

1-3 For the table SBOOK, read additional information from table SCUSTOM.

Create additional table SCUSTOM for table SBOOK.

Assign the following fields to the Bookings functional group:

SCUSTOM-NAME

SCUSTOM-FORM

SCUSTOM-STREET

SCUSTOM-POSTCODE

SCUSTOM-CITY

SCUSTOM-TELEPHONE

1-4 Assign the functional area to your user group BC_STUDENTS.

1-4-1 Create a query, QE2-##, for functional area BCS2-##, and test the functional
area.

1-4-2 The list should have the following line structure:

Line 1: Short name of the airline, code of the

 flight connection

Line 2: Departure city, arrival city, free seats

Line 3: Flight date

Line 4: Form of address, customer name, street, city, and zip code

 SAP AG 1999

Data Formatting and Control Level Processing

l With internal tables

l With extract datasets (see appendix)

n You can use control level processing to create structured lists. Control levels are determined by the
contents of the fields that are to be displayed. there is a control level change whenever the content of
a field changes. This means that there is no point in creating control levels unless the data are sorted.

n The data to be displayed must be saved temporarily if you want to use control level processing. You
can also use internal tables and intermediate datasets.

n From Release 4.0, the R/3 System has included three types of tables: Standard tables (STANDARD
TABLE), sorted tables (SORTED TABLE), and hashed tables(HASHED-TABLE).

n For information on the complete syntax of internal tables, see the online documentation.

n You can use an array fetch in a SELECT statement to fill an internal table in one go.

n You can use the APPEND statement to insert table entries at the end of an internal table. The variant
of the APPEND statement on the slide is permitted only for standard or sorted tables. After an
APPEND statement, system field SY-TABIX contains the index value of the newly inserted table
entry.

n You use the COLLECT statement to generate unique or compressed datasets. The contents of the
work area <wa> of the internal table are recorded as a new entry at the end of the table or are added
to an existing entry. The latter occurs when the internal table already contains an entry with the same
key field values as those currently in the work area. The numeric fields that do not belong to the key
are added to the corresponding fields of the existing entry.

n When the COLLECT statement is used, all the fields that are not part of the key must be numeric.

n The SORT statement sorts the entries in internal table <itab> in ascending order. If the addition BY
<f1> ..., is missing, then the key assigned when the table was defined is used.

n If addition BY <f1> <f1> ... is used, then fields <f1>, <f2>, ... are used as sort keys. The fields can
be of any type.

n You can use the additions ASCENDING and DESCENDING with the SORT statement to
determine whether the fields are sorted in ascending (default) or descending order.

n For more information about the SORT statement, please refer to appendix documentation DAP-3.

n You can use the loop statement LOOP AT <itab> ... ENDLOOP to process an internal table. The
data records in the internal table are processed sequentially.

n The CONTINUE statement can be used to prematurely exit the current loop pass and skip to the
next pass.

n The EXIT statement can be used to exit loop processing.

n At the end of loop processing (after ENDLOOP), return value sy-subrc indicates whether the loop
was passed or not.
 SY-SUBRC = 0: The loop was passed at least once
 SY-SUBRC = 4: The loop was not passed because no entry was available.

n You can use special control structures for control level processing. All the structures begin with AT
and end with ENDAT. These control structures can only be used within a LOOP.

n The statement blocks AT FIRST and AT LAST are run exactly once: at the first AT FIRST and at
the last AT LAST loop.

n The statements within AT NEW <f> ... ENDAT are executed when the value of field <f>
changes within the current LOOP (start of a control level) or the value of one of the fields in the
table definition (further to the left).

n The statements within AT END OF <f> ... ENDAT are executed when the value of field <f>
changes during the next LOOP (end of a control level) or the value of one of the fields in the table
definition (further to the left).

n At entry of the control level (directly after AT),
- all fields with the same character types after (to the right of) the current control level key
 are filled with "*"
- all other fields after (to the right of) the current control level key are set to default values.

n When a control structure is exited (at ENDAT), all fields of the query area are filled with the data
from the current loop pass.

n The SUM statement supplies the respective group totals in the query area of the LOOP in all fields of
TYPE I, F and P.

n The control level structure in internal tables is static. It corresponds exactly to the sequence of
columns in the internal table (from left to right). In particular, the control level structure for internal
tables is independent of the criteria used to sort the internal table. The table must be sorted according
to the internal table fields.

n When you implement control level processing, you must follow the sequence of individual control
levels within the LOOP as illustrated in the slide. The sequence follows the sequence of fields in the
internal table and is therefore also the sort sequence.

n The processing block between AT FIRST and ENDAT is executed before processing of the single
lines begins. The processing block AT LAST and ENDAT is executed after all single lines have been
processed.

Unit: Data Formatting and Control Level Processing

Topic: Internal Table

When you have completed these exercises, you will be able to:

• Implement control level processing with internal tables

1-1 Copy or enhance your program Z##GDA1_..., or copy the sample solution,
SAPBC405_GDAS_1, to program Z##DAP1_... . Sample solution for exercise:
SAPBC405_DAPS_1.

Carry out control level processing for CITYFROM, CITYTO, CARRID, CONNID.
Create a list like the one in the template.

1-1-1 Create a line type in the TOP include (TYPES statement). Declare the
internal table and the work area in accordance with the line type. You
should include the following fields:

CARRID, CONNID, FLDATE, PRICE, CURRENCY, CITYFROM,
COUNTRYFR, CITYTO, COUNTRYTO, SEATSMAX, SEATSOCC.

 Note: The control level hierarchy for an internal table is established by your
line structure .

1-1-2 Sort the internal table in accordance with the requested control level
processing (event: END-OF-SELECTION).

1-2. Implement the control level processing in your output routine.

1-2-1 Output each new departure city on a separate page and with intensive
display in color COL_GROUP in the list.

1-2-2 Output the city and airport for each new arrival city with a less intensive
display in color COL_GROUP.

1-2-3 Ensure that the icon ICON_BW_GIS (for international flights), the airline
and the flight number are displayed as required during single-record
processing. Display the key fields in color COL_KEY; they should remain
as hard lead columns. Display the flight date, the price, the currency, the
maximum number of seats and the number occupied in color
COL_NORMAL in the list with a less intensive display.

1-2-4 At the end of each flight connection, the totals for the maximum number of
seats and the number occupied should be displayed in color COL_TOTAL
without intensive display.

1-2-5 A solid line should appear on the list before the departure location changes.

1-2-6 Draw a frame around the list (sy-vline) .

1-2-7 Modify the column headers to fit the new list output (see the template). Use
text elements to allow your texts to be translated.

Template:

Flight data

Departure city
Arrival location
 Flight Date Price Max. Occ.

FRANKFURT
NEW YORK
 09/07/1999 0400 280 173 1,332.00 DEM
 11/29/1999 0400 280 156 1,332.00 DEM
 12/02/1999 0400 280 24 1,332.00 DEM
 12/09/1999 0400 280 198 1,332.00 DEM
 12/29/1999 0400 280 277 1,332.00 DEM
Total 1400 828
 09/29/1999 0402 280 210 1,332.00 DEM
 12/28/1999 0402 280 280 1,332.00 DEM
 01/02/2000 0402 280 280 1,332.00 DEM
 01/05/2000 0402 280 198 1,332.00 DEM
 02/08/2000 0402 280 11 1,332.00 DEM
Total 1400 979

@ = ICON_BW_GIS

Optional Exercises

Unit: Data Formatting and Control Level Processing

Topic: Extracts

When you have completed these exercises, you will be able to:

• Name field groups

• Define field groups

• Create extracts

• Perform control level processing with extracts

1-1 Copy or enhance your program Z##LDB2_..., or copy the sample solution,
SAPBC405_LDBS_2, to program Z##DAP2_... . Sample solution for exercise:
SAPBC405_DAPS_2.

1-1-1 Deactivate the events GET … LATE.

1-1-2 Define the following field groups in the TOP include:

 HEADER

 CONNECTIONS

 FLIGHTS

 BOOKINGS

1-1-3 Assign the following fields to the field groups:

HEADER: spfli-carrid, spfli-connid, sflight- fldate, sbook-bookid, sbook-
customid

 CONNECTIONS: spfli-cityfrom, spfli-airpfrom, spfli-cityto,

 spfli-airpto

 FLIGHTS: sflight-price, sflight-currency, sflight-planetype,

 sflight-seatsmax, sflight-seatsocc, free_seats

 BOOKINGS: sbook-bookid, sbook-customid, sbook-smoker,

 sbook-luggweight, sbook-wunit.

1-1-4 Fill the extract for the GET events.

1-1-5 Sort the extract according to the sequence of field group HEADER.

1-1-6 Start control level processing and create a list with the following structure:

Line 1: SPFLI-CARRID, SPFLI-CONNID

Line 2: SFLIGHT-FLDATE

Line 3: SPFLI-CITYFROM, SPFLI-AIRPFROM, SPFLI-CITYTO,

 SPFLI-AIRPTO

Line 4: SFLIGHT-PRICE, SFLIGHT-CURRENCY, SFLIGHT-

PLANETYPE, SFLIGHT-SEATSMAX, SFLIGHT-EATSOCC,

 FREE_SEATS

Line 5: SBOOK-BOOKID, SBOOK-CUSTOMID, SBOOK-SMOKER,

 BOOK-LUGGWEIGHT, SBOOK-WUNIT.

Only output line 3 if line 4 is also output.

Only output line 4 if line 5 is also output.

1-1-6 The list should also include the number of total bookings and the total
weight of the luggage for each flight date in one line.

1-2 Formatting the list

1-2-1 The price and luggage weight should be output with correct format for the
respective units.

1-2-2 Output each flight on a new page.

1-2-3 Output a solid line before and after the number of bookings and the total
weight.

1-2-4 Use the following control structures and colors:
 AT NEW spfli-connid, COL_GROUP INTENSIFIED
ON

 AT NEW sflight- fldate, COL_HEADING INTENSIFIED
ON
 AT flights WITH bookings, COL_NORMAL
INTENSIFIED ON
 AT bookings, COL_NORMAL INTENSIFIED OFF
 AT END OF sflight- fldate, COL_TOTAL
INTENSIFIED ON.

1-2-5 Position the control levels in the list in such a way that the hierarchy is
apparent – for example, line 1 begins further than the left than line 2, and so
on. Draw a frame around the list. Maintain the column headers (standard list
header).

Unit: Data Formatting and Control Level Processing

Topic: Internal Table

&---

*& Report SAPBC405_DAPS_1 *

*& *

&---

*& Solution; Exercise 1; Control level processing

 With internal table

*& *

&---

INCLUDE bc405_daps_1top.

&---

*& Event TOP-OF-PAGE

&---

TOP-OF-PAGE.

* Title

 FORMAT COLOR COL_HEADING INTENSIFIED ON.

 ULINE.

 WRITE: / sy-vline,

 'Flight data'(001),

 AT line_size sy-vline.

 ULINE.

* Column header

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: sy-vline, 'Departure location'(004), AT line_size sy-vline.

 WRITE: sy-vline, 'Arrival location'(004), AT line_size sy-vline.

 WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary

 SET LEFT SCROLL-BOUNDARY.

 WRITE: 'Date'(003),

 AT pos_c3 'Price'(006),

 AT pos_c4 'Max.'(008),

 AT pos_c5 'Occ.'(009),

 AT line_size sy-vline.

 ULINE.

&---

*& Event INITIALIZATION

&---

INITIALIZATION. " OPTIONAL

* Initialize select-options for CARRID

 MOVE: 'AA' TO so_car-low,

 'QF' TO so_car-high,

 'BT' TO so_car-option,

 'I' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

 MOVE: 'AZ' TO so_car-low,

 'EQ' TO so_car-option,

 'E' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

&---

*& Event AT SELECTION-SCREEN ON BLOCK PARAM

&---

AT SELECTION-SCREEN ON BLOCK param. " OPTIONAL

* check country for national flights is not empty

 CHECK national = 'X' AND country = space.

 MESSAGE e003(bc405).

&---

*& Event START-OF-SELECTION

&---

START-OF-SELECTION.

* Checking the output parameters

 CASE mark.

 WHEN all.

* Radiobutton ALL is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt.

 WHEN national.

* Radiobutton NATIONAL is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt

 AND spfli~countryfr = spfli~countryto

 AND spfli~countryfr = country.

 WHEN internat.

* Radiobutton INTERNAT is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt

 AND spfli~countryfr NE spfli~countryto.

 ENDCASE.

* Additional solution: dynamical WHERE condition

* PERFORM get_data.

&---

*& Event END-OF-SELECTION

&---

END-OF-SELECTION.

*SORT it_flights BY carrid connid fldate.

* Control Level Processing: the internal table has to be sorted

 SORT it_flights BY cityfrom cityto carrid connid.

* Data output

 PERFORM data_output.

&---

*& Form DATA_OUTPUT

&---

* List output of flight data

--

FORM data_output.

* Loop at the internal table for writing data

 LOOP AT it_flights INTO wa_flights.

* Group Level: CITYFROM

 AT NEW cityfrom.

 NEW-PAGE.

 FORMAT COLOR COL_GROUP INTENSIFIED ON.

 WRITE: / sy-vline, wa_flights-cityfrom,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Group Level: CITYTO

 AT NEW cityto.

 FORMAT COLOR COL_GROUP INTENSIFIED OFF.

 WRITE: / sy-vline, wa_flights-cityto,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Single Record Processing

* Mark international flights

 FORMAT COLOR COL_KEY INTENSIFIED ON.

 IF wa_flights-countryfr EQ wa_flights-countryto.

 WRITE: / sy-vline, icon_space AS ICON CENTERED.

 ELSE.

 WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.

 ENDIF.

* Data output

 WRITE: wa_flights-carrid,

 wa_flights-connid.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: wa_flights-fldate,

 wa_flights-price CURRENCY wa_flights-currency,

 wa_flights-currency,

 wa_flights-seatsmax,

 wa_flights-seatsocc,

 AT line_size sy-vline.

 FORMAT RESET.

* Group Level: CONNID

 AT END OF connid.

 SUM.

 FORMAT COLOR COL_TOTAL.

 WRITE: / sy-vline,

 'Total'(007),

 wa_flights-seatsmax UNDER wa_flights-seatsmax,

 wa_flights-seatsocc UNDER wa_flights-seatsocc,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Group Level: CITYFROM

 AT END OF cityfrom.

 ULINE.

 ENDAT.

 ENDLOOP.

ENDFORM. " DATA_OUTPUT

&---

*& Include BC405_DAPS_1TOP *

*& *

&---

REPORT bc405_daps_1top LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons

INCLUDE <icon>.

* Linetype of internal table

TYPES: BEGIN OF linetype,

 cityfrom LIKE spfli-cityfrom,

 cityto LIKE spfli-cityto,

 carrid LIKE spfli-carrid,

 connid LIKE spfli-connid,

 countryfr like spfli-countryfr,

 countryto like spfli-countryto,

 fldate LIKE sflight-fldate,

 price LIKE sflight-price,

 currency LIKE sflight-currency,

 seatsmax LIKE sflight-seatsmax,

 seatsocc LIKE sflight-seatsocc,

 end of linetype.

* Constants for writing position

CONSTANTS: pos_c1 TYPE i VALUE 6,

 pos_c3 TYPE i VALUE 30,

 pos_c4 TYPE i VALUE 58,

 pos_c5 TYPE i VALUE 68,

 line_size TYPE i VALUE 100.

* Constant for CASE statement

CONSTANTS mark VALUE 'X'.

* Internal table like DDIC view DV_FLIGHTS

* DATA: it_flights LIKE TABLE OF dv_flights,

* wa_flights LIKE dv_flights.

* Internal table type linetype

DATA: it_flights TYPE STANDARD TABLE OF linetype,

 wa_flights TYPE linetype.

* Selections for connections

SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-tl1.

SELECT-OPTIONS: so_car FOR wa_flights-carrid,

 so_con FOR wa_flights-connid.

SELECTION-SCREEN END OF BLOCK conn.

* Selections for flights

SELECTION-SCREEN BEGIN OF BLOCK flight WITH FRAME TITLE text-tl2.

SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.

SELECTION-SCREEN END OF BLOCK flight.

* Output parameter

SELECTION-SCREEN BEGIN OF BLOCK param

 WITH FRAME TITLE text -tl3.

SELECTION-SCREEN BEGIN OF BLOCK radio WITH FRAME.

PARAMETERS: all RADIOBUTTON GROUP rbg1,

 national RADIOBUTTON GROUP rbg1,

 internat RADIOBUTTON GROUP rbg1 DEFAULT 'X'.

SELECTION-SCREEN END OF BLOCK radio.

PARAMETERS country LIKE wa_flights-countryfr.

SELECTION-SCREEN END OF BLOCK param.

Optional Solutions

Unit: Data Formatting and Control Level Processing

Topic: Extracts

&--- -----------

*& Report SAPBC405_DAPS_2 *

*& *

&---

*& *

*& *

&---

INCLUDE bc405_daps_2top.

&---

*& Event GET SPFLI

&---

GET spfli.

* Save field group: connections

 EXTRACT connections.

&---

*& Event GET SFLIGHT

&---

GET sflight.

* Calculate free seats

 free_seats = sflight-seatsmax - sflight-seatsocc.

* Save field group: flights

 EXTRACT flights.

&---

*& Event GET SBOOK

&---

GET sbook.

* Check select-option

 CHECK so_odat.

* Save field group: bookings

 EXTRACT bookings.

&---

*& Event GET SPFLI LATE

&---

*GET spfli LATE.

* ULINE.

* NEW-PAGE.

&---

*& Event GET SFLIGHT LATE

&---

*GET sflight LATE.

* ULINE.

&---

*& Event END-OF-SELECTION

&---

END-OF-SELECTION.

* Sorting extract data according to the header fields

 SORT.

* Control level processing

 LOOP.

 AT NEW spfli-connid.

 FORMAT COLOR COL_GROUP INTENSIFIED ON.

 WRITE: / sy-vline,

 spfli-carrid,

 spfli-connid,

 AT line_size sy-vline.

 ENDAT.

 AT NEW sflight-fldate.

 FORMAT COLOR COL_HEADING INTENSIFIED ON.

 WRITE: / sy-vline,

 AT pos_lev2 sflight-fldate,

 AT line_size sy-vline.

 ENDAT.

* Single record processing

 AT connections WITH flights.

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: / sy-vline,

 spfli-cityfrom,

 spfli-airpfrom,

 spfli-cityto,

 spfli-airpto, AT line_size sy-vline.

 ENDAT.

 AT flights WITH bookings.

 FORMAT COLOR COL_NORMAL INTENSIFIED ON.

 WRITE: / sy-vline,

 sflight-price CURRENCY sflight-currency,

 sflight-currency,

 sflight-planetype,

 sflight-seatsmax,

 sflight-seatsocc,

 free_seats, AT line_size sy-vline.

 ENDAT.

 AT bookings.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: / sy-vline,

 AT pos_lev3 sbook-bookid,

 sbook-customid,

 sbook-smoker,

 sbook-luggweight UNIT sbook-wunit,

 sbook-wunit, AT line_size sy-vline.

 ENDAT.

* Control level processing with CNT and SUM

 AT END OF sflight-fldate.

 FORMAT COLOR COL_TOTAL INTENSIFIED ON.

 ULINE.

 WRITE: sy-vline,

 'Totals:'(001),

 cnt(sbook-bookid) UNDER sbook-bookid,

 sum(sbook-luggweight) UNIT sbook-wunit

 UNDER sbook-luggweight,

 sbook-wunit,

 AT line_size sy-vline.

 ULINE.

 ENDAT.

 ENDLOOP.

&---

*& Include BC405_DAPS_2TOP

*

*& *

&---

REPORT bc405_daps_2top LINE-SIZE 83.

* Used nodes of the structure of the logical database F1S

NODES: spfli, sflight, sbook.

* Additional selections

SELECTION-SCREEN BEGIN OF BLOCK order WITH FRAME.

SELECT-OPTIONS: so_odat FOR sbook-order_date.

SELECTION-SCREEN END OF BLOCK order.

* Variables

DATA: free_seats LIKE sflight-seatsocc.

* Constants

CONSTANTS: line_size LIKE sy-linsz VALUE 83,

 pos_lev2 TYPE i VALUE 10,

 pos_lev3 TYPE i VALUE 20.

* Field groups

FIELD-GROUPS: header, " Group Level and sorting fields

 connections, " Fields of SPFLI

 flights, " Fields of SFLIGHT

 bookings. " Fields of SBOOK

* Fixing of field groups

INSERT: spfli-carrid

 spfli-connid

 sflight-fldate

 sbook-bookid

 sbook-customid INTO header,

 spfli-cityfrom

 spfli-airpfrom

 spfli-cityto

 spfli-airpto INTO connections,

 sflight-price

 sflight-currency

 sflight-planetype

 sflight-seatsmax

 sflight-seatsocc

 free_seats INTO flights,

 sbook-bookid

 sbook-customid

 sbook-smoker

 sbook-luggweight

 sbook-wunit INTO bookings.

 SAP AG 1999

l Saving Lists

l Print

l Background Processing

Saving Lists and Background Processing

n There are three ways to save a list that you have generated:

1.) In SAPoffice
2.) As a local file on your PC
3.) In the area menu

n You can always use menu sequence STL-1 in the System menu to save the list, or use the List menu
in the standard list status.

n You can also create folders in SAPoffice. You can use these folders to store the lists. When a list is
placed in the outbox of the personal folders, it can also be sent to other users.

n You can save a list to a PC as a local file in four different formats:

1.) Unconverted (ASCII)

2.) Spreadsheet format (-> Microsoft Excel)

3.) RTF (Rich Text Format -> Microsoft Word)

4.) HTML (Web Browser)

n You can use the program RSSOPCDR to specify the default file that the system proposes when the
user chooses to save a file to the local PC.

n The area menus have been converted to tree navigation in Release 4.6A. Type 1 programs and SAP
queries can now be added to the area menus in addition to the previously contained transactions. Any
programs that do not have a transaction code are allocated one automatically.

n The report trees have been integrated in the area menus in Release 4.6. The report trees are now
maintained using the maintenance tools for area menus. You can maintain area menus in the
Workbench menu path STL-1.

n Saved lists are saved with the program itself. If the program has been integrated in the area menu,
then the saved lists will also appear there. You can also use standard program RSRSSLIS to display
saved lists.

n A user can access an area menu whenever that area menu has been allocated to an activity group to
which the user belongs. You can use the profile generator to allocate an area menu to an activity
group.

n There are 4 options for printing a list:

1) From the selection screen

­ The list is printed when it is generated (adjusted to print format) and does not appear on the
screen.

­ The list is generated in a dialog work process

2) From within the program

­ The first two points of 1, above

­ This procedure is suitable for interactive lists: printing details lists

3) After the list has been generated

­ The list has already been generated (visible on the screen) and can be formatted within limits.
For example, the number of columns in the list cannot be changed after the list is generated.

­ The list is generated in a dialog work process

4) In the background

­ The list can be printed after it has been generated (as described in 1 above)

­ The list is generated in a background work process. This procedure is particularly suitable for
long lists, since it does not block a dialog work process during processing.

n To print a list, you must enter print parameters. The print parameters control list output and are
divided into the following areas:

1) Output device and number of copies

2) Spool request

3) Spool control

4) Cover sheets

5) Output format

n You can enter print parameters on the screen or set them directly in the program. Setting print
parameters in the program is treated below (NEW-PAGE PRINT ON).

n You can use the function module SET_PRINT_PARAMETERS to set default values for printing
an online list; you can execute print from the selection screen or after generation of the list.

n NEW-PAGE PRINT ON triggers a page break, and all the subsequent output is redirected to the
spool.

n The print parameters can either be passed on to the system as a structure with the PARAMETERS
attribute or - as shown in the above example - specified individually.

n Individual entry of print parameters is not recommended. Consider the case where the user arrives at
the print parameter screen and decides not to print; the only option in this case would be to terminate
the entire program.

n In contrast, if you use the PARAMETERS attribute, the user can cancel printing without having to
terminate the program.

n If you enter parameter NO DIALOG, the list is placed directly in the spool without giving the user
any opportunity to change the print parameters at runtime.
If you do not enter NO DIALOG, the user is presented with a print parameters screen containing
default values at runtime.

n NEW-PAGE PRINT OFF triggers a page break, ends the spool request (sy-spono is assigned), and
all subsequent output is once again output on the screen.

n The structure for the PARAMETERS attribute of the NEW-PAGE PRINT ON statement must be
filled using function module GET_PRINT_PARAMETERS. The structure contains an internal
checksum that is calculated by NEW-PAGE PRINT ON. If the checksum is incorrect, the program
terminates. Function module GET_PRINT_PARAMETERS calculates the checksum and returns it
with out_parameters.

n Function module GET_PRINT_PARAMETERS provides users with a print parameters screen that
can be used to modify the print parameters and then determine a complete new set of print
parameters. The set is returned using output parameter out_parameters. In successful cases, output
parameter "valid" contains the value 'X'. If the system cannot create a complete set record of print
parameters, the structure transferred with out_parameters is empty and valid contains the value
"space".

n You can transfer print parameters to the function module GET_PRINT_PARAMETERS. The print
parameters appear as default values in the print parameters screen.

n The print parameters screen of function module GET_PRINT_PARAMETERS offers the option of
canceling the filling of print parameters. In this case, the structure transferred with out_parameters is
empty and valid contains the value "space".

n One application could be to send a list to several recipients.

n This has been implemented in the above example. To send a list to several recipients, you have to
distribute it among several spool requests. To do this, you use parameter NEW_LIST_ID and then
NEW-PAGE PRINT OFF to end the spool request.

n When a program converts large datasets and requires a long runtime, it makes sense to start it in the
background.

n Background runs take place without user dialogs, and can take place in parallel to online operations.
The dialog work processes are available for online processing. Background job runs are performed
by special work processes (background processes), which enables distributed processing.

n To start a program in the background, you must first add it to a job.

n Use the job definition to determine which programs (steps) will run during this job. You can specify
print parameters and set the start time for the job.

n The job overview tells you the current status of the job.

n Define job is located under menu path STL-2. First assign a name (of your choice) and define the
priority (job class) and the destination (F4 help).

n Then determine the individual steps of the job. If you want the program to run with a selection
screen, you also have to specify a variant. The list can be stored in the spool or printed immediately.
This depends on the specified print parameters. When you have defined all the steps, save them and
return to the initial screen of the job definition.

n Once you have defined the steps, you can determine the start date for the job. For example, you can
start the job on a certain day at a certain time.

n Once you have defined the start date, save your entries and return to the initial screen of the job
definition. Now save the job, which releases it to run at the specified time.

n You can also use the automated job scheduling with the function modules in function groups BTCH
and BTC2. An example is available in program SAPBC405STLD_E_JOB.

Unit: Saving Lists and Background Processing

Topic: Program-Controlled Printing

When you have completed these exercises, you will be able to:

• Print using function module GET_PRINT_PARAMTERS

1-1 Copy or enhance your program Z##DAP2_..., or copy the sample solution,
SAPBC405_DAPS_2, to program Z##STL1_... . Sample solution for exercise:
SAPBC405_STLS_1.

1-1-1 Enhance the program with the functionality of storing the generated list in
the spool. To do this, use function module GET_PRINT_PARAMETERS.
Use the pattern functions available in the ABAP Editor to program the
function call. Pass the following values on in the interface:

EXPORTING: copies = 2, destination = 'LP01', expiration = 3,
immediately = space, line_size = 83, list_text = text-xxx (text element),
no_dialog = space, release = 'X', report = 'EXAMPLE'

IMPORTING: out_parameters = print_parameter, valid = valid

1-1-2 In the TOP include, create variable print_parameter as a character field with
length 1, in accordance with DDIC structure pri_params and variable valid.

1-2-1 Evaluate the return value of valid after the function call. If valid is not equal
to space, store the list in the spool and suppress the print dialog. In addition,
display information message 104 from message class BCTRAIN. If valid is
equal to space, output information message 105 from message class BC405.

Unit: Saving Lists and Background Processing

Topic: Program-Controlled Printing

&---

*& Report SAPBC405_STLS_1 *

*& *

&---

*& *

*& *

&---

INCLUDE BC405_STLS_1TOP.

&---

*& Event GET SPFLI

&---

GET spfli.

* Save field group: connections

 EXTRACT connections.

&---

*& Event GET SFLIGHT

&---

GET sflight.

* Calculate free seats

 free_seats = sflight-seatsmax - sflight-seatsocc.

* Save field group: flights

 EXTRACT flights.

&---

*& Event GET SBOOK

&---

GET sbook.

* Check select-option

 CHECK so_odat.

* Save field group: bookings

 EXTRACT bookings.

&---

*& Event GET SPFLI LATE

&---

*GET spfli LATE.

* ULINE.

* NEW-PAGE.

&---

*& Event GET SFLIGHT LATE

&---

*GET sflight LATE.

* ULINE.

&---

*& Event END-OF-SELECTION

&---

END-OF-SELECTION.

* Define print parameters via function module

CALL FUNCTION 'GET_PRINT_PARAMETERS'

 EXPORTING

 COPIES = 2 " Number of copies

 DESTINATION = 'LP01' " Printer

 EXPIRATION = 3 " Duration /d in spool

 IMMEDIATELY = SPACE " print immediately

 LINE_SIZE = 100 " Width of list

 LIST_TEXT = TEXT-SP1 " Title

 NO_DIALOG = SPACE " Dialog is suppressed

 RELEASE = 'X' " delete task after print

 REPORT = 'EXAMPLE' " Name

 IMPORTING

 OUT_PARAMETERS = PRINT_PARAMETER

 VALID = VALID.

* Sending list to the SAP spool or on the screen

IF VALID NE SPACE. " List to spool

 NEW-PAGE PRINT ON PARAMETERS PRINT_PARAMETER NO DIALOG.

 MESSAGE I653(BCTRAIN).

 ELSE. " List on screen

 MESSAGE I654(BCTRAIN).

ENDIF.

* Sorting extract data according to the header fields

 SORT.

* Control level processing

 LOOP.

 AT NEW spfli-connid.

 FORMAT COLOR COL_GROUP INTENSIFIED ON.

 WRITE: / sy-vline,

 spfli-carrid,

 spfli-connid,

 AT line_size sy-vline.

 ENDAT.

 AT NEW sflight-fldate.

 FORMAT COLOR COL_HEADING INTENSIFIED ON.

 WRITE: / sy-vline,

 AT pos_lev2 sflight-fldate,

 AT line_size sy-vline.

 ENDAT.

* Single record processing

 AT connections WITH flights.

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: / sy-vline,

 spfli-cityfrom,

 spfli-airpfrom,

 spfli-cityto,

 spfli-airpto, AT line_size sy-vline.

 ENDAT.

 AT flights WITH bookings.

 FORMAT COLOR COL_NORMAL INTENSIFIED ON.

 WRITE: / sy-vline,

 sflight-price CURRENCY sflight-currency,

 sflight-currency,

 sflight-planetype,

 sflight-seatsmax,

 sflight-seatsocc,

 free_seats, AT line_size sy-vline.

 ENDAT.

 AT bookings.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: / sy-vline,

 AT pos_lev3 sbook-bookid,

 sbook-customid,

 sbook-smoker,

 sbook-luggweight UNIT sbook-wunit,

 sbook-wunit, AT line_size sy-vline.

 ENDAT.

* Control level processing with CNT and SUM

 AT END OF sflight-fldate.

 FORMAT COLOR COL_TOTAL INTENSIFIED ON.

 ULINE.

 WRITE: sy-vline,

 'Totals:'(001),

 cnt(sbook-bookid) UNDER sbook-bookid,

 sum(sbook-luggweight) UNIT sbook-wunit

 UNDER sbook-luggweight,

 sbook-wunit,

 AT line_size sy-vline.

 ULINE.

 ENDAT.

 ENDLOOP.

&---

*& Include BC405_STLS_1TOP *

*& *

&---

REPORT sapbc405_stls_1 LINE-SIZE 83.

* Used nodes of the structure of the logical database F1S

NODES: spfli, sflight, sbook.

* Additional selections

SELECTION-SCREEN BEGIN OF BLOCK order WITH FRAME.

SELECT-OPTIONS: so_odat FOR sbook-order_date.

SELECTION-SCREEN END OF BLOCK order.

* Variables

DATA: free_seats LIKE sflight-seatsocc.

DATA: print_parameter LIKE pri_params, " NEW-PAGE PRINT ON

 valid VALUE 'X'.

* Constants

CONSTANTS: line_size LIKE sy-linsz VALUE 83,

 pos_lev2 TYPE i VALUE 10,

 pos_lev3 TYPE i VALUE 20.

* Field groups

FIELD-GROUPS: header, " Group Level and sorting fields

 connections, " Fields of SPFLI

 flights, " Fields of SFLIGHT

 bookings. " Fields of SBOOK

* Fixing of field groups

INSERT: spfli-carrid

 spfli-connid

 sflight-fldate

 sbook-bookid

 sbook-customid INTO header,

 spfli-cityfrom

 spfli-airpfrom

 spfli-cityto

 spfli-airpto INTO connections,

 sflight-price

 sflight-currency

 sflight-planetype

 sflight-seatsmax

 sflight-seatsocc

 free_seats INTO flights,

 sbook-bookid

 sbook-customid

 sbook-smoker

 sbook-luggweight

 sbook-wunit INTO bookings.

 SAP AG 1999

l ALV Grid Control - Standard Application

l Preview of Other Techniques

Contents:

ALV Grid Control

n This task is performed by the SAP Control Framework.

n The R/3 System allows you to create custom controls using ABAP Objects. The application server is
the Automation Client, which drives the custom controls (automation server) at the frontend.

n If custom controls are to be included on the frontend, then the SAPGUI acts as a container for them.
Custom controls can be ActiveX Controls or JavaBeans.

n The system has to use a Remote Function Call (RFC) to transfer methods for creating and using a
control to the front end.

n ABAP objects are used to implement the controls in programs.

n An SAP Container can contain other controls (for example, SAP ALV Grid Control, Tree Control,
SAP Picture Control, SAP Splitter Control, and so on). It administers these controls logically in one
collection and provides a physical area for the display.

n Every control exists in a container. Since containers are themselves controls, they can be nested
within one another. The container becomes the parent of its control. SAP containers are divided into
five groups:

SAP custom container: Displays within an area defined in Screen Painter on screens or subscreens.
Class: CL_GUI_CUSTOM_CONTAINER

SAP dialog box container: Displays in a modeless dialog box or as a full screen. Class:
CL_GUI_DIALOGBOX_CONTAINER

SAP docking container: Displays as docked, resizable sub-window with the option of displaying it as
a modeless dialog box. Class: CL_GUI_DOCKING_CONTAINER

SAP splitter container: Displays and groups several controls in one area - that is, splits the area into
cells Class: CL_GUI_SPLITTER_CONTAINER

SAP easy splitter container: Displays controls in two cells, which the user can resize using a split
bar. Class: CL_GUI_EASY_SPLITTER_CONTAINER.

n In the control, you can adjust the column width by dragging, or use the 'Optimum width' function to
adjust the column width to the data currently displayed. You can also change the column sequence
by selecting a column and dragging it to a new position.

n Standard functions are available in the control toolbar. The details display displays the fields in the
line on which the cursor is positioned in a modal dialog box.

n The sort function in the ALV Control is available for as many columns as required. You can set
complex sort criteria and sort columns in either ascending or descending order.

n You can use the 'Search' function to search for a string (generic search without *) within a selected
area by line or column.

n You can use the 'Sum' function to create totals for one or more numeric columns. You can then use
the "Subtotals" function to set up control level lists: You can use the 'Subtotal' function to structure
control level lists: select the columns (non-numeric columns only) that you want to use and the
corresponding control level totals are displayed.

n For 'Print' and 'Download' the whole list is always processed, not just the sections displayed on the
screen.

n You can define display variants to meet your own specific requirements. For information on saving
variants, see 'Advanced Techniques'.

n The ALV grid control is a generic tool for displaying lists in screens. The control offers standard
functions such as sorting by any column, adding numeric columns, and fixed lead columns

n Data collection is performed in the program (with SELECT statements, for example) or by using a
logical database. The data records are saved in an internal table and passed on to the ALV control
along with a field description.

n The field description contains information about the characteristics of each column, such as the
column header and output length. This information can defined either globally in the Dictionary
(structure in the Dictionary) or in the field catalog in the program itself. You can also merge both
techniques.

n The ALV link is a standard function of Query and QuickViewer. If multiline queries or QuickView
lists have been defined, they will automatically be compressed to a single line and output in the ALV
control as a long, single line list.

n Use Screen Painter to create a subscreen container for the ALV grid control. The control requires an
area where it can be displayed in the screen. You have to create a container control that determines
this area.

n Use the corresponding icon in the Screen Painter layout to create the container control. The size of
area "MY_CONTROL_AREA" determines the subsequent size of the ALV control.

n The valid GUI status must be set at the PBO event in the flow logic of the ALV subscreen container.
The OK_CODE processing for the cancel functions must be programmed at the PAI event.

n The reference variables for the custom container and the ALV grid control must be declared.

n To create reference variables, use ABAP statement TYPE REF TO <class name>.

n The global classes you need to do this are called cl_gui_custom_container (for the custom container
control) and cl_gui_alv_grid (for the ALV grid control).

n The global classes are defined in the Class Builder. You can use the Class Builder to display
information for the methods, their parameters, exceptions, and so on.

n Use ABAP statement CREATE OBJECT <name> to create the objects for the container and the
ALV control. Objects Are instances of a class.

n When an object is created (CREATE), method CONSTRUCTOR of the corresponding class is
executed. The parameters of method CONSTRUCTOR determine which parameters have to be
supplied with data when the object is created. In the above example, object alv_grid is given the
name of the container control (g_custom_container) in exporting parameter i_parent,
which links the two controls. For information on which parameters method CONSTRUCTOR
possesses and which of these parameters are required, see the Class Builder.

n Objects should only be created once during the program. To ensure that this is the case, enclose the
CREATE OBJECT statement(s) in an IF <object_name> IS INITIAL. ... ENDIF
clause. The objects must be generated before the control is displayed for the first time - that is,
during the PBO event of the ALV subscreen container.

n To display the requested dataset in the ALV control, the data must be passed on to the control as an
internal table, and a field description must exist indicating the order in which the columns will be
output.

n In the simplest case, the field description can use a structure from the Dictionary. The Dictionary
also determines the technical field attributes like type and length, as well as the semantic attributes
like short and long texts. The ALV control uses this information to determine the column widths and
headers. The column sequence is determined by the field sequence in the structure.

n If no suitable structure is active in the Dictionary, or you want to output internal program fields in
the control, then you will have to define information like the output length and column header in the
field catalog.

n In a typical program run, the dataset is read first (SELECT), the internal table is filled with the
data to display (... INTO TABLE ...), and ABAP statement CALL SCREEN <number> is then
used to call the ALV subscreen container.

n The data transfer to the ALV control takes place during the call of method
set_table_for_first_display from class cl_gui_alv_grid. The method call must be programmed at the
PBO event of the ALV subscreen container.

n The name of the Dictionary structure that supplies the field description is specified in exporting
parameter i_structure_name. The name of the internal table that contains the data records to display
is specified in changing parameter it_outtab.

n The field description for the ALV control can be taken from an active Dictionary structure (fully
automatic), by passing a field catalog (manual), or through a mixture of the two options (merge).

n The field catalog is in internal table with type lvc_t_fcat. This type is defined globally in the
Dictionary.

n Each line in the field catalog table corresponds to a column in the ALV control.

n The field characteristics (= column characteristics) are defined in the field catalog. The field catalog
is in internal table with type lvc_t_fcat. Each line that is explicitly described in the ALV control
corresponds to a column in the field catalog table.

n The link to the data records to output that are saved in internal table <outtab> is established through
field name <outtab-field>. This name must be specified in column "fieldname" in the field catalog.

n This field can be classified through a Dictionary reference (ref_table and ref_field) or by specifying
an ABAP data type (inttype).

n Column headers and field names in the detail view of an ALV control line can be determined in the
field catalog in coltext and seltext, respectively.

n The position of a field during output can be determined with col_pos in the field catalog.

n If you want to hide a column, fill field no_out with an "X" in the field catalog. Hidden fields can be
displayed again in a user display variant.

n Icons can be displayed in the ALV control. If you want a column to be interpreted as an icon, then
the icon name must be known to the program (include <icon>.) and icon = "X" must be specified for
this column in the field catalog.

n The above example shows a semi-automatic field description: Part of the field description comes
from the Dictionary structure (sflight), while another part is explicitly defined in the field catalog
(gt_fieldcat).

n The field catalog (internal table) is filled in the program and is passed on together with the name of
the Dictionary structure during the method call. The information is merged accordingly in method
set_table_for_first_display.

n For a user to save display variants, parameters is_variant and i_save must be passed on
during method call set_table_for_first_screen. To assign display variants uniquely to a
program, at least the program name must be supplied in the transferred structure (gs_variant).
Program names can be up to 30 characters long.

n If you only pass on the current parameters for is_variant, then existing variants can be loaded,
but no new ones can be saved. If you use parameter i_save, you must pass on a variant structure
with is_variant.

n I_SAVE = SPACE No variants can be saved.

n I_SAVE = 'U' The user can only save user-specific variants.

n I_SAVE = 'X' The user can only save general (shared) variants.

n I_SAVE = 'A' The user can save both user-specific and general (shared) variants.

n You can use parameter is_layout of method set_table_for_first_display, for example, to define the
header in the ALV control and the detail display.

n To do this, define a query area <gs_layout> in the program in accordance with Dictionary structure
lvc_s_layo, and pass on the text to display in field <gs_layout>-grid_title or <gs_layout>-detailtitl.

n If you want to create print lists with zebra stripes, set field <gs_layout>-zebra to "X". You can
display a print preview for print lists by requesting standard function "Print".

n All parameters of method SET_TABLE_FOR_FIRST_DISPLAY from global class
CL_GUI_ALV_GRID are defined in the Class Builder.

n Events are defined in global class cl_gui_alv_grid; you can use these events to implement
user interaction within the program. To respond to a double -click on a table line, you must respond
to event DOUBLE_CLICK.

n You receive control in the program, allowing you to implement interactive reporting - such as a full-
screen details list. The events for cl_gui_alv_grid are located in the Class Builder.

n To define an implement a local class in the program, you use a handler method. In this handler
method, you program the functionality to trigger by a double -click in the output table.

n To activate a handler method at runtime, a class or an object from that class registers itself with an
event using command SET HANDLER. The names of the IMPORTING parameters in the handler
method correspond to the names of the EXPORTING parameters of the related event.

n In the above example, the local class is LCL_ILS and the handler method is ON_DBLCLICK. An
object - ALV_DBLCLICK - is created and registers itself for event DOUBLE_CLICK.

n You can query parameter e_row-index to determine which output line was requested by the double-
click. This parameter corresponds to the line number of the output table (internal table with the data
records to output). If you need information for the selected line, you have to read it with READ
TABLE itab INDEX e_row-index.

n This subsequent read in the output table generally corresponds to the HIDE area in conventional
reporting. You first have to make sure that the user has double -clicked a line in the output table
(similar to the valid line selection with the HIDE technique).

 SAP AG 1999

Appendix

l Additional slides

l Linking programs

l Menu paths

n A field group can contain global data objects, but not data objects that have been defined locally in a
subroutine or function module.

n You can use INSERT to specify both fields and field symbols. This makes it possible to
dynamically insert a data object referred to by a field symbol into a field group at runtime. Any field
symbols that have not been assigned are ignored, which means no new field is inserted into the field
group.

n The EXTRACT statement writes all the fields of a field group as one record to a sequential dataset
(transport takes place with similarly named fields). If a HEADER field group is defined, then its fields
are placed ahead of each record as sort keys. You can then sort the dataset with SORT and process it
with LOOP ...ENDLOOP. In this case, no further EXTRACT is possible.

n The INSERT statement is not a declarative statement: This means field groups can also be expanded
in the program flow section.

n As soon as the first dataset of a field group has been extracted with EXTRACT, that field group can
no longer be expanded with INSERT. In particular, the HEADER field group cannot be expanded
after the first EXTRACT (regardless of the field group).

n When the GET events are processed, the logical database automatically writes hexadecimal zeros in
all the fields of a node when it returns to an upper-level node in the hierarchy. Since the HEADER
normally contains sort fields for all field groups, these hexadecimal zeros in the HEADER serve as a
type of hierarchy key: The more zeros there are, the further up in the control level hierarchy you go.

n The SORT statement sorts the extract dataset in accordance with the defined field sequence in field
group HEADER. The addition BY <f1> <f2> ... sets a new sort key. Each <fi> must be either a
field of field group HEADER or a field group that consists only of fields of the field group
HEADER. You can use the additions ASCENDING and DESCENDING to determine whether the
fields are sorted in ascending (default) or descending order.

n Fields containing X'00' in the logical databases are always displayed before all other values during a
SORT.

n Processing of an extract dataset always takes places within a LOOP. The contents of the extract
dataset field are placed in program fields with the same names.

n The group change always involves the fields of the HEADER. Single record processing for extract
datasets is performed using language element AT <fg> (<fg> = field group).

n CNT(<hf>) is not a statement, but instead a field that is automatically created and filled when <hf> is
a non-numeric field from field group HEADER and is part of the sort key. At the end of the group,
CNT(<hf>) contains the number of different values that the field <hf> recorded in this group level.

n SUM(<nf>) is not a statement, but instead a field that is automatically created and filled when <nf>
is a numeric field of an extract dataset. At the end of the group, SUM(<nf>) contains the control total
of field <nf>.

n CUM and CNT are only available at the end of the group level or at AT LAST.

n Single record processing for extract datasets AT <fg_1> WITH <fg_2> is only performed when
field group <fg_1> is immediately followed by field group <fg_2> in the temporary dataset.

n Loops over an extract dataset cannot be nested. However, several contiguous loops are permitted.

n The sequence of the control level changes within the LOOP must correspond to the sort sequence.

n Totals can only be calculated within control footer processing.

n Extracts allow only appends (EXTRACT), sorting (SORT) and sequential processing (LOOP).
Once a SORT or LOOP has occurred, the intermediate dataset is frozen and cannot be expanded
with EXTRACT. Operations that insert into or delete from EXTRACT datasets are not supported.

n Extracts allow for several record types (FIELD-GROUPS) with fields that can be set dynamically
(INSERT is not a declarative statement!). Internal tables have a single, statically-defined line type.

n Internal tables use the sequence of table fields according to the declaration for the hierarchy of the
control leve l. The control level structure for internal tables is therefore static, and is independent of
which criteria were used to sort the internal table. Extracts do not depend on the field sequence for
control level processing: a re-sort or a completely different control level process can take place. The
control level structure for extract datasets is therefore dynamic. It corresponds exactly to the sort key
of the extract dataset. The sort key is the sequence of fields from the field group HEADER, and is
used to sort the extract dataset.

n Extracts rely on the compiler to determine which combinations of group levels and a cumulating
field the control level totals desire. The desired control level totals are determined by the processing
of LOOP ... ENDLOOP blocks. Internal tables build the control level total with the SUM statement.
This procedure leads to high resource depletion for totaling control levels in internal tables.

 SAP AG 1999

Section: Transaction Programming

 SAP AG 1999

l Course Goals

l Course Objectives

l Course Content

l Overview Diagram

l Main Business Scenario

Contents:

Course Overview

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n Executable program (type 1)
Executable programs can be run directly from the ABAP Editor. A set of processing blocks is
processed in a predefined order. You can use a standard selection screen. Type 1 programs
normally create and display a list.

n Module pool (type M)
In order for a type M program to be executable, you must create at least one transaction code for it
(in which you specify an initial screen). You can control the subsequent screen sequence either
statically (in the screen attributes) or dynamically (in the program code).

n The following types of programs cannot be executed directly. They serve as "containers" for
modularization units, which you can call from other programs. Whenever you load one of these
modules, the system loads its entire main program into the internal session of the calling program.

� Function group (type F)
A function group can contain function modules, local data declarations, and screens.

� Include program (type I)
An include program can contain any ABAP statements.

� Interface pool (type J)
An interface pool can contain global interfaces and local data declarations.

� Class pool (type J)
A class pool can contain global classes and local data declarations.

n In the simplest case, your program will consist of a single source that contains all the necessary
processing blocks. However, to make your program code easier to understand, and to enable you to
reuse parts of it in other programs (for example, for data declarations), you should use include
programs

n Whenever you create a program from the Object Navigator, the system proposes to create it "With
TOP include ". Selecting this option will help you to create clearly-structured programs.

n When you create processing blocks, the system automatically asks in which include program it
should place the corresponding source code.

n If you specify an include program that does not yet exist, the system creates it and inserts a
corresponding INCLUDE statement in the main program.

 SAP AG 1999

Basics for Interactive Lists

l Creating lists

l Selection screens

l Events

l User dialogs on lists

l Using the hide technique to pass data

Contents:

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Sunscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n When the user starts an executable (type 1) program, the program context and memory space for data
objects (variables and structures) are made available on the application server. The subsequent
program flow is controlled by the ABAP runtime system.

n If the program contains a selection screen, the ABAP runtime system sends it to the presentation
server at the start of the program.

n Once the user has finished entering data on the selection screen, he or she chooses 'Execute' to tell
the system to start processing the rest of the program. The data entered on the selection screen is
automatically placed in the corresponding data objects. The ABAP runtime system takes over control
of the program.

n In this simple example, there is only one ABAP processing block to be processed by the runtime
system.

n This processing block contains a read access to the database. The program sends information to the
database about the records that should be read.

n The database returns the required database records and the runtime system ensures that the data is
placed in the relevant data objects.

n The list output is also programmed in the processing block. After the processing block finishes, the
runtime system sends the list as a screen to the presentation server.

n Selection screens allow users to enter ranges of values. They are normally used to define the set of
data that needs to be read from the database.

n As well as the normal graphical elements (group boxes, checkboxes, radio buttons, and so on) that
you use in screens, selection screens also have input/output fields (PARAMETERS) and special
groups of input/output fields (SELECT-OPTIONS).

n You place a single input/output field on the selection screen using the PARAMETERS statement.

n You can use the SELECT-OPTIONS statement to place a group of fields on the screen that allows
users to enter complex selections. The selection may be a single value, or any form of interval
(discrete or continuous). You can also use patterns. (See following slides).

n You can create variants for selection screens.

n If you declare an input field with reference to an ABAP Dictionary field, any search helps defined
for the Dictionary field will be available on the selection screen.

n Selection texts can be translated into other languages. They are then displayed in the user's logon
language.

n Selection ranges are stored in programs using an internal table.

n The ABAP statement SELECT-OPTIONS <selname> FOR <field> declares an internal table called
<selname>, containing four fields - SIGN, OPTION, LOW, and HIGH. The fields LOW and HIGH
have the same type as the field <field>.

n The SIGN field can take the value 'I' (for inclusive) or 'E' (for exclusive).

n The OPTION field can contain relational operators, pattern operators, and operators that allow you to
enter intervals.

n For more information about selection ranges, choose Goto -> Selection screen help from any
selection screen.

n For more information about selection screens, refer to the online path ILB-1 in the appendix.

n To define a selection screen, include the required PARAMETERS and SELECT-OPTIONS
statements in your data declarations. If you define more selection screens than just the standard
selection screen, you must enclose the additional definitions in the statmeents SELECTION-
SCREEN BEGIN OF SCREEN <nnnn> and SELECTION-SCREEN END OF SCREEN
<nnnn> where <nnnn> is the number of the selection screen.

n For information about other graphical elements that you can place on a selection screen, such as
group boxes, checkboxes, radio buttons, references to input fields on other selection screens and so
on, see the keyword documentation for the SELECTION-SCREEN statement or the online
documentation (ILB-2). This topic also forms part of course BC405: Techniques of List Processing.

n The standard selection screen is displayed by the ABAP runtime system when the program starts.
User-defined selection screens are displayed when you use the statement CALL SELECTION-
SCREEN <nnnn>. This statement sets the return code sy-subrc to zero if the user chooses
'Execute', and to 4 if the user chooses 'Cancel'.

n You can also call a selection screen as a modal dialog box. To do this, use the syntax CALL
SELECTION-SCREEN <nnnn> STARTING AT <left_col> <upper_row> ENDING
AT <right_col> <lower_row> where <left_col> and <upper_row> are the
coordinates of the top left-hand corner of the screen. <right_col> and <lower_row> are the
coordinates of the bottom right-hand corner.

n Selection screen processing is event-driven. Events are ABAP processing blocks that are called by
the runtime system in a particular order and processed sequentially. In the program, each event is
introduced by an event keyword. The processing block ends when the next event block starts, or the
definition of a subroutine or dialog module occurs.

n AT SELECTION-SCREEN OUTPUT is processed before the selection screen is displayed. You
can use this event to modify the selection screen dynamically.

n AT SELECTION-SCREEN ON HELP-REQUEST FOR <sel_field> and
AT SELECTION-SCREEN ON VALUE-REQUEST FOR <sel_field> allow you to define your
own F1 and F4 help.

n AT SELECTION-SCREEN is processed when the user presses ENTER or chooses another
function on the selection screen. You can use this event to check the values the user entered on the
screen. The addition ON... allows you to control which fields or groups of fields should accept
input again in the event of an error.

n An ABAP program consists of a sequence of processing blocks (events) that are processed by the
runtime system in a particular order.

n LOAD-OF-PROGRAM is triggered directly after the system has loaded a program with type 1, M, F,
or S into an internal session. The processing block is executed once only for each program in each
internal session.

n INITIALIZATION is processed in executable (type 1) programs, directly before the selection
screen is displayed. You can use the corresponding processing block to preassign values to the
parameters and selection options on the selection screen.

n START-OF-SELECTION is processed after the selection screen has been processed. If you are
working with a logical database, the corresponding GET events are triggered after START-OF-
SELECTION. For further information, refer to the course BC405 'Techniques of List Processing and
SAP Query' and the online documentation.

n END-OF-SELECTION is processed after all of the data has been read, and before the list is
displayed.

n TOP-OF-PAGE is an event in list-processing. The processing block is always executed when you
start a new page in the list.

n Once the basic list has been displayed, you can react to possible user actions. Detail lists allow you
to distribute the information you want to display across several lists.

n This makes the lists easier for the user to understand, and improves performance, since you can delay
reading extra information from the database until the user actually requests it.

n You can also use additional selection screens to allow the user to enter further restrictions.

n For each basic list you can use up to 20 detail lists. Each list is stored in its own list buffer. When
the user chooses 'Back' (green arrow) or 'Cancel' (red cross), he or she returns to the previous list.
This action initializes the list buffer of the list level the user just le ft.

n When the user chooses 'Exit' (yellow arrow), the system terminates the list processing and returns to
the standard selection screen.

n The events START-OF-SELECTION, GET, END-OF-SELECTION, TOP-OF-PAGE and END-OF-
PAGE can be used only to create basic lists.

n To create detail lists, use the events AT LINE-SELECTION or AT USER-COMMAND.

n Use TOP-OF-PAGE DURING LINE-SELECTION for page headers on detail lists.

n Each detail list event exists only once in the program and is shared by all detail lists. You must
therefore ensure yourself, within the processing block, that the correct list is created. To do this, use
a CASE structure that uses the system field sy-lsind. This system field contains the list index of the
list that you are currently generating.

n Use the statement HIDE global_field to store the contents of the global data field
global_field for the current line.

n If the user selects the line, the data field is automatically filled with the value that you retained for
the line.

n You do not have to display the field on the list in order to retain its value using HIDE.

n The field can be a structure. However, deep structures (structures containing internal tables as
components) are not supported.

n When the user selects a line on an interactive list, all of the global data fields whose values you
stored using the HIDE statement while you were creating the basic list are filled with those values.

n The line selection is based on the cursor position when the AT LINE-SELECTION and AT USER-
COMMAND events occur. (system field sy-lilli).

n If you choose a line using the READ LINE... statement, . the values are placed back in the original
fields according to the line numbers.

n To check whether the user selected a valid line, you can use the fact that the hide area only contains
data for valid lines. When you have finished creating the list, initialize a suitable test field. This
allows you to check before you create the detail list whether a value from the hide area has been
placed in the test field.

n Once you have created the detail list, re-initialize the test field to ensure that the user cannot choose
an invalid line once he or she returns from the detail list and attempts to select another line for a new
detail list

Unit: Basics for Interactive Lists

Theme: Creating a simple list

At the conclusion of these exercises, you will be able to:

• Create a simple program to create a list with an include structure for
more complex applications.

The first step in your application is to write a program that displays a list
of flights. The program should have a selection screen to allow the user
to restrict the amount of data read and displayed.

2-1 Start your development project.

2-1-1 Create a development class Z##BC410 (where ## is your group number)
and assign it to your change request. You will use this development class
for all of the Repository objects you create this week.

2-2 Write a simple program to create a list, which will serve as a basis for your further
work. Call your program Z##BC410_SOLUTION (where ## is your group
number). The program should display a list of flights.
The data you want to display is contained in the table SFLIGHT. You can use the
model solution for orientation: SAPBC410ILBS_SIMPLE_LIST.

2-2-1 Your main program should consist of three include programs:
 Z##BC410_SOLUTIONTOP Top include
 Z##BC410_SOLUTIONE01 Event include
 Z##BC410_SOLUTIONF01 Subroutine include.
Create the includes.

2-2-2 In the top include, declare a work area wa_sflight with type SFLIGHT; and
a corresponding (standard) internal table it_sflight.

2-2-3 Create a selection screen with selection options for wa_sflight-carrid and
wa_sflight -connid. Place these in a group box with the title “Flight”, and
maintain the selection texts.

2-2-4 In the event include, write two events START-OF-SELECTION and END-
OF-SELECTION. In the START-OF-SELECTION event, call a subroutine
read_flights, in which you use an array fetch to read the data from table
SFLIGHT into your internal table. Remember to take the user’s selections
into account when you read the data. Create the subroutine in your
subroutine include using forward navigation. In the END-OF-SELECTION
event, call a subroutine display_flights, in which you display the data on a
list. Display the data as shown on the model list. Ensure that the price is
displayed appropriately to its currency.

2-2-5 Maintain standard headings for the list as on the model list.

You can program an array fetch as follows:

SELECT * INTO TABLE it_sflight
 FROM SFLIGHT

Flights

Flight Date Price Seats

max. occ.

AA 0017 12/21/1999 513.69 USD 660 10

AA 0017 12/19/1999 513.69 USD 660 16

AA 0017 11/29/1999 513.69 USD 660 51

AA 0017 11/22/1999 513.69 USD 660 95

AA 0017 11/19/1999 513.69 USD 660 0

AA 0017 09/30/1999 513.69 USD 660 8

AA 0017 08/28/1999 513.69 USD 660 34

LH 0400 12/31/1999 1,332.00 DEM 280 42

LH 0400 12/29/1999 1,332.00 DEM 107 76

LH 0400 12/09/1999 1,332.00 DEM 280 20

LH 0400 12/02/1999 1,332.00 DEM 280 0

LH 0400 11/29/1999 1,332.00 DEM 280 41

LH 0400 10/10/1999 1,332.00 DEM 280 1

LH 0400 09/07/1999 1,332.00 DEM 280 183

AZ 0555 12/21/1999 360,202 ITL 220 89

AZ 0555 19.12.1999 360.202 ITL 220 205

AZ 0555 29.11.1999 360.202 ITL 220 0

AZ 0555 22.11.1999 360.202 ITL 220 66

AZ 0555 19.11.1999 360.202 ITL 220 140

Unit: Basics for Interactive Lists

Theme: Creating a simple list

2-2 Model solution: SAPBC410ILBS_SIMPLE_LIST
--

Main program
&---

*& program SAPBC410ILBS_SIMPLE_LIST *

*& *

&---

INCLUDE bc410ilbs_simple_listtop.

INCLUDE bc410ilbs_simple_liste01.

INCLUDE bc410ilbs_simple_listf01.

--

Top include
--

* INCLUDE BC410ILBS_SIMPLE_LISTTOP *

--

PROGRAM sapbc410ilbs_simple_list.

workarea and internal table for flights

DATA: wa_sflight TYPE sflight,

it_sflight LIKE TABLE OF wa_sflight.

selection screen for choosing connections

SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-001.

SELECT-OPTIONS: so_car FOR wa_sflight-carrid,

so_con FOR wa_sflight-connid.

SELECTION-SCREEN END OF BLOCK conn.

--

Event include

* INCLUDE BC410ILBS_SIMPLE_LISTE01 *

--

START-OF-SELECTION.

PERFORM read_flights.

END-OF-SELECTION.

PERFORM display_flights.

--

Subroutine include
--

***INCLUDE BC410ILBS_SIMPLE_LISTF01.

--

&---

*& Form READ_FLIGHTS

&---

FORM read_flights.

SELECT * INTO TABLE it_sflight FROM sflight

WHERE carrid IN so_car

AND connid IN so_con.

ENDFORM.

&---

*& Form DISPLAY_FLIGHTS

&---

FORM display_flights.

LOOP AT it_sflight INTO wa_sflight.

WRITE: / wa_sflight-carrid,

wa_sflight-connid,

wa_sflight-fldate,

wa_sflight-price CURRENCY wa_sflight-currency,

wa_sflight-currency,

wa_sflight-seatsmax,

wa_sflight-seatsocc.

ENDLOOP.

ENDFORM. " DISPLAY_FLIGHTS

 SAP AG 1999

l Overview: GUI title and GUI status

l Creating a GUI status

l Using a GUI status

Contents:

The Program Interface

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n A GUI status is made up of a menu bar, a standard toolbar, an application toolbar, and of
function key settings. Each screen can have one or more GUI statuses. For example, an editor
program might have two statuses - one for display mode and one for change mode.

n The elements of a GUI status allow users to choose functions using the mouse.

n Menus are control elements that allow the user to choose which functions will be processed by an
application program. Menus can also contain submenus. The 'System' and 'Help' menus are present
on every screen in the R/3 System. They always have identical functions and cannot be changed or
hidden.

n The application toolbar contains icons for frequently-used functions. The standard toolbar, which is
the same on every screen in the R/3 System, contains a set of icons, each of which has a fixed
assignment to a corresponding function key. If a function in the standard toolbar is not available on
the current screen, the icon is grayed out.

n The application toolbar allows the user to choose frequently-used functions by clicking the
corresponding pushbutton.

n You use the function key settings to assign functions such as Find, Replace, or Cut to the function
keys.

n All of a program's GUI titles and statuses taken together make up its user interface. Whenever you
change or add a new title or status, you must regenerate the user interface.

n There are three ways to create a title: from the object list in the Object Navigator, from the Menu
Painter, or by forward navigation from the ABAP Editor.

n The name of a title can be up to 20 characters long.

n You should set an appropriate title for each screen in your application.

n You can use variables in titles that are set dynamically at runtime by including the ampersand
character (&) as a placeholder. At runtime, the ampersand is replaced by a value that you specify.
You can use up to nine variables by placing digits after the ampersand.
To set a title that contains variables, use the statement:
 SET TITLEBAR <title_name> WITH <&1> ... <&10>.

n A title bar remains in place until you set another one. At runtime, the system variable sy-title
contains the current title. Title bars are also known as GUI titles.

n From a technical point of view, a status is a reference to a menu bar, to certain key assignments and
to an application toolbar.

n A single component (such as a menu bar) can be used by more than one GUI status.

n GUI statuses are ABAP program objects that can be displayed on screens and lists.

n You should set a status for every screen in your application.

n A status is a reference to a menu bar, a key setting, and an application toolbar.

n A menu bar is made up of individual menus.

n Key assignments and application toolbars are sub-objects of the function key settings.

n You can create a set of application toolbars for a single key setting. Refer to the online
documentation path in appendix reference GUI-1. In order to include a function in an application
toolbar, the function must be assigned to a function key. Each status contains a single application
toolbar.

n All program menus and key assignments refer to a particular function list. This list can be reached
using F4 help. Application toolbars refer to the function list indirectly by way of the key assignment.

n A function within a status can be either active or inactive. Inactive functions are not displayed in the
application toolbar.

n Functions are identified by their function codes.

n The attribute function type determines the intended purpose of a function. You can use the function
types ' ' (space), 'E', and 'P' for pushbuttons that you place on a screen using the Screen Painter, and
for tab titles. Function types 'S and 'H' are reserved for internal use by SAP. Function type 'T'
indicates a transaction code. When the user chooses a function with this type, the system leaves the
current program (without performing any checks) and calls the new transaction.

n Functions can be created with static texts or dynamic texts.

n If a function has a static text, you can assign an icon to it (Icon name attribute). If the function is
already assigned to a pushbutton, an icon is displayed instead of the static text. The static text is used
when you assign the function to a menu entry. The function text belonging to the function is used as
"quick info". The contents of the Infotext attribute appear in the status bar of the screen when the
user chooses the function. If you want to display text as well as the icon, enter the text in the Icon
text attribute.

n The Fastpath attribute allows you to define a letter code, which users can enter to choose the
function without using the mouse.

n For further information, refer to the online documentation path in appendix reference GUI-2.

n Functions can be assigned to individual function keys or pushbuttons.

n Function key settings consist of a key assignment and an application toolbar pushbutton.

n A function key assignment's type (possible values: screen or dialog box) only serves to define the
technical use of the key assignment.

n Key assignments consist of Reserved Functions Keys, Recommended Functions Keys and Freely
Assigned Function Keys. Reserved Functions Keys are function keys whose assigned values cannot
be changed in the SAP system. You may activate and deactivate their functions, however, the icons
and texts assigned to them cannot be changed. Activated Reserved Functions Keys appear in the
standard toolbars of both screens and lists.

n Recommended Functions Keys are assigned suggested values that satisfy SAP usability (ergonomic)
norms.

n Functions that have been assigned to function keys can also be assigned to pushbuttons in the
application toolbar.

n An application toolbar can contain up to 35 pushbuttons.

n A menu can contain up to 15 entries.

n Possible entries are functions, separators, and menus (cascading menus).

n Menus can be up to three levels deep. The third level may only contain functions and separators.

n Menus can be created with static or dynamic text. You must assign a field name to menus with
dynamic text, whose contents will be displayed as the menu text at runtime.

n The menu type Include menu allows you to reference menus in other programs. When you do this,
you must specify the name of the program and status from which you want to include the menu next
to the Short documentation field.

n Include menus can only be accessed using the menu bar.

n A menu bar can contain up to eight different menus. Up to six of these can be freely assigned. The
system automatically adds both the System menu and the Help menu to every menu bar.

n There are three ways to create a title: from the object list in the Object Navigator, from the Menu
Painter, or by forward navigation from the ABAP Editor.

n The status type indicates the technical attributes of the status. You can choose between a dialog
status (status for fullscreen), or a dialog box status (for use with modal dialog boxes). Context
menus are special collections of functions that can be displayed when the user clicks the right-hand
mouse button. We will deal with them separately in the Context Menus unit.

n You can create your own statuses by initially generating new settings, using existing ones (reference
technique), or by combining both of these procedures. If you want to create an entirely new status,
you must then create your own menu bars, menu functions, and other elements. Changes to a status
only affect that status.

n When you use the reference technique, you create menu bars, application toolbars, and function key
assignments as independent elements. You then create your own status and refer to the menu bar,
application toolbar, and any function key assignment you want. The Menu Painter stores and
maintains these references so that any changes in the menu bar, application toolbar or function key
assignments automatically take effect in all statuses referring to them.

n The linking technique is particularly effective for ensuring consistency in very large applications that
use several statuses. The links ensure that the user can access functions in the same way whatever
status is set.

n The Adjust template function in the Extras menu allows you to add standardized function codes to
your own statuses. This function allows you to merge objects from any status into the current status.
In particular, it allows you to use standards for list statuses or selection screens, or to take a status
from another ABAP program.

n You can also choose to display standard proposals for the menu bar, which you can then modify.

n In the Menu Painter, you can include in a status key settings, application toolbars, or menu bars that
you have already defined elsewhere. If you do this, work from the bottom upwards. If there is more
than one application toolbar defined for your key setting, you can choose the appropriate one.

n Initially, all functions are inactive. You only have to activate the functions that are relevant in the
current status.

n When you create new functions, you can decide whether you want to change all of the statuses that
use the same object. The new functions are initially inactive in all other statuses in which you
include them.

n In a key setting, you assign individual functions to function keys and pushbuttons. Function key
settings consist of a key assignment and a set of application toolbars.

n A function key assignment's type (possible values: Screen, Dialog box, List, List in a dialog box)
determines where the key can be used.

n You can attach functions to reserved function keys, recommended function keys, and freely-assigned
function keys. You should observe SAP's ergonomic guidelines. There is a series of examples that
you can display from within the Menu Painter.

n Recommended Functions Keys are assigned suggested values that satisfy SAP usability (ergonomic)
norms.

n If a function is important, and you have already assigned it to a function key, you can also assign it
to a pushbutton in the application toolbar. The application toolbar may contain up to 35 pushbuttons.

n When you assign a function to the standard toolbar, it is also automatically assigned to a reserved
function key.

n To find out the function keys to which these functions are assigned in the current status, click the
Information icon in the Menu Painter.

n For more information about how key combinations such as Ctrl-P are converted into internal
function key numbers (for example, for batch input), follow menu path GUI-3 in the Menu Painter.

n You can only use a function in the application toolbar if you have already assigned it to a function
key.

n Functions in the application toolbar are identified by their function code. The Function type attribute
identifies the purpose of the function. If you want to process a function in the program, use the type '
' (space). If you assign type 'T' to a function, the current program terminates when the user chooses
the function, and the system starts the transaction assigned to the function.

n If you assign an icon to a function with a static text (Icon name attribute), the system displays the
icon instead of the text in the application toolbar. The function text belonging to the function is used
as "quick info". The contents of the attribute Info. text appear in a screen's status line whenever the
event is triggered. If you want to display additional text with an icon, it should be entered in the
attribute Icon text.

n You can use the Fastpath attribute to specify the letters that allow you to choose a function without
using the mouse.

n To insert a separator in the application toolbar, use the Insert menu in the Menu Painter.

n If you use the 'Fixed positions' attribute for the application toolbar, pushbuttons for inactive
functions are grayed out instead of being hidden. To set this attribute, double -click the open padlock
symbol next to the application toolbar description.

n A menu entry can be a function, a separator, or another menu (cascading menu)

n To add a function to a menu, enter its function code in the left-hand column. If the function already
exists in the function list and has a text assigned to it, this is entered automatically in the text field. If
not, double-click the right-hand field to maintain a text.

n To insert a separator, use the 'Insert' menu or fill the function text field with minus signs at the
appropriate position.

n Status and title names can be up to 20 characters in length and must be entered all in capital letters. A
status stays active until a new one is set.

n You can use up to nine variables in a GUI title using the syntax SET TITLEBAR <title>
WITH <f1> ...<f9>.

n If no GUI interface has been set, a standard user interface is displayed. Use SET PF-STATUS
SPACE to deactivate previously entered statuses and activate the default list status. You can
deactivate functions at runtime with the EXCLUDING <FCODE> addition. If you want to deactivate
several function codes at the same time, you must first transfer these to the system using an internal
table.

n You should work with an interactive event and centrally control various user actions in the program,
handling the actions independently of each other.

n You program AT USER-COMMAND as an interactive event and evaluate the system field sy-
ucomm in a CASE control structure. This field contains the current function code.

n Data is restored from the hide area to the corresponding global data fields for the line on which the
cursor was positioned.

Unit: The Program Interface

Theme: Creating a GUI status and GUI title

At the conclusion of these exercises, you will be able to:

• Create a user interface for a program and use it for navigation.

Continue developing your application by creating a GUI status for your
program. You should, in particular, create a function in your interface
that allows the user to display a list of bookings for a flight. You will
also make it easier for the user to recognize where he or she is in your
application by using GUI titles.

3-1 Add a GUI status and GUI title to your program and create a detail list containing
the bookings for a flight.

3-1-1 Extend your program Z##BC410_SOLUTION from the Basics for
Interactive Lists unit, or copy the corresponding model solution
SAPBC410ILBS_SIMPLE_LIST. You can use the model solution
SAPBC410GUIS_LIST_GUI for orientation.

3-1-2 Create a GUI status and a GUI title for your program with the following
attributes. The status should be a list status with the standards included.
Create the function book, assigning it to a pushbutton in the application
toolbar and to a menu entry.

GUI Status BASE Type: Dialog status

Function BOOK Function key: F5
Text: Bookings
Icon: ICON_ICON_LIST
Infotext: Booking list
Function type: ` ´

GUI Title BASE Text: Flights

3-1-3 Set the status and title for the basic list.

3-1-4 In the AT USER-COMMAND event, create a detail list if the user chooses
the BOOK function. Read the data from the database table SBOOK for the
line in which the cursor is positioned. Encapsulate the database access in a
subroutine read_bookings. You will need to pass the airline, flight number,
date, and cancellation flag to it as parameters. Read the data into a global

internal table it_sbook_read with the line type SBOOK. Make sure that
you only read the flights that have not been canceled (cancellation flag:
canceled = ` ´.)
Append the lines of it_sbook_read to another internal table it_sbook with
the same type. Sort it_sbook by airline, flight number, flight date, and
booking number. Write another subroutine display_bookings to display the
data from the internal table it_sbook on the detail list. Display the
following booking data as it appears on the model list: booking number
(bookid), customer number (customid), customer type (custtype), luggage
weight (luggweight), weight unit (wunit), class (class), and booking date
(order_date). To do this, create a global work area wa_sbook with type
SBOOK for the internal table it_sbook. Display the luggage weight with the
correct unit. Use the UNIT addition in the WRITE statement.

3-1-5 Create a GUI status BOOK and a title BOOK for the booking list. Status
BOOK should reference the status BASE for its menu bar, function key
setting, and application toolbar. However, you should deactivate the BOOK
function. Set the status and title for the booking list.

3-1-6 Ensure that the detail list is not displayed if the user does not select a valid
line.

3-1-7 Use the TOP-OF-PAGE DURING LINE-SELECTION event to create list
headings as shown in the model list.

Template:

Flight: AZ 0555

Date 09/30/1999

00000536 00000195 B 10,3000 KG C 10/28/1998
00000537 00000074 B 0 KG C 10/28/1998
00000538 00000274 B 11,2000 KG C 11/03/1998
00000539 00000140 B 0 KG C 11/01/1998
00000540 00000141 B 0 KG C 10/28/1998
00000541 00000270 B 6,1000 KG C 10/23/1998
00000542 00000206 B 0 KG C 11/03/1998
00000543 00000206 B 10,7000 KG C 11/01.1998
00000544 00000201 B 0 KG C 10/28/1998
00000545 00000201 B 1,3000 KG C 10/23/1998
00000546 00000165 B 0 KG C 11/03/1998
00000547 00000072 B 0 KG C 11/01/1998
00000548 00000072 B 5,1000 KG C 10/28/1998
00000549 00000168 P 0 KG F 10/23/1998

Unit: The Program Interface

Theme: Creating a GUI status and GUI title

3-1 Model solution SAPBC410GUIS_LIST_GUI
Add the coding in bold type to your program. Create the new subroutines using forward
navigation.

--

Top include

workarea and internal tables for bookings

DATA: wa_sbook LIKE sbook,

it_sbook_read LIKE TABLE OF wa_sbook,

it_sbook LIKE TABLE OF wa_sbook.

--

Event include

AT USER-COMMAND.

CHECK NOT wa_sflight-carrid IS INITIAL.

CASE sy-ucomm.

WHEN 'BOOK'.

REFRESH it_sbook.

PERFORM read_bookings

USING wa_sflight-carrid

wa_sflight-connid

wa_sflight-fldate

' '.

APPEND LINES OF it_sbook_read TO it_sbook.

SORT it_sbook BY carrid connid fldate bookid.

PERFORM display_bookings.

SET PF-STATUS 'BOOK'.

SET TITLEBAR 'BOOK'.

CLEAR wa_sflight-carrid.

ENDCASE.

TOP-OF-PAGE DURING LINE-SELECTION.

CHECK sy-ucomm = 'BOOK'.

FORMAT COLOR COL_HEADING.

ULINE.

WRITE: / 'Flight:'(t01), wa_sbook-carrid, wa_sbook-connid,

AT sy-linsz space,

/ 'Date:'(t02), wa_sbook-fldate, AT sy-linsz space.

ULINE.

--

Subroutine include

FORM display_flights.

LOOP AT it_sflight INTO wa_sflight.

WRITE: / wa_sflight-carrid,

wa_sflight-connid,

wa_sflight-fldate,

wa_sflight-price CURRENCY wa_sflight-currency,

wa_sflight-currency,

wa_sflight-seatsmax,

wa_sflight-seatsocc.

HIDE: wa_sflight.

ENDLOOP.

ENDFORM. " DISPLAY_FLIGHTS

&---

*& Form READ_BOOKINGS

&---

FORM read_bookings USING p_carrid LIKE wa_sbook-carrid

p_connid LIKE wa_sbook-connid

p_fldate LIKE wa_sbook-fldate

p_cancelled LIKE wa_sbook-cancelled.

SELECT * INTO TABLE it_sbook_read FROM sbook

WHERE carrid = p_carrid

AND connid = p_connid

AND fldate = p_fldate

AND cancelled = p_cancelled.

ENDFORM. " READ_BOOKINGS

&---

*& Form DISPLAY_BOOKINGS

&---

FORM display_bookings.

LOOP AT it_sbook INTO wa_sbook.

WRITE: / wa_sbook-bookid,

wa_sbook-customid,

wa_sbook-custtype,

wa_sbook-luggweight UNIT wa_sbook-wunit,

wa_sbook-wunit,

wa_sbook-class,

wa_sbook-order_date.

ENDLOOP.

ENDFORM. " DISPLAY_BOOKINGS

 SAP AG 1999

l Selecting multiple lines

l Sorting lists

l Controlling the list sequence and messages

Contents:

Interactive List Techniques

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n When a user chooses a function from a list, it triggers that function's function code. This function
code, in turn, triggers a corresponding event.

n Some function codes are reserved for use by the system and therefore do not trigger an interactive
event when the user chooses them (that is, the system does not return to the program). Instead these
codes trigger a corresponding system function.

n All function codes with the exception of "PICK" as well as all codes reserved for system use trigger
the event AT USER-COMMAND. For more information, refer to the Program Interface unit.

n You can find a list of those function codes reserved for system use in the Menu Painter under the
appendix ILS-1.

n At a READ statement all values for that line that have been stored in the hide area are inserted into
their corresponding fields and thus made available to the program.

n With the addition INDEX <i> you can read the lines of a particular list level <i>. If you omit this
addition, the system refers to the list last displayed.

n If you use the addition FIELD VALUE <f1> INTO <g1>, the system reads field <f1> from the
corresponding line of the list buffer and places the contents in field <g1>. If you leave out INTO
<g1>, only field <f1> is filled.
Caution: All lines in the list buffer are stored as character strings (type C). Thus, values inserted in
field <f1> are automatically converted to type C.

n If you use the addition LINE VALUE INTO <wa>, the system places the entire line in the work
area <wa>.

n For more on READ statement variants, refer to the online documentation path in appendix reference
ILS-2.

n The statement MODIFY LINE <l> modifys the lth line of the list. The values stored in the hide
area for this line are placed in the corresponding fields, and are thus available in the program.

n The statement MODIFY CURRENT LINE changes the last line to have been chosen by line
selection or the READ LINE statement (even if it was in a different list level).

n If you use the LINE FORMAT addition, the selected line is formatted according to the
specifications <fm1>, <fm2>, ...

n The addition FIELD VALUE replaces the field contents of <f1>, <f2>, ... in the list line with the
current values of <g1>, <g2>, ... (all values are converted to type C).
The contents of <f1>, <f2>, ... themselves are not replaced.
If a field from the line being modified is displayed more than once, that line will only be modified
the first time it is displayed.

n The LINE VALUE FROM <wa> addition allows you to replace the entire line being modified
with the current contents of field <wa>.

n For more information about the MODIFY statement, refer to the online documentation path in
appendix reference ILS-3.

n The FIELD <fieldname> statement, allows you to find out the name of the field in which the
cursor is positioned. The name of the variable from which the value comes is placed in the field
<fieldname>. However, for the sort criterion, you only use the name of the field as it appears in
the table definition. You therefore need to use an offset specification to find out the field name. The
offset is the length of the structure name plus one character for the hyphen.

n The name of the output field is provided in the field specified in the FIELD parameter. The output
value is contained in the field specified in the VALUE parameter.

n The operation sets the return code sy-subrc.

­ sy-subrc = 0: The cursor was positioned on a field.

­ sy-subrc = 4: The cursor was not positioned on a field.

n Caution: Do not use the value from the VALUE parameter as a selection criterion in a SELECT
statement. If it is not a character field, the system will convert its type, which could lead to undesired
results. It is better to use the hide technique instead.

n You can find out more about what additions can be used with GET CURSOR. Refer to the online
documentation path in appendix reference ILS-4.

n Before you find out the sort field, check that the user placed the cursor on a valid line. If this is not
the case, you should display an appropriate message.

n Decreasing the list level (changing the value of sy-lsind) should always be the last action before you
display the list buffer. This system field determines the list level at which the new list is displayed.
The hide area and list buffer of any higher list levels are automatically initialized.

n You can use system field sy-lsind to determine the list level at which the list is displayed. In the
example above, list level 2 where the list is sorted according to the number of unoccupied seats is
being displayed. The statement sy-lsind = 1 causes the list to be displayed at list level 1, thus
replacing the list sorted according to date, which would normally be displayed first.

n You cannot assign a value to sy-lsind that is greater than the current value of the field assigned
by the system. This means you cannot bypass list levels in ascending direction.

n You should only change sy-lsind in the last statement before the list is displayed, since changing
the value does not always lead to an immediate change of list level. The new list level is assigned to
the list at the very end, after the entire list buffer has been displayed. If you are not acquainted with
this behavior, you could program your lists incorrectly.

n Message types have the following effects on list processing:

� Type E messages discard the curent detail lists and return to the list level previously displayed.

� Type W messages are always displayed as error messages (type E).

� While the basic list is being created, type W and type E messages always lead to program
termination (corresponds to type A).

n For full details of how messages behave in a particular event, refer to the online documentation for
the MESSAGE keyword.

Unit: Interactive List Techniques

Theme: Multiple line selection and dynamic list sorting

At the conclusion of these exercises, you will be able to:

• Display detail information for a set of lines in a list.

• Sort an existing list dynamically.

Extend your application to allow the user to display the bookings for a set
of flights from the bookings list. You should also allow the user to sort
the booking list by the column on which the cursor is positioned.

4-1 Enable multiple line selection.

4-1-1 Extend your program Z##BC410_SOLUTION from the Program interface
unit, or copy the corresponding model solution
SAPBC410GUIS_LIST_GUI. You can use the model solution
SAPBC410ILSS_INTERACTIVE_LIST1 for orientation.

4-1-2 At the beginning of each line of the basic list, display a selection field mark
as a checkbox (subroutine display_flights).

4-1-3 In the AT USER-COMMAND event, establish the lines that the user chose
and, if necessary, retrieve the corresponding booking data using the
subroutine read_bookings. The effort with the two internal tables
it_sbook_read and it_sbook was not worth it after all.

4-1-4 Extend the subroutine display_bookings so that there is a page break before
each new flight. To do this, create a global structure key_sflight with the
fields carrid, connid, and fldate (table SFLIGHT). Whenever the data in
the booking data record changes, generate a page break.

You could use the following construction:
IF wa_sbook-carrid NE key_sflight-carrid
 OR
MOVE-CORRESPONDING wa_sbook TO key_sflight.
...
ENDIF.

4-1-5 Add the functions SELECT and DESELECT to the status BASE. Use this
to allow the user to select or deselect all of the list entries in a single step.

Implement the functions in the application toolbar and in the menu.

Function SELECT Function key: F6
Text: Select all
Icon: ICON_SELECT_ALL
Function type: ` ´

Function DESELECT Function key: F7
Text: Deselect all
Icon:
ICON_DESELECT_ALL
Function type: ` ´

4-1-6 Program the SELECT and DESELECT functions in the AT USER-
COMMAND event.

4-2 Allow the user to sort the booking list.

4-2-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410ILSS_INTERACTIVE_LIST1).
You can use the model solution SAPBC410ILSS_INTERACTIVE_LIST2
for orientation.

4-2-2 Add the functions SRTU and SRTD to the status BOOK. Allow the user to
sort the booking list in either ascending or descending order. To do this,
sort the internal table it_sbook by the airline, flight number, flight date, and
the field on which the cursor is positioned. Ensure that the user can only
sort the table when the cursor is positioned on a valid line. Implement the
functions in the application toolbar and in the menu.

Function SRTU Function key: F8
Text: Sort ascending
Icon: ICON_SORT_UP
Function type: ` ´

Function SRTD Function key: F9
Text: Sort descending
Icon: ICON_SORT_DOWN
Function type: ` ´

4-2-3 Make sure that the list level is not increased in each sort, and that the correct
list header is displayed.

Unit: Interactive List Techniques

Theme: Multiple line selection and dynamic list sorting

4-1 Model solution SAPBC410ILSS_INTERACTIVE_LIST1
Add the coding in bold type to your program. Create the new subroutines using forward
navigation.

--

Top include
workarea and internal table for flights

DATA: mark,

wa_sflight type sflight,

it_sflight LIKE TABLE OF wa_sflight.

sflight key for testing changes

DATA: BEGIN OF key_sflight,

carrid LIKE wa_sflight-carrid,

connid LIKE wa_sflight-connid,

fldate LIKE wa_sflight-fldate,

END OF key_sflight.

--

Event include

AT USER-COMMAND.

CHECK NOT wa_sflight-carrid IS INITIAL.

CASE sy-ucomm.

WHEN 'BOOK'.

REFRESH it_sbook.

DO.

READ LINE sy-index FIELD VALUE mark.

IF sy-subrc NE 0. EXIT. ENDIF.

CHECK NOT mark IS INITIAL.

PERFORM read_bookings

USING wa_sflight-carrid

wa_sflight-connid

wa_sflight-fldate

' '.

APPEND LINES OF it_sbook_read TO it_sbook.

ENDDO.

SORT it_sbook BY carrid connid fldate bookid.

PERFORM display_bookings.

SET PF-STATUS 'BOOK'.

SET TITLEBAR 'BOOK'.

CLEAR wa_sflight-carrid.

WHEN 'SELECT'.

DO.

READ LINE sy-index.

IF sy-subrc NE 0. EXIT. ENDIF.

MODIFY CURRENT LINE FIELD VALUE mark FROM 'X'.

ENDDO.

WHEN 'DESELECT'.

DO.

READ LINE sy-index.

IF sy-subrc NE 0. EXIT. ENDIF.

MODIFY CURRENT LINE FIELD VALUE mark FROM space.

ENDDO.

ENDCASE.

--

Subroutine include

FORM display_bookings.

LOOP AT it_sbook INTO wa_sbook.

IF key_sflight-carrid NE wa_sbook-carrid

OR key_sflight-connid NE wa_sbook-connid

OR key_sflight-fldate NE wa_sbook-fldate.

MOVE-CORRESPONDING wa_sbook TO key_sflight.

NEW-PAGE.

ENDIF.

WRITE: / wa_sbook-bookid,

wa_sbook-customid,

wa_sbook-custtype,

wa_sbook-luggweight UNIT wa_sbook-wunit,

wa_sbook-wunit,

wa_sbook-class,

wa_sbook-order_date.

ENDLOOP.

ENDFORM. " DISPLAY_BOOKINGS

4-2 Model solution SAPBC410ILSS_INTERACTIVE_LIST2
Add the coding in bold type to your program. Create the new subroutines using forward
navigation.

--

Top include
field name for GET CURSOR

DATA fieldname(50).

--

Event include

AT USER-COMMAND.

CASE sy-ucomm.

WHEN 'BOOK'.

...

CLEAR: wa_sflight-carrid,

wa_sbook-bookid.

WHEN 'SRTU'.

CHECK NOT wa_sbook-bookid IS INITIAL.

GET CURSOR FIELD fieldname.

fieldname = fieldname+9.

SORT it_sbook BY carrid connid fldate (fieldname).

PERFORM display_bookings.

sy-lsind = sy-lsind - 1.

CLEAR wa_sbook-bookid.

WHEN 'SRTD'.

CHECK NOT wa_sbook-bookid IS INITIAL.

GET CURSOR FIELD fieldname.

fieldname = fieldname+9.

SORT it_sbook BY carrid connid fldate (fieldname) DESCENDING.

PERFORM display_bookings.

sy-lsind = sy-lsind - 1.

CLEAR wa_sbook-bookid.

ENDCASE.

TOP-OF-PAGE DURING LINE-SELECTION.

CHECK sy-ucomm = 'BOOK' OR sy-ucomm = 'SRTD' OR sy-ucomm = 'SRTU'.

...

--

Subroutine include

FORM display_bookings.

LOOP AT it_sbook INTO wa_sbook.

IF key_sflight-carrid NE wa_sbook-carrid

OR key_sflight-connid NE wa_sbook-connid

OR key_sflight-fldate NE wa_sbook-fldate.

MOVE-CORRESPONDING wa_sbook TO key_sflight.

NEW-PAGE.

ENDIF.

WRITE: / wa_sbook-bookid,

wa_sbook-customid,

wa_sbook-custtype,

wa_sbook-luggweight UNIT wa_sbook-wunit,

wa_sbook-wunit,

wa_sbook-class,

wa_sbook-order_date.

HIDE wa_sbook-bookid.

ENDLOOP.

ENDFORM. " DISPLAY_BOOKINGS

 SAP AG 1999

Introduction to Screen Programming

l Principles of screen programming

l Screen objects

l Dynamic screen modifications

l Screen processing

l GUI status for screens

Contents:

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n Screens allow you to enter and to display data.

n One of their strengths is that they can combine with the ABAP Dictionary to allow you to check the
consistency of the data that a user has entered.

n Screens allow you to create user-friendly dialogs with pushbuttons, tabstrip controls, table controls,
and other graphical elements.

n Let us look at a simple dialog program with a selection screen as its initial screen and a screen for
displaying information for a selected data record.

n When the program starts, the system loads its program context and prepares memory space for the
program data objects. The selection screen is displayed.

n The user enters data on the selection screen and chooses Execute.

n In a processing block, the program reads data from the database. To do so, it passes information
about the data requested by the user to the database. The database fills a structure with the required
data record.

n The processing logic then calls a screen. This triggers a processing block belonging to the screen
called Process Before Output (or PBO). Once the PBO has been processed, the data is transferred to
a structure that serves as an interface to the screen. It is then transferred to the screen and displayed.

n Any user action on the screen (pressing enter, choosing a menu entry, clicking a pushbutton, ...)
returns control to the runtime system. The screen fields are then transported into the structure that
serves as the interface between screen and program, and the runtime system triggers another
processing block belonging to the screen, which is always processed after a user interaction, and is
called Process After Input (or PAI).

n In this course, you will learn about screen objects. A screen object is any screen element in the R/3
System that allows users to interact with an ABAP program.

n On the following pages, screen objects are presented from an object-oriented viewpoint, that is, their
attributes are described, along with the methods you can use to work with them.

n You can use the User settings icon (on the far right hand side of the standard toolbar) to configure
the R/3 window according to your own preferences.

n You can:
· Change the colors of various elements of the R/3 interface
· Change the font of texts displayed in the system
· Modify the R/3 window (for example, hide the standard toolbar or restore the default window size
· Show or hide grid lines in lists
· Change the cursor behavior

n The changes you make to the user settings are stored on your presentation server, not in the R/3
System.

n For more detailed information, refer to the online documentation path in appendix reference DIA-1.

n The screen objects text field, input/output field, status icon, group box, radio button, checkbox, and
pushbutton all have general attributes, Dictionary attributes, program attributes, and display
attributes.

n The objects subscreen, tabstrip control and table control have general attributes, and special
attributes relating to the respective object type.

n We can divide the attributes of an object into

­ Statically definable attributes that cannot be changed dynamically

­ Statically definable attributes that can be changed dynamically

­ Attributes that can only be changed dynamically

n For complete documentation of the attributes of screen objects, refer to the online documentation
path in appendix reference DIA-2.

n At the beginning of the PBO, the runtime system reads the statically-created and dynamically-
modifiable attributes of each screen object on the screen into a system table with the line type
SCREEN.

n The slide shows the assignment of the fields in the system table SCREEN to the names of the
statically created attributes of the screen objects.

n When a screen is processed, the system table SCREEN contains an entry for each screen object that
has been created in the Screen Painter for that screen.

n It is initialized in the PBO of each screen, and is filled with the screen objects belonging to that
screen.

n You can change the dynamically-modifiable attributes of the elements on the screen using the
construction
LOOP AT SCREEN. ... ENDLOOP.
in a PBO module. To do this, you use the structure SCREEN, which is created automatically by the
system, and filled with the values of each successive line of the system table in the LOOP. Active
attributes have the value '1', inactive attributes have the value '0'. To change the system table, use
MODIFY SCREEN. within the LOOP.

n To find the object whose attributes you want to modify, you can use a LOOP on the SCREEN table,
and query one of the following fields: SCREEN-NAME, SCREEN-GROUP1 to SCREEN-GROUP4.
There is further information about modification groups on the next page.

n For further information about the SCREEN table, see the description of the structure of SCREEN or
the documentation for the LOOP statement.

n Dynamic changes to the attributes of screen objects are temporary.

n Using this technique to modify the attributes of a screen object (for example, to change whether an
input/output field is ready for input), you can replace long sequences of separate screens, which are
more costly in terms of both programming time and runtime.

n If you want to change the attributes of several attributes at once at runtime, you can include them in a
modification group. To do this, enter the same three-character group name in one of the fields
SCREEN-GROUP1 through SCREEN-GROUP4 of each element.

n Each object can belong to up to four modification groups. You assign the group names in the
element list or layout editor in the Screen Painter.

n You must program your screen modifications in a module that is processed during the PROCESS
BEFORE OUTPUT processing block.

n You use a loop throught the table SCREEN to change the attributes of an object or a group of
objects. (LOOP AT SCREEN WHERE . . . and READ TABLE SCREEN are not supported.)

n To activate and deactivate attributes, assign the value 1 (active) or 0 (inactive), and save your
changes using the MODIFY SCREEN statement.

n Note that objects you have defined statically in the Screen Painter as invisible cannot be reactivated
with SCREEN-ACTIVE = 1. However, objects that you have statically defined as visible in the
Screen Painter can dynamically be made invisible. SCREEN-ACTIVE = 0 has the same effect as the
following three statements:
SCREEN-INVISIBLE = 1, SCREEN-INPUT = 0, SCREEN-OUTPUT = 0.

n Screens are freely-definable objects that you can use to display or enter information.

n They are a form of dialog between the user and the ABAP program.

n A screen consists of the input/output mask (layout), the screen attributes, and the screen flow logic.
For further information about how to program screen flow logic, refer to the ABAP User's Guide.

n Screens have four components: the screen mask, the screen attributes, the element list, and the flow
logic. The flow logic contains flow logic code (not ABAP statements).

n Screens are containers for other screen objects.

n Each screen has a set of administration attributes that specify its type, size, and the subsequent
screen. It also has settings that influence other properties of the screen and of its components.

n The administration attributes Program and Screen number identify the screen by its number and the
program to which it belongs.

n Screen numbers greater than 9000 are reserved for SAP customers. Screen numbers 1000 through
1010 are reserved for the maintenance screens of ABAP Dictionary tables and the standard selection
screens of reports.

n The screen type identifies the purpose of the screen. Certain other special attributes of a screen and
its components depend on this attribute.

n The "Next screen" attribute allows you to specify the screen that should be processed after the
current screen in a fixed sequence.

n For a full list of screen attributes with their meanings, refer to the online documentation path in
appendix reference DIA-3.

n When you create a screen, you must:

­ Set the general screen attributes (on the attribute screen)

­ Design the screen layout (in the layout editor)

­ Set the field attributes (in the field list)

­ Write the flow logic (in the flow logic editor).

n To create a screen from the object list in the Object Navigator, create a new development object with
the type Screen. Position the cursor on Screens and right-click.

n The Object Navigator automatically opens the Screen Painter.

n When you create a screen, you first have to enter its attributes. Enter a screen number, a short text,
and a screen type. You will normally use the screen type Normal. You can specify the number of the
next screen in the Next screen field.

n If you enter 0 (or nothing) for the next screen, the system resumes processing from the point at which
the screen was called once it has finished processing the screen itself.

n You can also create a screen by writing a CALL SCREEN <nnnn> statement in the ABAP Editor
and then double-clicking the screen number <nnnn>.

­ To allow you to set the attributes of all screen elements, the Screen Painter contains an element
list with six views. You can also display all of the attributes for a single element from any of the
lists (Attributes). You can also maintain the attributes for an element from the layout editor
using the Attributes function.

­ Within the Screen Painter, you work with external data types. These correspond to the types
defined in the ABAP Dictionary. For fields that you have chosen that are defined in the ABAP
Dictionary, the system displays the external data type in the Format column. For elements
(templates) that do not have an ABAP Dictionary reference, you must enter an external data
type yourself.

­ To find out the corresponding external data type for an internal data type (ABAP data type), see
the keyword documentation for the ABAP TABLES statement. For example:

ABAP Dictionary Data Type ABAP Data Type
 CHAR C
 NUMC N

n You usually define screen fields by adopting the corresponding field descriptions from the ABAP
Dictionary. However, you can also use field descriptions that you have defined in your program. In
order to do this, you must generate the program first.

n You can use the key word texts and templates either together or separately.

n The graphical layout editor provides an easy way of defining the various screen elements (such as
input/output fields, key word texts, boxes, and so on). You simply choose the element you require,
and position it on the screen using the mouse.

n To delete a screen element, select it, and choose Delete.

n You can move elements on the screen by dragging and dropping them with the mouse.

Note:

The graphical layout editor is available under Windows NT, Windows 95 and UNIX.
If you use a different operating system, you must use the alphanumeric Screen Painter.

n Screens have their own set of keywords that you use in the PBO and PAI events of the flow logic.

n In the flow logic, you write MODULE calls. The modules are components of the same ABAP
program. They contain the ABAP statements that you want to execute.

n You can create a module by double -clicking the module name in the flow logic Editor.

n To create a module from the object list in the Object Navigator, choose the development module
'PBO module' or 'PAI module'.

n You can call the same module from more than one screen. If the processing depends on the screen
number, you can retrieve the current screen number from the system field sy-dynnr.

n Note that the modules you call in the PBO processing block must be defined using the MODULE
OUTPUT statement; modules that you define using the statement MODULE... INPUT can only be
called in the PAI event.

n In order for a screen and its ABAP program to be able to communicate, the fields on the screen and
the corresponding fields in the program MUST HAVE IDENTICAL NAMES.

n After it has processed all of the modules in the PBO processing block, the system copies the
contents of the fields in the ABAP work area to their corresponding fields in the screen work area.

n Before it processes the first module in the PAI processing block, the system copies the contents of
the fields in the screen work area to their corresponding fields in the ABAP work area.

n You should use your own structures (SDYN_CONN, …) for transporting data between the screen
and the ABAP program. This ensures that the data being transported from the screen to the program
and vice versa is exactly the data that you want.

n You can establish a static sequence of screens by entering a value in the Next screen field of the
screen attributes.

n If you enter 0 (or no value) as the next screen, the system resumes processing from the point at
which the screen was initiated, once it has finished processing the screen itself.

n The SET SCREEN <nnnn> statement temporarily overwrites the Next screen attribute.

n The screen <nnnn> must belong to the same program.

n The next screen is processed either when the current screen processing ends, or when you terminate
it using the LEAVE SCREEN statement.

n To specify the next screen and leave the current screen in a single step, use the
LEAVE TO SCREEN <nnnn> statement.

n To interrupt processing of the current screen and branch to a new screen (or sequence of screens),
use the CALL SCREEN <nnnn> statement. The screen <nnnn> must belong to the same program.

n In the program, the system constructs a stack. The stack has to be destroyed before the end of the
program.

n To return to the statement following the CALL SCREEN statement, you can use either SET
SCREEN 0, LEAVE SCREEN, or LEAVE TO SCREEN 0. The screen that called the other screen
is then processed further.

n If you use the above statements outside of a call chain, the program terminates, and control returns to
the point from which it was called. You can also terminate a program using the ABAP statement
LEAVE PROGRAM.

n In the CALL SCREEN statement, you can use the STARTING AT and ENDING AT additions to
specify the position and size of the screen that you are calling. The screen in the CALL SCREEN
statement must be defined as a modal dialog box.

n If you omit the ENDING AT statement, the size of the dialog box is determined by the Used size in
its screen attributes.

n If you use the ENDING AT addition, the system displays as much of the dialog box as will fit into
the available space. If there is not enough room to show the entire dialog box, it appears with
scrollbars.

n The starting position (origin) of every SAP window is its top left-hand corner.

n The values that you pass to lc, ur, rc, and lr in the statement
CALL SCREN STARTING AT lc ur ENDING AT rc lr
refer to the R/3 window in which you display the dialog box (on the slide, screen 100).

n When the system displays a screen, it automatically places the cursor in the first input field. If you
want the cursor always to appear in a different field, you can enter the corresponding object name in
the Cursor position field of the screen attributes.

n You can also tell the system in the PBO event to position the cursor in a particular field. This makes
your application more user-friendly.

n You can set the field in which the cursor should appear in the program.
To do this, use the ABAP statement

 SET CURSOR FIELD <field_name> OFFSET <position>.

n <field_name> can be a unique name in quotation marks, or a variable containing the object
name. To place the cursor at a certain position within a field, use the OFFSET parameter, specifying
the required position in <position>.

n The system then places the cursor at the corresponding offset position, counting from the beginning
of the field.

n A GUI status is made up of a menu bar, a standard toolbar, an application toolbar, and of
function key settings. A single screen can have more than one status. You should use a module
set_status_<nnnn> in the PBO (Process Before Output) event of each of your screens to assign a
GUI status and a GUI title to it.

n There are three ways to create a status: from the object list in the Objet Navigator, from the Menu
Painter, or by forward navigation from the ABAP Editor. The status type describes the technical
attributes of the status. Choose Dialog status if you want use the status with a screen in fullscreen
mode, and dialog box, if you are going to use it with a dialog box. Context menus are special menus
that you can attach to the right-hand mouse button. They are described in a separate unit.

n When you change a status, you must activate it before the changes become visible.

n To ensure consistency, you should reuse existing menu bars, application toolbars, and key settings
wherever possible. The Menu Painter administers the links you establish between these objects so
that any changes apply to all other statuses that use them. There is also a set of standard menu
entries that you can use as a template and modify.

n When you assign functions to the reserved function keys in the standard toolbar, you should adhere
to the SAP standards. This makes your program easier for users to understand and for you to
maintain. For further information, refer to the SAP Style Guide.

n When the user triggers a function with type ' ' using a pushbutton, menu entry, or function key, the
system places the relevant function code in the OK_CODE field of the screen.

n To allow you to process this field in the PAI event, you must assign a name to the field, which you
enter in the element list in the Screen Painter. You must then create a field in your ABAP program
with the same name. During the automatic field transport at the beginning of the PAI event, the
function code is passed from the screen to the corresponding field in the program.

n To avoid the function code leading to unexpected processing steps on the next screen (ENTER does
not usually change the OK_CODE field), you should initialize the function code field in the ABAP
program before leaving the screen, otherwise it will be transported back to the screen automatically
in the PBO event.

Unit: Introduction to Screen Programming

Theme: Creating a screen and using it in an executable
program

At the conclusion of these exercises, you will be able to:

• Create screens and use them in your programs.

Create a maintenance screen for your program. Design an interface for it.
The user should see the screen after double-clicking a line on the basic
list.

5-1 Create a screen and include it in your program.

5-1-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410ILSS_INTERACTIVE_LIST2).
You can use the model solution SAPBC410DIAS_DYNPRO for
orientation.

5-1-2 In the AT LINE-SELECTION event, call screen 100.

5-1-3 Create the following program object:

Screen 0100 Short description:
Maintenance screen
Type: Normal
Next screen: 100

5-1-4 In the PBO event of screen 100, call a module status . Use forward
navigation to create the module in a new include.
 Z##BC410_SOLUTIONO01 PBO module include. In this
module, set the GUI status STATUS_100 and GUI title TITEL_100 (Flight
data (&)) and pass “Display” to the title as a parameter. Use a text element
for the parameter, to ensure that it can be translated. You can create the
status and title by forward navigation.
Assign the type Dialog status to the status. Activate the standard function
BACK (F3) with the function type ‘ ’ (space).

5-1-5 Assign the name ok_code to the function code field on your screen, and
create a corresponding variable in the top include of your program.

5-1-6 In the PROCESS AFTER INPUT event of screen 100, call the modules
save_ok_code and user_command_100. Use forward navigation to create
the modules in a new include
 Z##BC410_SOLUTIONI01 PAI module include. Ensure that

the user can return from screen 100 to the basic list if he or she chooses
BACK (F3).

5-1-7 Make sure that you have inserted the necessary INCLUDE statements in
your main program.

Unit: Introduction to Screen Programming

Theme: Creating a screen and using it in an executable
program

5-1 Model solution SAPBC410DIAS_DYNPRO
Add the coding in bold type to your program. Create the new modules using forward
navigation.

--

Flow logic for screen 100

PROCESS BEFORE OUTPUT.

MODULE status.

PROCESS AFTER INPUT.

MODULE save_ok_code.

MODULE user_command_100.

--

Main program
&---

*& program SAPBC410DIAS_DYNPRO *

*& *

&---

INCLUDE BC410DIAS_DYNPROTOP.

INCLUDE BC410DIAS_DYNPROE01.

INCLUDE BC410DIAS_DYNPROF01.

INCLUDE BC410DIAS_DYNPROO01.

INCLUDE BC410DIAS_DYNPROI01.

--

Top include
fields for ok_code processing

DATA: ok_code LIKE sy-ucomm,

save_ok LIKE ok_code.

--

Event include

&---

*& Event AT LINE-SELECTION.

&---

AT LINE-SELECTION.

CALL SCREEN 100.

--

PBO module include

--

***INCLUDE BC410DIAS_DYNPROO01.

--

&---

*& Module STATUS OUTPUT

&---

MODULE status OUTPUT.

SET PF-STATUS 'STATUS_100'.

SET TITLEBAR 'TITLE_100' WITH 'View'(m01).

ENDMODULE. " STATUS OUTPUT

--

PAI module include
--

***INCLUDE BC410DIAS_DYNPROI01.

--

&---

*& Module USER_COMMAND INPUT

&---

MODULE USER_COMMAND_100 INPUT.

CASE SAVE_OK.

WHEN 'BACK'.

LEAVE TO SCREEN 0.

ENDCASE.

ENDMODULE. " USER_COMMAND INPUT

&---

*& Module SAVE_OK_CODE INPUT

&---

MODULE SAVE_OK_CODE INPUT.

SAVE_OK = OK_CODE.

CLEAR OK_CODE.

ENDMODULE. " SAVE_OK_CODE INPUT

 SAP AG 1999

Screen Elements for Output

l Using, creating, and modifying

l Text fields

l Status icons

l Group boxes

l Example: Dynamic screen modifications

Contents:

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n A text field is a rectangular area on a screen in which the system displays text.

n Text fields contain labels for other elements. These labels (sometimes called "keywords"), are purely
for display - they cannot be changed at runtime by the user. Text fields are displayed in a fixed
position on the screen.

n Text fields can also contain literals, lines, icons, and other static elements. They can contain any
alphanumeric characters, but may not begin with an underscore (_) or a question mark (?) . If you
use a text as a label for a checkbox or radio button, it must have the same object name as the
checkbox or radio button it accompanies.

n If your text consists of more than one word, use underscore characters as separators. This enables the
system to recognize that the different words in fact belong together. The system interprets spaces as
separators between two different text fields.

n Text fields can be translated. They then appear in the user's logon language. To do this, follow the
menu path under OUT-1.

n At runtime, you can change the size (visible length) of a text field and the display attributes Bright
and Invisible. To do this, use the fields SCREEN-LENGTH, SCREEN-INTENSIFIED, and
SCREEN-INVISIBLE (or SCREEN-ACTIVE).

n You can create text fields in either of the following ways:

Directly in the layout editor, by placing a text field object in the work area and entering the text
in the Object text attribute.

By using the accompanying text of a data element from the ABAP Dictionary.

n When you use fields from ABAP Dictionary structures on the screen, the system normally displays
the data element text as well as the template for the input/output fields on the screen.

n You can make text fields invisible at runtime.

n If you make an object invisible that is enclosed in a box, the box is not displayed either. (For further
information, refer to the documentation for the screen attribute Switch off runtime compression).

n At PBO, the system table with the line type SCREEN is initialized by the runtime environment, and
filled with the static attributes from the Screen Painter.

n To hide a text field at runtime, you modify the system table. Use LOOP AT SCREEN. ... MODIFY
SCREEN
ENDLOOP.

n To make a text field invisible, use SCREEN-INVISIBLE = 1 or SCREEN-ACTIVE = 0.

n To ensure that the field TEXTFIELD1 is not displayed on the screen, you can call a module in the
PROCESS BEFORE OUTPUT processing block that sets the invisible attribute for that field.

n To do this, set the contents of the field SCREEN-INVISIBLE to 0.

n You can process the SCREEN table like an internal table with header line (LOOP AT SCREEN. …
MODIFY SCREEN. ENDLOOP.)

n The system does not support the statements LOOP AT SCREEN WHERE… and READ TABLE
SCREEN.

n A status icon is an output field that contains an icon. You choose the relevant icon at runtime. Icons
allow you to indicate a status in your application. They are predefined in the system, and take up
between two and four characters.

n For information about the available icons, see the online documentation (reference OUT-2).

n Status icons are special output fields that display icons. The system sets the attributes 'Output field'
and '2 dimensional', and these cannot be changed. The default data format is CHAR.

n You can change the Visible length, Intensified, and Invisible attributes of a status icon dynamically.

n You can only define a status field in the graphical layout editor. A status field is an output field with
an icon. You use them to display an icon, which you specify dynamically at runtime.

n To assign an icon to an output field dynamically, use the function module ICON_CREATE. The
internal length of the output field must be at least 13 (icon without text). To ensure that you can
display quickinfos that might be longer, define the field with defined length 132 and visible length 2.

n In the ABAP program, define a field with the same name as the screen field using the field TEXT
from the structure ICONS.

n You select the icon you want to display from the ABAP program. Before the screen is displayed, you
need to find out the technical name of the icon. You do this by calling a module in the PBO event.

n You retrieve the technical name of an icon using the function module ICON_CREATE. You must
pass the name of the icon you want to display to the function module. You can also pass a text to be
displayed with the icon. The function module returns the technical name of the icon.

n For further details about this function module, refer to its documentation.

n Group boxes enclose a selection of elements that belong together (for example, a group of fields or a
radio button group). They are purely display elements, and help the user to identify which elements
on the screen belong together in a group.

n You can use group boxes to make sure that all fields within a box have the same context menu
assigned to them. For further information, refer to the Context Menus on Screens unit.

n Group boxes may have a title.

n You can change the Visible length and Invisible attributes using the system table SCREEN.

n A group box may contain other screen objects.

n At runtime, if the box contains only invisible elements and the screen attribute Runtime compression
is set, the box itself is not displayed.

n You define a group box in the layout editor. The object must have a name, and you may also assign
a heading to the box.

n You can change the group box text dynamically. To do this, you should activate the output field
attribute and create a global data field in the ABAP program with the same name. Because the
Screen Painter field and the program field have the same name, any changes to the field contents will
be immediately visible on the screen (similarly to input/output fields).

n Output objects are for improving the layout of your screens.

n Text fields allow you to label input/output fields. In this case, you should use the same name for the
text field as for the input/output field. If you deactivate the input/output field, the text label is then
automatically deactivated as well.

n Status icons allow you to provide the user with a quick graphical overview of information.

n Group boxes allow you to make a group of fields that logically belong together. Runtime
compression ensures that empty boxes cannot be displayed.

n Static texts on a screen can be translated, so that they appear on the screen in the language in which
the user is logged on. To make dynamically-assigned text accessible to translators, you must use text
elements in your ABAP programs.

 SAP AG 1999

Contents:

Screen Elements for Input/Output

l Input/output fields

l Input help

l Checkboxes and radio button groups

l Pushbuttons

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n An input field is a rectangular screen element in which users can enter data.

n An output field is a rectangular screen element in which the system displays text or other data.

n Input/output fields are also known as templates.

n Input fields can have automatic input checks based on thir data type (for example, a date field will
only allow you to enter a valid date).

n Input fields that you create with reference to ABAP Dictionary fie lds may have built-in data
consistency checks (foreign key checks, value sets).

n Input fields may have possible values help (F4)

n For further information about input/output fields, see the online documentation INP-1.

n You can temporarily change the object attributes marked in gray using the system table SCREEN.

n It may not be possible to activate all possible combinations of attributes. This depends on the format
of the input/output fie ld.
Example: You cannot activate the Leading zeros attribute for a field with the data format CHAR,
since it is only relevant for numeric fields.

n For further information about the "Data format" attribute, refer to the online documentation path in
appendix reference INP-2.

n You can create input/output fields in two ways:

By entering them directly in the layout editor. You determine the size of the field by the
number of underscore characters in the object text attribute. For numeric values, you can
specify a comma as a separator, and a period as a decimal point. As the last character in the
input/output field, you can enter 'V' as a placeholder for a plus or minus sign.

By using a template from the ABAP Dictionary. Choose Dict/Program fields to do this.

n If you want to use the contents of an input/output field in your ABAP program, you must declare the
field globally using the DATA or TABLES statement.

n You can save values in SAP memory using a parameter ID. These are user and terminal-session
specific, but available to all internal sessions .

n SET PARAMETER copies the corresponding field contents into SAP memory in the PAI processing
block.

n GET PARAMETER copies the corresponding field contents from SAP memory at the end of the PBO
processing block (after data has been transferred from the program), but only if the screen field still
has its initial value.

n You can link an input/output field to an area of SAP memory in the ABAP Dictionary.

n When you use an input/output field that is defined in the ABAP Dictionary, its parameter ID is
displayed in the Dictionary attribute PID in the Screen Painter.

n The SPA and GPA attributes allow you to enable the set and get parameter functions separately.

n You can define parameter IDs in table TPARA.

n After the screen has been displayed, but before the PAI modules are processed, the system
automatically checks the values that the user has entered on the screen.

n The first check is to ensure that all required fields have been filled.

n The system can only perform a foreign key check if a screen field refers back to a ABAP Dictionary
field for which a check table has been defined and the Foreign key check attribute has been set.

n The F4 help function is also active. This enables users to display possible entries.

n If the automatic field input checks are insufficient for your requirements, you can program your own
in the PAI event. To do this, use the FIELD statement with the MODULE addition. This means that
the module you specify is only processed for the field specified in the FIELD statement.

n If an error or warning message occurs during the module, the system sends the screen again, but
without processing the PBO module . The message is displayed, and only the field to which the check
was applied is ready for input.

n Note: It is the FIELD statement that is responsible for making the field ready for input again. If you
use a message in a module that is not called from within a FIELD statement, the system displays the
message, but does not make the field ready for input again.

n If you want to ensure that more than one field is ready for input following an error dialog, you must
list all of the relevant fields in the FIELD statement, and include both that and the MODULE
statement in a CHAIN … ENDCHAIN block.

n You can include individual fields in more than one CHAIN … ENDCHAIN block.

n Note that the FIELD statement does not only make the field ready for input again; it also means that
field contents changed during the current PAI processing are only visible if the field in question was
also included in the FIELD statement of the current CHAIN block.

n If the system sends an error or warning message, the current screen is sent again, but the PBO is not
processed again.

n Only the fields to which the module is assigned are ready for input again.

n After the user has entered new values, the PROCESS AFTER INPUT module is not completely
reprocessed, but restarted somewhere within the processing block.

n The system finds out which field the user changed and resumes processing at the first corresponding
FIELD statement.

n If the user merely confirms a warning message (without changing the fields contents), the system
restarts the PAI processing after the MESSAGE statement where the error was triggered.

n There are six different categories of message: A, X, E, W, I, and S:

A Termination The processing terminates and the user must restart the transaction.

X Exit Like message type A, but with short dump MESSAGE_TYPE_X.

E Error Processing is interrupted, and the user must correct the entry.

W Warning Processing is interrupted and the user can correct the entries (works
 like an E message). However, it is also possible to confirm the existing
 entries by pressing ENTER (works like an I message)

I Information Processing is interrupted, but continues when the user has confirmed
 the message (pressed ENTER).

S Success Displays information on the next screen

n The system transports data from screen fields into the ABAP fields with the same name in the PAI
processing block. First, it transports all fields that are not contained in any FIELD statements. The
remaining fields are transported when the system processes the relevant FIELD statement.

n If an error or warning message occurs in a module belonging to a FIELD statement, the current
values of all fields in the same CHAIN structure are automatically transported back into their
corresponding screen fields.

n Field input checks usually require access to the database. Consequently, avoiding them where
possible improves the performance of your program.

n If the user "strayed" onto the screen by mistake, he or she will not usually be able to make a
consistent set of entries that will satisfy the input checks. You should therefore make it possible for
a user to leave a screen without the field checks taking place.

n To protect the user from losing data that he or she has already entered if they leave the screen
unintentionally, you should program security prompts.

n If you use the ON INPUT addition in a MODULE statement after FIELD, the module is only called if
the field contents have changed from their initial value.

n Within a CHAIN block, you must use the ON CHAIN-INPUT addition. The module is then called
if the contents of at least one screen field within the CHAIN block have changed from their initial
value.

n You may only use the ON INPUT addition if the MODULE statement is contained in a FIELD
statement.

n If you use the ON REQUEST addition in a MODULE statement after FIELD, the module is only
called if the user has entered a new value in that field.

n Within a CHAIN block, you must use the ON CHAIN-REQUEST addition. The module is then
called if the user has changed the contents of at least one screen field within the CHAIN block.

n You may only use the ON REQUEST addition if the MODULE statement is contained in a FIELD
statement.

n The module with the addition AT EXIT-COMMAND is processed before the automatic field input
checks. You can use it for navigation. You may only use the AT EXIT-COMMAND addition with
one module. It may not have an associated FIELD statement.

n If you do not leave the screen from this module, the automatic field checks are processed after it,
followed by the rest of the PAI event.

n Ensure that you process the contents of the OK_CODE field appropriately.

n The SAP Style Guide contains details of how you should set the navigation functions Back , Exit, and
Cancel.

n The BACK function (green left arrow) should lead one logical level backwards. From screens on the
same level as the initial screen, it leads back to the initial screen. From screens that contain detailed
information, it leads back to the screen that called the current screen.

n The CANCEL function differs from BACK in its dialog behavior. For details, see the next page.

n The EXIT function should return to where the processing unit was called.

n On the initial screen of a program, all three functions Back , Exit, and Cancel lead back to the screen
from which the current program was called.

n For further information, refer to the online documentation path in appendix reference INP-3.

n If the user has entered data on the screen (sy-datar = 'X' or your own flag), you can avoid
accidental loss of data by using a predefined security prompt.

n As well as specifying the targets of the Back , Exit, and Cancel functions, the SAP Style Guide also
contains information about the dialogs you should conduct with the user, and the sequence of dialogs
and automatic field checks.

n For the Exit and Cancel functions, you should first send a dialog box to the user. Then (in the case of
the Exit function), the system checks the input on the screen. The functions in question must have
function type 'E'.

n In the case of the Back function, the input checks come before the dialog.

n The R/3 System contains a series of function modules that you can use for the user dia logs.

n These are listed above. For further information, refer to the online documentation path in appendix
reference INP-4.

n You can help the user with input by using dropdown list boxes containing the possible entries.

n Input help (F4 help) is a standard function in the R/3 System. It allows the user to display a list of
possible entries for a screen field. If the field is ready for input, the user can place a value in it by
selecting it from the list.

n If a field has input help, the possible entries button appears on its right hand side. The button is
visible whenever the cursor is placed in the field. You can start the help either by clicking the button
or choosing F4.

n As well as the possible entries, the input help displays relevant additional information about the
entries. This is especially useful when the field requires a formal key.

n Since the input help is a standard function, it should have the same appearance and behavior
throughout the system. There are utilities in the ABAP Workbench that allow you to assign
standardized input help to a screen field.

n The precise description of the input help of a field usually arises from its semantics. Consequently,
input help is usually defined in the ABAP Dictionary.

n Dropdown list boxes allow the user to choose an entry from a pull-down list containing the possible
entries. The user cannot enter values freely, but must choose a value from the list.

n To create a dropdown list box for an input field, you must do the following in the Screen Painter:

� Set the Dropdown attribute to list box.

� Change the visLength attribute to the displayed length of the descriptive text.

� Set the Value list attribute to ' ' to use value help from the ABAP Dictionary.

� If required, set the function code for the selection. Like a menu entry, this function code triggers
the PAI, and you can interpret it using the OK_CODE field.

n Important: The visible length of the field determines the width of the field (including button) and
the selection list, and you must normally change it when you convert the field to a dropdown box.

n The values are filled automatically using the search help assigned to the ABAP Dictionary field. The
Dictionary field must have a search help (check table) with two columns or a table of fixed values.

n Various things are required of input help for a screen field (the search field):

n The input help must take into account information that the system already knows (the context). This
includes both information that the user has entered on the current screen, and information from
previous dialog steps. The input help normally uses the context to restrict the set of possible values.

n The input help must find out the values that it will then present to the user for selection. It must also
determine the data that will be displayed as additional information in the list of possible values. In
determining the possible values, it must take into account restrictions that arise from the context, as
well as those entered by the user as specific search conditions.

n The input help must conduct a user dialog. This involves (at least) displaying the possible values
with additional information, and allowing the user to choose a value from it. In many cases, the
input help will also contain an input screen on which the user can specify conditions to restrict the
number of possible entries displayed.

n When the user selects a value, the input help must place it into the search field. In many cases, there
are extra fields on the input screen (often only output fields), containing extra information about the
search field. The input help should also update the contents of these fields.

n The ABAP Dictionary object search help is a description of an input help. Its definition contains
the information that the system requires to meet the user's needs.

n The interface of the search help controls the data that is passed between the input screen and the F4
help. The interface determines the context data that is required and the data that can be placed back
on the input screen when the user chooses a value.

n The internal behavior of the search help describes the actual F4 process. This contains the selection
method, which retrieves the values for display, and the dialog behavior, which describes the
interaction with the user.

n Similarly to function modules, search helps have an interface, which defines their capacity to
exchange data with other software components, and an internal behavior (which, in the case of a
function module, is its source code).

n It is only worth defining a search help if there is a mechanism that allows you to address it from a
screen. This mechanism is called a search help connection, and is described later.

n Like the function module editor, the search help editor also allows you to test your objects. This
allows you to check how a search help behaves before you assign it to a screen field.

n A search help describes the process of an input help. In order for it to work, we need a mechanism
that assigns the search help to the field. This is called the search help connection.

n Connecting a search help to a field affects its behavior. It is therefore regarded as part of the field
definition.

n The semantic and technical attributes of a screen field (type, length, F1 help) are normally not
defined directly when you define the screen. Normally, you use a reference in the Screen Painter to
an existing field in the ABAP Dictionary. The screen field then inherits the attributes of the ABAP
Dictionary field.
The same principle applies when you define input help for a screen field. The link between the
search help and the search field is established using the ABAP Dictionary field, not the screen field.

n When you assign a search help, its interface parameters are asssigned to the screen fields that are
filled by the search help, or which pass information to it from the screen. The search field must be
assigned to an EXPORT parameter of the search help. You should also make the search field an
IMPORT parameter, so that the search help can take into account a search pattern already entered in
the field by the user.

n A field can have input help even if it does not have a search help - there are other mechanisms for F4
help (for example, fixed values for a domain).

n There are three ways to link a search help to a field in the ABAP Dictionary.

n It can be assigned directly to a field of a structure or table. You define this link in very much the
same way as you would define a foreign key. You should define the assignment here (between the
interface parameters of the search help and the structure field). The system generates a proposal.

n If the field has a check table, its contents are automatically proposed as possible values in the input
help. The key fields of the check table are displayed. If the check table has a text table, the first non-
key character field is also displayed.
If the default display is insufficient for your requirements, you can attach a search help to the check
table. This is then used for all fields that have that check table. When you link the search help, you
must define the assignment between the search help interface and the key of the check table.

n The semantics of a field and its possible values are defined by its data element. You can therefore
also link a search help to a data element. The search help is then used by all fields that are based on
that data element. When you link the search help, you must specify a single EXPORT parameter,
which will be used to transfer the data.

n Attaching a search help to a check table (or data element) increases its reusability. However, it does
restrict your options for passing extra values to the search help interface.

n To allow as many fields as possible to carry useful input help, the R/3 System contains a wide range
of mechanisms with which you can define it. If it is possible to use more than one of these for a
particular field, the one highest in the hierarchy is used.

n As well as defining the input help for a field in the ABAP Dictionary (as we have already seen), you
can also define it in the screen field. This method has the disadvantage that you cannot reuse it
automatically.

n The screen event POV (PROCESS ON VALUE-REQUEST) allows you to program input help for a
field yourself. You can make this help appear in standard form by using the function modules
F4IF_FIELD_VALUE_REQUEST or F4IF_INT_TABLE_VALUE_REQUEST.
However, you should first check to see whether you cannot program your own input help better
using a search help exit.

n You can also attach a search help to a screen field in the Screen Painter. However, the functional
scope of this technique is more restricted in comparison to attaching a search help in the ABAP
Dictionary.

n You should no longer use input checks programmed directly in the flow logic (and from which input
help can be derived).

n In the context menu (right-click) for the hit list, there is a function Technical info. This tells you
which mechanism is being used in a particular case.

n Use radio buttons when you want to allow a user to choose only a single element from a group of
fields.

n Use checkboxes when you want to allow the user to choose one or more elements from a group of
fields.

n Wtih radio buttons, one selection rules out all other options within the group. When the user selects
one, all of the others are automatically deselected.

n When the user selects a radio button, control is not immediately passed back to a work process on the
application server. As with checkboxes (but in contrast to pushbuttons), it is still possible to make
further entries before pressing a pushbutton or choosing a menu option.

n Checkboxes allow the user to select more than one element at once. Control is not returned to a
work process on the application server. This does not happen until the user chooses a pushbutton or
menu entry.

n Checkboxes and radio buttons must have an object name.

n As well as the input/output field, you can display text and icons for them. The text is contained in the
Object text field in the attributes. To display an icon, enter its name in the Icon name attribute. You
can enter quick info for the icon in the appropriate field.

n You can change the Input field and Invisible attributes using the system table SCREEN.

n You create checkboxes in the fullscreen editor of the Screen Painter. To do this, choose the checkbox
object from the object list and place it on the screen. You must assign names to checkboxes. In the
ABAP program, create a field with the same name, type C, and length 1.

n You can find out whether a user has chosen a checkbox in the ABAP program by querying the field
contents. If a checkbox is not selected, its field value is initial.

n You can assign a function code and function type to a checkbox. When the user selects it, the PAI
event is triggered as though the user had chosen a menu entry.

n You create radio buttons in the layout editor of the Screen Painter. There are two steps involved:

­ Create the radio buttons as individual elements. Choose "radio button" from the object list and
place it on the screen. You must assign names to radio buttons. In the ABAP program, create a
field with the same name, type C, and length 1.

­ Combine a collection of radio buttons into a radio button group. To do this, select the radio
buttons in the layout editor and then choose Edit -> Group -> Radio button group -> Define.

n You can find out which radio button a user has chosen by querying the fie ld contents in the ABAP
program. If a radio button is not selected, the field value is initial.

n You can assign a function code and function type to a radio button group. When the user selects one
of its radio buttons, the PAI event is triggered as though the user had chosen a menu entry.

n A pushbutton triggers a particular function. When the user chooses it, the system tells the program
which function has been chosen. At this point, control of the program passes back to a work process
on the application server, which processes the PAI processing block.

n Pushbuttons may contain text (Object text attribute), an icon, or both. You can either specify an icon
statically, or dynamically, using the function module ICON_CREATE.

n You can change the visible length , output field , and invisible attributes dynamically using the system
table SCREEN.

n You can change the text on a pushbutton dynamically. To do this, you must have set the Output field
attribute in the Screen Painter to active, and created a global field with the same name in your ABAP
program. Because the Screen Painter field and the program field have the same name, any changes to
the field contents will be immediately visible on the screen (similarly to input/output fields).

n When you create a pushbutton, you must:

Create the pushbutton itself. Choose the Pushbutton object from the Screen Painter object list,
place it on the screen, and assign a name to it in the "Object name" attribute. You can enter a
static text in the "Object text" attribute. Enter a function code for the pushbutton in the
"Function code" attribute. This is placed in the OK_CODE field automatically when the user
chooses the pushbutton on the screen.

Activate the OK_CODE field on the screen by assigning a name to the OK_CODE field object
in the Screen Painter field list and creating a field in your ABAP program that has the same
name. You m,ust give the field a name in the element list of the Screen Painter, then declare an
identically-named field in the ABAP program with reference to the system field sy-ucomm.

n When the user chooses a function on the screen, the system places the corresponding function code
into the OK_CODE field. You can then query the field and use the result to trigger the appropriate
processing block.

n Pushbuttons have a function code and a function type.

n If the user chooses a pushbutton that has the function type ' ', the PAI event is processed. The system
places the function code that has been triggered into the OK_CODE field, which you can then query
in the module.

n If the user chooses a pushbutton whose function has the function type "E", the system processes a
module with the addition AT EXIT-COMMAND. This happens before the automatic field transport
and the field input checks. The system places the function code that has been triggered into the
OK_CODE field, which you can then query in the module.

n After the AT EXIT-COMMAND module, the system continues processing the screen normally (field
input checks, followed by PAI processing).

Unit: Screen Elements for Input/Output

Theme: Input/output fields on screens, input help, mode
selection using a radio button group

At the conclusion of these exercises, you will be able to:

• Create input/output fields for screens

• Make input checks

• Use input helps in your programs

• Create radio button groups and program the relevant logic

• Make dynamic changes to screens.

• Add input/output fields to your program for flight information. When
the user arrives on the screen, it should display data for the line that
he or she chose. The Airline, flight number, and flight date fields
should be ready for input.

• Support the user by checking the entries and providing input help.

• Allow the use to switch between different program modes. These are:

• Display mode

• Flight data maintenance mode (the user can change the aircraft type)

• Maintain bookings (you will use this later)

• The current mode should be indicated in the title. If the user changes
the aircraft type, he or she should be able to save the changed value.
If this is the case, you must update the basic list.

• Additional task: Use a standard dialog to warn the user if data will
be lost when he or she leaves the screen. You should also provide the
opportunity at this point to save the data.

7-1 Add the input/output fields to the screen, implement the input checks, and extend
the navigation options on the screen to include the Cancel and Exit functions.

7-1-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410DIAS_DYNPRO). You can use the
model solution SAPBC410INPS_INPUT_FIELD for orientation.

7-1-2 Copy the ABAP Dictionary structure SDYN_CONN00 to the structure
ZDYN_CONN##. (## is your group number). Use the TABLES statement
to create a structure with the same name (for transporting data between the
program and the screen).

7-1-3 Create the following fields on the screen. Use the facility for using fields
from the ABAP Dictionary.

Screen 100 I/O fields, text fields:
ZDYN_CONN##
 -CARRID
 -CONNID
 -FLDATE

For each field: Input: on
Output: On
Required: On

 I/O fields, text fields:
ZDYN_CONN##
 -PRICE
 -CURRENCY
 -PLANETYPE
 -SEATSMAX
 -SEATSOCC
 -PAYMENTSUM

For each field: Input: Off
Output: On

7-1-4 In the PBO event of screen 100, call a module get_sflight_data. Create the
module using forward navigation. Copy the relevant fields of your work
area wa_sflight into your screen data transfer structure zdyn_conn##
Ensure that all of the required fields have been restored from the hide area.

7-1-5 Check the combination of airline, flight number, and flight date if the user
changed any of these details. To do this, try to read the corresponding data
record from table SFLIGHT, and analyze the return code sy-subrc. If the
data record does not exist, display message 007 from class BC410 as an
error message. Make sure that the fields are ready for input again. If the
input checks are successful, update the ABAP work area wa_sflight.

7-1-6 Assign the function codes EXIT and CANCEL to the standard keys Shift-F3
(exit) and F12 (cancel). Ensure that these functions are processed before the
automatic input checks. If the user chooses Exit, leave the program. If, on
the other hand, the user chooses Cancel, return to the basic list, but without
checking the field values. In the case of Cancel, remember to initialize the
OK_CODE field.

7-2 Make the user’s job easier by providing input help.

7-2-1 Extend your program Z##BC410_SOLUTION from the previous exercise
or copy the corresponding model solution
SAPBC410INPS_INPUT_FIELD. You can use the model solution
SAPBC410INPS_HELP_FOR_INPUT for orientation.

7-2-2 On screen 100, set the Dropdown attribute to List box for the input/output
field zdyn_conn##-carrid. Make sure that the program attribute Value list
is set to ‘ ’ (from ABAP Dictionary).

7-2-3 In the ABAP Dictionary, attach the search help SDYN_CONN_CONNID to
the field zdyn_conn##-connid and the search help
SDYN_CONN_FLDATE to the field zdyn_conn##-fldate.

7-2-4 Test the input help to see if it is context-sensitive.

7-3 Create a radio button group to allow the user to choose one of a range of program
modes.

7-3-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410INPS_HELP_FOR_INPUT). You

can use the model solution SAPBC410INPS_RADIOBUTTON_GROUP
for orientation.

7-3-2 On screen 100, create a radio button group with the buttons view,
maintain_flights, and maintain_bookings. Make sure that the function
code MODE (with type ‘ ’) is triggered when the user chooses a different
mode. Create a group box around the radio button group called frame and
assign it the text “Mode”. Declare the relevant data fields in your top
include.

7-3-3 Set the GUI title according to the mode chosen by the user.

7-3-4 Program the Maintain flight data mode. In this mode, the input/output field
zdyn_conn##-planetype should be ready for input. Assign the
modification group ADM to the field, and create a module modify_screen
to make the corresponding dynamic screen modification.
If the user enters a new aircraft type, check whether the number of seats
booked is greater than the maximum number of seats. To do this, update the
field zdyn_conn##-seatsmax from table SAPLANE. If an error occurs,
display message 109 from class BC410 as an error message. If an error
occurs, transport the maximum number of seats back to the screen.

7-3-5 Assign the function code SAVE (function type ‘ ’) to the standard key Ctrl-
S. If the user chooses this function, save the new data record in the
database. To do this, write a subroutine update_sflight containing a direct
database update in the form:

UPDATE sflight FROM wa_sflight.
 IF sy-subrc = 0.
 CLEAR dataloss.
 MESSAGE s009(bc410).
 ELSE.
 MESSAGE a008(bc410).
 ENDIF.

(This process would normally use a suitable SAP lock, but we have omitted it here
for simplicity.)

7-3-6 Ensure that the basic list is updated if the user has changed the aircraft type.
To do this, use the subroutine read_flights to read the data from the database
and then use the subroutine display_flights to display the list again at list
level 0.

7-4 Additional task:
7-4-1 Use the function modules popup_to_confirm_step and
popup_to_confirm_loss_of_data to ensure that the user cannot
inadvertently lose his or her changes by leaving the screen. Use the system
field sy-datar. You can use it in the AT EXIT-COMMAND module to find
out whether the user changed data on the current screen. You will also need
a flag of your own- call it dataloss.

Unit: Screen Elements for Input/Output

Theme: Input/output fields on screens, input help, mode
selection using a radio button group

7-1 Model solution SAPBC410INPS_INPUT_FIELDS
Add the coding in bold type to your program. Create the new modules and subroutines using
forward navigation.

--

Flow logic for screen 100

PROCESS BEFORE OUTPUT.

MODULE status.

MODULE get_sflight_data.

PROCESS AFTER INPUT.

MODULE exit AT EXIT-COMMAND.

CHAIN.

FIELD: sdyn_conn00-carrid,

sdyn_conn00-connid,

sdyn_conn00-fldate MODULE check_sflight ON CHAIN-REQUEST.

ENDCHAIN.

MODULE save_ok_code.

MODULE user_command_100.

--

Top include

structures for dynpro processing

TABLES SDYN_CONN00.

--

PBO module include

&---

*& Module GET_SFLIGHT_DATA OUTPUT

&---

MODULE get_sflight_data OUTPUT.

MOVE-CORRESPONDING wa_sflight TO sdyn_conn00.

ENDMODULE. " GET_SFLIGHT_DATA OUTPUT

--

PAI module include
&---

*& Module CHECK_SFLIGHT INPUT

&---

MODULE check_sflight INPUT.

CHECK sdyn_conn00-carrid NE wa_sflight-carrid

OR sdyn_conn00-connid NE wa_sflight-connid

OR sdyn_conn00-fldate NE wa_sflight-fldate.

SELECT SINGLE * INTO wa_sflight FROM sflight

WHERE carrid = sdyn_conn00-carrid

AND connid = sdyn_conn00-connid

AND fldate = sdyn_conn00-fldate.

CHECK sy-subrc NE 0.

MESSAGE e007(bc410).

ENDMODULE. " CHECK_SFLIGHT INPUT

&---

*& Module EXIT INPUT

&---

MODULE exit INPUT.

CASE ok_code.

WHEN 'CANCEL'.

CLEAR ok_code.

LEAVE TO SCREEN 0.

WHEN 'EXIT'.

LEAVE PROGRAM.

ENDCASE.

ENDMODULE. " EXIT INPUT

7-3 Model solution SAPBC410INPS_RADIOBUTTON_GROUP
Add the coding in bold type to your program. Create the new modules using forward
navigation.

--

Flow logic for screen 100

PROCESS BEFORE OUTPUT.

MODULE status.

MODULE get_sflight_data.

MODULE modify_screen.

PROCESS AFTER INPUT.

MODULE exit AT EXIT-COMMAND.

...

CHAIN.

FIELD: sdyn_conn-planetype,

sdyn_conn-seatsmax MODULE check_planetype ON CHAIN-REQUEST.

ENDCHAIN.

MODULE trans_from_100.

MODULE save_ok_code.

MODULE user_command_100.

--

Top include
fields for mode choice

DATA: view VALUE 'X', maintain_flights, maintain_bookings,

mode(20).

flags for update

DATA: planetype_changed.

--

Event include

AT LINE-SELECTION.

CALL SCREEN 100.

update list of flights if necessary

IF NOT PLANETYPE_CHANGED IS INITIAL.

CLEAR PLANETYPE_CHANGED.

PERFORM READ_FLIGHTS.

PERFORM DISPLAY_FLIGHTS.

SY-LSIND = SY-LSIND - 1.

ENDIF.

--

Subroutine include
&---

*& Form UPDATE_SFLIGHT

&---

FORM update_sflight.

UPDATE sflight FROM wa_sflight.

IF sy-subrc = 0.

MESSAGE s009(bc410).

ELSE.

MESSAGE a008(bc410).

ENDIF.

ENDFORM. " UPDATE_SFLIGHT

--

PBO module include

MODULE status OUTPUT.

SET PF-STATUS 'STATUS_100'.

CASE 'X'.

WHEN view.

mode = 'view'(m01).

WHEN maintain_flights.

mode = 'maintain flights'(m02).

WHEN maintain_bookings.

mode = 'maintain bookings'(m03).

ENDCASE.

SET TITLEBAR 'TITLE_100' WITH mode.

ENDMODULE. " STATUS OUTPUT

&--

*& Module MODIFY_SCREEN OUTPUT

&--

MODULE modify_screen OUTPUT.

CHECK NOT maintain_flights IS INITIAL.

LOOP AT SCREEN.

CHECK screen-group1 = 'ADM'.

screen-input = 1.

MODIFY SCREEN.

ENDLOOP.

ENDMODULE. " MODIFY_SCREEN OUTPUT

--

PAI module include
MODULE user_command_100 INPUT.

CASE save_ok.

WHEN 'BACK'.

...

WHEN 'SAVE'.

PERFORM update_sflight.

ENDCASE.

ENDMODULE. " USER_COMMAND INPUT

&---

*& Module CHECK_PLANETYPE INPUT

&---

MODULE check_planetype INPUT.

CLEAR planetype_changed.

SELECT SINGLE seatsmax INTO sdyn_conn-seatsmax FROM saplane

WHERE planetype = sdyn_conn-planetype.

planetype_changed = 'X'.

CHECK sdyn_conn-seatsmax < sdyn_conn-seatsocc.

MESSAGE e109(bc410).

ENDMODULE. " CHECK_PLANETYPE INPUT

&---

*& Module TRANS_FROM_100 INPUT

&---

MODULE trans_from_100 INPUT.

MOVE-CORRESPONDING sdyn_conn TO wa_sflight.

ENDMODULE. " TRANS_FROM_100 INPUT

7-4 Model solution SAPBC410INPS_RADIOBUTTON_GROUP
Add the coding in bold type to your program. Create the new modules using forward
navigation.

--

Top include
flags for update

DATA: planetype_changed, dataloss.

--

Subroutine include

FORM update_sflight.

UPDATE sflight FROM wa_sflight.

IF sy-subrc = 0.

CLEAR dataloss.

MESSAGE s009(bc410).

ELSE.

MESSAGE a008(bc410).

ENDIF.

ENDFORM. " UPDATE_SFLIGHT

--

PAI module include

MODULE user_command_100 INPUT.

CASE save_ok.

WHEN 'BACK'.

IF dataloss IS INITIAL.

LEAVE TO SCREEN 0.

ELSE.

CALL FUNCTION 'POPUP_TO_CONFIRM_STEP'

EXPORTING

textline1 = text-e05

titel = text-e06

IMPORTING

answer = answer.

CASE answer.

WHEN 'J'. " J = Yes

PERFORM update_sflight.

... release database locks

LEAVE TO SCREEN 0.

WHEN 'N'. " N = No

CLEAR dataloss.

LEAVE TO SCREEN 0.

ENDCASE.

ENDIF.

...

WHEN 'SAVE+EXIT'.

PERFORM update_sflight.

LEAVE PROGRAM.

ENDCASE.

ENDMODULE. " USER_COMMAND INPUT

MODULE exit INPUT.

IF sy-datar IS INITIAL AND dataloss IS INITIAL.

CASE ok_code.

WHEN 'CANCEL'.

CLEAR ok_code.

LEAVE TO SCREEN 0.

WHEN 'EXIT'.

LEAVE PROGRAM.

ENDCASE.

ELSE.

CASE ok_code.

WHEN 'EXIT'.

CALL FUNCTION 'POPUP_TO_CONFIRM_STEP'

EXPORTING

textline1 = text-e01

titel = text-e02

IMPORTING

answer = answer.

CASE answer.

WHEN 'J'. " J = Yes

Do not save here, but during "normal" ok-code processing.

Remember that all screen checks will be executed after this

module. Saving and LEAVE TO SCREEN 0 must be coded after all checks!

ok_code = 'SAVE+EXIT'.

WHEN 'N'. " N = No

... release all database locks

LEAVE PROGRAM.

WHEN OTHERS. " Cancel cancelled :-)

CLEAR ok_code.

ENDCASE.

WHEN 'CANCEL'.

CALL FUNCTION 'POPUP_TO_CONFIRM_LOSS_OF_DATA'

EXPORTING

textline1 = text-e03

titel = text-e04

IMPORTING

answer = answer.

IF answer = 'J'. " J = Yes

Release all database locks

CLEAR dataloss.

CLEAR ok_code.

LEAVE TO SCREEN 0.

ENDIF.

ENDCASE.

ENDIF.

ENDMODULE. " EXIT INPUT

MODULE check_planetype INPUT.

CLEAR planetype_changed.

SELECT SINGLE seatsmax INTO sdyn_conn-seatsmax FROM saplane

WHERE planetype = sdyn_conn-planetype.

planetype_changed = 'X'.

dataloss = 'X'.

CHECK sdyn_conn-seatsmax < sdyn_conn-seatsocc.

MESSAGE e109(bc410).

ENDMODULE. " CHECK_PLANETYPE INPUT

 SAP AG 1999

l Subscreens

l Tabstrip controls

Contents:

Screen Elements: Subscreens and Tabstrip Controls

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n A subscreen area is a reserved rectangular area on a screen, into which you place another screen at
runtime. Subscreen areas may not contain any other screen elements. To use a subscreen, you create
a second screen (with the type subscreen), and display it in the subscreen area you defined on the
main screen.

n A subscreen is an independent screen that you display within another screen. You may want to use a
subscreen as a way of displaying a group of objects in certain circumstances, but not in others. You
can use this technique to display or hide extra fields on the main screen, depending on the entries the
user has made.

n A second use for subscreens is that different programs can use the same subscreens. To do this, you
must execute other screen programs within your main program.

n You can include more than one subscreen on a single main screen. You can also determine the
subscreens dynamically at runtime.

n You can use subscreens in the following circumstances:

­ In screen enhancements (screen exits),

­ Within other screen objects (tabstrip control)

­ In the Modification Assistant

­ In Web transactions.

n If the subscreen is larger than the subscreen area in which it is called, the system only displays as
much of it as will fit onto the screen. However, you can use the Scrollable attribute to ensure that, if
the screen is too big, the system will display scrollbars.

n The resizing attributes control whether the size of a subscreen area can be changed vertically and
horizontally. You should set these attributes if you want the size of the subscreen area to change with
the size of the whole window. You can use the minimum size attribute to set a lower limit beyond
which the subscreen area cannot be resized.

n The Context menu attribute allows you to assign a context-sensitive menu to the output fields on the
subscreen screen.

n The following restrictions apply to subscreens:

CALL SUBSCREEN ... is not allowed between LOOP and ENDLOOP or between
CHAIN and ENDCHAIN.

A subscreen may not have a named OK_CODE field.

Object names must be unique within the set of all subscreens called in a single main screen.

Subscreens may not contain a module with the AT EXIT-COMMAND addition.

You cannot use the SET TITLEBAR, SET PF-STATUS, SET SCREEN, or LEAVE
SCREEN statements in the modules of a subscreen.

n To create a subscreen area, choose subscreen from the object list in the Screen Painter and place it on
the screen. Fix the top-left hand corner of the table control area, and then drag the object to the
required size.

n In the Object text field, enter a name for the subscreen area. You need this to identify the area when
you call the subscreen.

n To use a subscreen, you must call it in both the PBO and PAI sections of the flow logic of the main
screen. The CALL SUBSCREEN <subarea> statement tells the system to execute the PBO and
PAI processing blocks for the subscreen as components of the PBO and PAI of the main screen. You
program the ABAP modules for subscreens in the same way as for a normal screen (apart from the
restrictions already mentioned).

n If the subscreen is not in the same module pool as the "main program", the global data of the main
program is not available to the subscreen, and the data from the screen will not be transferred back to
the program. You must program the data transfer yourself (for example, using a function module that
exports and imports data, with an appropriate MOVE statement in the subscreen coding).

n If you want to use subscreens in the screens of several different programs, you should encapsulate
the subscreens in a function group and use function modules to transport data between the program
in which you want to use the subscreen and the function group.

n You can pass data between the calling program and the function group using the interfaces of the
function modules.

n This is the technique used for customer subscreens (screen enhancements).

n You use function modules to transport data between the calling program and the function group.

n To declare the data from the calling program to the subscreen of the function group, use a module
before the subscreen call. This should call a function module whose interface you can use to pass the
required data to the function group.

n The function module call must occur before the subscreen call. This ensures that the data is known in
the function group before the PROCESS BEFORE OUTPUT processing block of the subscreen is
called.

n In the PAI module of the calling screen, the sequence is reversed: You call the PROCESS AFTER
INPUT processing block of the subscreen before calling a function module to pass the data from the
function group back to the calling program.

n For the data from the calling program to be available globally in the function group, you must
transfer the interface parameters from the function module into global data fields of the function
group.

n The function module that you use to transfer the data from the calling program into the function
group must copy its interface parameters into the global data in the function group.

n The function module that you use to transfer data from the function group to the calling program
must copy the corresponding data from the global data of the function group into its interface
parameters.

n Tabstrip controls provide you with an easy, user-friendly way of displaying different components of
an application on a single screen and allowing the user to navigate between them. Their intuitive
design makes navigation much easier for end users.

n Tabstrip controls are a useful way of simplifying complex applications. You can use tabstrip
controls wherever you have different components of an application that form a logical unit. For
example, you might have a set of header data which remains constant, while underneath it, you want
to display various other sets of data.

n You should not use tabstrip controls if

You need to change the screen environment (menus, pushbuttons, header data, and so on) while
processing the application components. The screen surrounding the tabstrip must remain
constant.

The components must be processed in a certain order. Tabstrips are designed to allow users to
navigate freely between components.

The components are processed dynamically, that is, if user input on one tab page leads to other
tab pages suddenly appearing.

n Tabstrip controls are compatible with batch input processing.

n A tabstrip control consists of individual pages. These consist of the page area and the tab title.

n The tab may only have one row of tab titles.

n If the tabstrip control contains too many pages, it will not be possible for all of the tab titles to be
displayed at once. If this happens, the system displays a scrollbar with which you can scroll through
the remaining tab pages. In the top right-hand corner of the tab is a pushbutton. If the user clicks this,
a list of all of the tab titles is displayed. The active tab title is marked with a tick.

n A tab page consists of a tab title, a subscreen area, and a subscreen.

n From a technical point of view, the system handles tab titles like pushbuttons.

n The contents of tab pages are displayed using the subscreen technique. You assign a subscreen area
to each tab page, for which you can then call a subscreen.

n As well as the general "Object name", "Starting position" and static size attributes, tabstrip controls
also have special tabstrip attributes.

n For details of these special attributes, see the section on subscreen attributes.

n You create a tabstrip control in the following three steps:

­ Define the tab area

­ Define the tab titles and, if necessary, add further tab titles

­ Assign a subscreen area to each tab page.

n To create a tabstrip area, choose Tabstrip from the object list in the Screen Painter and place it on the
screen. Fix the top-left hand corner of the table control area, and then drag the object to the required
size.

n Assign a name to the tabstrip control in the "Object name" attribute. You need this name to identify
your tabstrip control.

n In your ABAP program use the CONTROLS statement to declare an object with the same name. Use
TABSTRIP as the type.

n The type TABSTRIP is defined in the type pool CXTAB. The field ACTIVETAB contains the
function code of the tab title of the currently active tab page. The other fields are reserved for
internal use.

n The default number of tab pages for a tabstrip control is two.

n Technically, tab titles are treated in the same way as pushbuttons. They have an object name, a text,
a function code, and a function type. You enter these in the "Object name", "Object Text", "FctCode"
and "FctType" fields of the object attributes.

n A tab title can have the function type ' ' (space) or 'P'. If the function type is ' ' (space), the PAI
processing block is triggered when the user chooses that tab, and the function code of the tab title is
placed in the OK_CODE field. If the function type is 'P', the user can scroll between the different tab
pages with the same type without the PAI processing block being triggered. For further details, refer
to the following pages.

n If you want your tabstrip control to have more than two pages, you must create further tab titles. To
do this, choose Pushbutton from the object list in the Screen Painter and place it in the tab title area.

n You must assign a subscreen area to each tab page.

n The subscreen area assigned to a tab page is automatically entered as the "Reference object" (in the
Dictionary attributes) for the tab title of that page.

n To assign a subscreen area to one or more tab pages, choose the relevant tab title in the fullscreen
editor, choose the Subscreen object, and place it on the tab page.

n Alternatively, you can assign a single subscreen area to several tab pages by entering the name of the
subscreen area directly in the "Reference object" field of the attributes of the relevant tab pages.

n If you have assigned a different subscreen area to each tab page in a tabstrip control, you can scroll
between the pages locally at the frontend.

n To do this, you must send all of the subscreens to the front end when you send the main screen itself.
All of the tab titles in the tabstrip control must also have function type 'P'.

n Now, when you scroll between the different tab pages, there is no communication between the
presentation server and the application server.

n When the user chooses a function on the screen that triggers PAI processing, the system processes
the PAI blocks of all of the subscreens as well. This means that all of the field checks are run. In
this respect, you could regard the tabstrip control as behaving like a single large screen.

n Local scrolling in tabstrip controls is more appropriate for display transactions.

n To program a tabstrip control to scroll locally at the front end, you must:

­ Assign a separate subscreen area to each tab page; a subscreen will be sent to each of these
when the screen is processed.

­ Call all of the subscreens from the flow logic.

­ Assign function code type 'P' to all of the tab titles.

n The system hides any tab page whose subscreen contains no elements that can be displayed.

n If there are no tab pages containing elements that can be displayed, the system hides the entire
tabstrip control.

n For further information about tabstrip controls, follow the appendix documentation path SUB-2.

n If all of the tab pages share a single subscreen area, the program analyzes the function code of the
chosen tab title to determine which screen is displayed.

n There are two steps in this process:

­ In the PAI processing block, the program determines which tab page needs to be active, based
on the tab title chosen by the user.

­ When the PBO processing block is processed again, the program displays the corresponding
screen.

n During this process, the system only checks the fields of the subscreen that is actually displayed.

n If you want the application program to process scrolling in a tabstrip control,

­ All of the tab pages must share a common subscreen area

­ All of the tab titles must have the function code type ' ' (space), and

­ In the flow logic, you must use a variable to call the screen that is to be displayed in the
subscreen area.

n In the PAI block, you must call a module in which the function code of the active tab title is placed
in the field ACTIVETAB of the structure you created in your program with type TABSTRIP. In the
example above, this is MY_TAB_STRIP.

n The PBO processing block must contain a module, before the subscreen is called, in which you place
the number of the subscreen in the corresponding variable. In order for the screen to be processed the
first time (before the user has had a chance to choose a tab title), you must assign an initial value to
this field.

n You can hide a tab page at runtime by setting the corresponding tab title to inactive using the system
table SCREEN (SCREEN-ACTIVE = '0'). You should do this before processing the tabstrip
control for the first time, to ensure that the screen environment remains constant.

n You can now create tabstrip controls on selection screens. They allow you to create logical groups
of fields, and make large selection screens more user-friendly.

n The following requirements must be met if you are to use selection screens with tabstrip controls in
your R/3 System:

•GUI version 4.0 or higher

•Frontend: Motif, Windows 95, MacOs, NT 3.51 or higher.

n For a selection screen with tabstrips, you must define:

•A subscreen area on the selection screen to accommodate the tabstrip control

•The individual tab titles

•Selection screens as subscreens for the individual tab pages

n Since it is possible to define selection screens as subscreens, you can include selection fields that you
create in this way in any other screens. Selection screens as subscreens are processed similarly to
other screens.

n You define a selection screen as a subscreen as follows:
SELECTION-SCREEN BEGIN OF SCREEN <scrn> AS SUBSCREEN
 [NESTING LEVEL <m>] [NO INTERVALS].
 ...
SELECTION-SCREEN END OF SCREEN <scrn>.
Optional additions: [NESTING LEVEL <m>]. Each box around a tabstrip control increases the
 NESTING LEVEL by one.
 [NO INTERVALS]. This option hides the HIGH fields for any selection
 criteria defined using SELECT-OPTIONS on the screen.

n You define a subscreen area for a tabstrip control on a selection screen as follows: SELECTION-
SCREEN BEGIN OF TABBED BLOCK <blockname> FOR <n> LINES.
SELECTION-SCREEN END OF BLOCK <blockname>.
The size of the subscreen area in lines is defined by <n>.

n The system automatically generates a CONTROLS statement (CONTROLS:
TABSTRIP_BLOCKNAME TYPE TABSTRIP.) You must not write your own CONTROLS
statement. If you try to do so, a syntax error results.

n You define the individual tab pages as follows:
SELECTION-SCREEN TAB (length) <name> USER-COMMAND <ucomm> [DEFAULT
[PROGRAM <prog>/SCREEN <dynnr>]].
Optional additions: [DEFAULT [PROGRAM <prog>/SCREEN <dynnr>]].
Assign the selection screen to a tab page. If you use the DEFAULT addition, you must also use the
SCREEN addition. The PROGRAM addition is optional. You only need it if the screen comes from
another program.

n You can delay specifying the link between the tab title and the selection screen until runtime. You
can also change an existing assignment at runtime. To do this, fill the structure blockname. This is
created automatically for every tabstrip block. The structure has the same name as the tabstrip block,
and contains the fields PROG, DYNNR, and ACTIVETAB. For further information, refer to the online
documentation in appendix reference SUB-2.

n If you define a selection screen as a subscreen, you can display it on a normal screne or in a tabstrip
control that is embedded in a normal screen.

n All you need to do is define the selection screen as a subscreen with the relevant selection options
and input parameters. You can then define a subscreen area on the screen and embed the subscreen
screen in it, by calling the subscreen screen in the PBO event and, if necessary, in the PAI event as
well.

Unit: Subscreen and Tabstrip Control

Theme: Creating subscreens and tabstrip controls

At the conclusion of these exercises, you will be able to:

• Use subscreens and tabstrips on screens and selection screens in your
programs

Display additiona l information on your screen, depending on the mode in
which the user is working.
Extend the display to allow users to switch between the additional
information using a tabstrip control.

8-1 Extend the “Flight data” screen (100) to display flight information and the aircraft
type. Use a subscreen to do this.

8-1-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410DIAS_DYNPRO). You can use the
model solution SAPBC410SUBS_SUBSCREEN for orientation.

8-1-2 On the “Flight data” screen (100), create a subscreen area with the following
attributes:

Subscreen SUB Attributes:
Vert. And horiz. resizing:
On

8-1-3 Create two screens 110 and 120, each with the type subscreen and the
following attributes:

Screen 110 I/O fields, text fields:
ZDYN_CONN##
 - COUNTRYFROM
 - COUNTRYTO
 - CITYFROM
 - CITYTO
 - AIRPFROM
 - AIRPTO
 - DEPTIME
 - ARRTIME

For each field:
 Input: Off
Output: On

Screen 120 I/O fields, text fields:
SAPLANE
 - PLANETYPE

For each field:
 Input: Off
Output: ON

 - PRODUCER
 - SEATSMAX
 - TANKCAP
 - CAP_UNIT
 - WEIGHT
 - WEI_UNIT
 - OP_SPEED
 - SPEED_UNIT

Output only: On

8-1-4 a) In your TOP include, create a field DYNNR that you can use in the flow
logic to determine which subscreen should appear in the subscreen area.

8-1-5 Call the subscreen screens in the flow logic of screen 100. Before the call,
write a PBO module to determine which of the subscreens will appear. If
the user is in “Display” mode, call subscreen screen 110 with the flight
information. If the user is in “Maintain flight data” mode, call subscreen
screen 120 with the aircraft information.

8-1-6 In the flow logic of screen 110, read the flight information from table SPFLI
using the key field values.

8-1-7 In the flow logic for screen 120, read the information for the aircraft
information from table SAPLANE using the value you have for the aircraft
type.

8-2 Create a tabstrip control on screen 100 for displaying extra flight information and
details of the aircraft type.

8-2-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410SUBS_SUBSCREEN). You can
use the model solution SAPBC410SUBS_TABSTRIP for orientation.

8-2-2 Create the tabstrip control: Remove the subscreen area on screen 100 and
create a tabstrip control with the following attributes:

Tabstrip
control

Name:
MY_TABSTRIP

Attributes:
Vert. And horiz. resizing:
On

Pushbutton
(Tab title 1)

Name:
P1

Attributes:
Text: Display flight data
Function code: FC1
Function type: <blank>
Reference field: SUB

Pushbutton
(Tab title 2)

Name:
P2

Attributes:
Text: Display technical
data for aircraft
Function code: FC2

Function type: <blank>
Reference field: SUB

Pushbutton
(Tab title 3)

Name:
P3

Attributes:
Text: Maintain bookings
Function code: FC3
Function type: <blank>
Reference field: SUB

 In the TOP include of your program, create a data object for the tabstrip
control using the following statement:
CONTROLS MY_TABSTRIP ...

8-2-3 In the flow logic of screen 100, implement the call for the subscreen screen
in the tabstrip control.

8-2-4 Before calling the subscreen, write a PBO module in which you determine
which of the subscreens is to be called (regardless of the mode in which the
user is working). Additionally, determine which subscreen screen you want
to set the first time the screen is displayed, and assign the corresponding
function code to the field MY_TABSTRIP-ACTIVETAB.

8-2-5 Extend your function code processing for screen 100 to include scrolling
logic for the first two pages of the tabstrip control. Do this by assigning the
relevant value to MY_TABSTRIP-ACTIVETAB.

8-2-6 You will create the subscreen for the third tab page and program its
scrolling logic in a later exercise.

Unit: Subscreen and Tabstrip Control

Theme: Creating subscreens and tabstrip controls

8-1 Model solution SAPBC410SUBS_SUBSCREEN
Add the coding in bold type, and create new modules where appropriate using forward
navigation.

 SCREEN 100

PROCESS BEFORE OUTPUT.
 MODULE STATUS.
 MODULE GET_SFLIGHT_DATA.
 MODULE MODIFY_SCREEN.
 MODULE CHOOSE_SUBSCREEN_DYNPRO.
 CALL SUBSCREEN SUB INCLUDING SY-CPROG DYNNR.

PROCESS AFTER INPUT.
 ...
 MODULE USER_COMMAND_100.

 SCREEN 110

PROCESS BEFORE OUTPUT.
 MODULE GET_SPFLI.

PROCESS AFTER INPUT.

 SCREEN 120

PROCESS BEFORE OUTPUT.
 MODULE GET_SAPLANE.

PROCESS AFTER INPUT.

--
Module pool

Add the following to the ABAP program:

Top include

TABLES: sdyn_conn, saplane.
* screen for subscreen
DATA dynnr LIKE sy-dynnr.

PBO modules

&--
*& Module CHOOSE_SUBSCREEN_DYNPRO OUTPUT

&--
MODULE CHOOSE_SUBSCREEN_DYNPRO OUTPUT.
 CASE 'X'.
 WHEN VIEW.
 DYNNR = '0110'.
 WHEN MAINTAIN_FLIGHTS.
 DYNNR = '0120'.
 ENDCASE.
ENDMODULE. " CHOOSE_SUBSCREEN_DYNPRO OUTPUT

&--
*& Module GET_SPFLI OUTPUT
&--
MODULE GET_SPFLI OUTPUT.
 SELECT SINGLE * INTO CORRESPONDING FIELDS OF
 SDYN_CONN FROM SPFLI
 WHERE CARRID = WA_SFLIGHT-CARRID
 AND CONNID = WA_SFLIGHT-CONNID.
ENDMODULE. " GET_SPFLI OUTPUT

&--
*& Module GET_SAPLANE OUTPUT
&--
MODULE GET_SAPLANE OUTPUT.
 SELECT SINGLE * FROM SAPLANE
 WHERE PLANETYPE = WA_SFLIGHT-LANETYPE.
ENDMODULE. " GET_SAPLANE OUTPUT

8-2 Model solution SAPBC410SUBS_TABSTRIP
Add the coding in bold type, creating new modules where appropriate using forward
navigation.

 SCREEN 100

PROCESS BEFORE OUTPUT.
 MODULE STATUS.
 MODULE GET_SFLIGHT_DATA.
 MODULE MODIFY_SCREEN.
 MODULE FILL_DYNNR.
 CALL SUBSCREEN SUB INCLUDING SY-CPROG DYNNR.

PROCESS AFTER INPUT.
 ...
 MODULE USER_COMMAND_100.

--
Module pool

Add the following to your ABAP program:

Top include

* definition of tabstrip control structure
CONTROLS my_tabstrip TYPE TABSTRIP.

PBO modules

&---
*& Module FILL_DYNNR OUTPUT
&---
MODULE FILL_DYNNR OUTPUT.
 CASE MY_TABSTRIP-ACTIVETAB.
 WHEN 'FC1'.
 DYNNR = '0110'.
 WHEN 'FC2'.
 DYNNR = '0120'.
* WHEN 'FC3'.
* DYNNR = '0130'.
 WHEN OTHERS.
 MY_TABSTRIP-ACTIVETAB = 'FC1'.
 DYNNR = '0110'.
 ENDCASE.
ENDMODULE. " FILL_DYNNR OUTPUT

PAI modules

&---
*& Module USER_COMMAND INPUT
&---
MODULE USER_COMMAND_100 INPUT.
 CASE SAVE_OK.
 WHEN 'FC1' OR 'FC2'. "OR 'FC3'.
 MY_TABSTRIP-ACTIVETAB = SAVE_OK.

 ENDCASE.

ENDMODULE. " USER_COMMAND INPUT

 SAP AG 1999

l Table control overview

l Creating a table control

l Processing a table control

l Other techniques

Contents:

Screen Element: Table Controls

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n A table control is an area on the screen in which the system displays data in tabular form. It is
processed using a loop. The top line of a table control is the header line, which is distinguished by a
gray separator.

n Within a table control, you can use table elements, key words, templates, checkboxes, radio buttons,
radio button groups, and pushbuttons. A line may have up to 255 columns; each column may have a
title.

n You can display or enter single structured lines of data using a table control.

n Features:

­ Resizeable table for displaying and editing data.

­ The user or program can change the column width and position, save the changes, and reload
them later.

­ Check column for marking lines. Marked lines are highlighted in a different color.

­ Line selection: Single lines, multiple lines, all lines, and deselection

­ Column headings double as pushbuttons for marking columns.

­ Scrollbars for horizontal and vertical scrolling.

­ You can fix any number of key (leading) columns.

­ Cell attributes are variable at runtime.

n Users can save display variants for table controls. These variants can be saved by each user, along
with the basic setting, as the current display setting or as the default display setting.

n The table control contains a series of attributes that are controlled entirely at the presentation server:
These are:

­ Horizontal scrolling using the scrollbar in the table control

­ Swapping columns

­ Changing column widths

­ Marking columns

­ Marking lines

n The PAI processing block is triggered when you scroll vertically in the table control or save the user
configuration.

n As well as the normal "Object name", "Start position on screen" and "Static size" attributes, table
controls also have special table control attributes.

n The "Special table control attributes" determine the table type and display options for a table control,
as well as whether it can be configured by the user. The fields stepl and loopc of structure syst
contain information about the loop processing used with table controls (see following pages).

n For further information about the static attributes, refer to the online documentation.

n For more information about the dynamically changeable attributes, refer to the online documentation
in appendix reference TAB-1.

n When you create a table control, you must create:

­ A table control area.

­ Table control fields.

n To create a table control area, choose the table control object from the object list in the Screen
Painter and place it in the screen work area. Fix the top-left hand corner of the table control area, and
then drag the object to the required size.

n In the "Object name" attribute, assign a name to your table control. In the ABAP program, declare a
structure with the same name, containing the dynamically changeable attributes of the table control.

n The CONTROLS statement declares a complex data object with the type TABLEVIEW
(corresponding to the type CXTAB_CONTROL, declared in type group CXTAB in the ABAP
Dictionary). At runtime, the data object (my_control) contains the static attributes of the table
control.

n You maintain the initial values (static attributes) in the Screen Painter. The USING SCREEN
addition in the CONTROLS statement determines the screen whose initial values are to be used for
the table control.

n You can reset a table control to its initial attributes at any time using the statement REFRESH
CONTROL <ctrl> FROM SCREEN <scr>. <scr> does not have to be the same as the initial
screen of the table control.

n You create fields in a table control using the Dict./Program fields function. This involves the
following steps:

­ Enter the name of the structure whose fields you want to use in the table control and press
ENTER.

­ In the field list, choose the fields that you want to use and choose OK.

­ Position the cursor in the table control area and click the left mouse button.

The system places all of the selected fields in the table control. If the fields have data element
texts, the system uses these as column headings.

n Alternatively, you can position individual input/output fields in the table control area, each of which
generates a single column.

n When you create a table control, the system automatically proposes one with a selection column.

n The selection column behaves like a checkbox. It must therefore be a field with length 1 and data
type CHAR. You must enter the field name in the attributes of the table control.

n The selection column is a field of the structure used for transport between the screen and the ABAP
program.

n The runtime attributes of a table control, which are stored in the structure declared using the
CONTROLS statement, can be divided into general attributes and column attributes.

n The general attributes contain information about the attributes of the table control as a whole, such
as, for example, the number of fixed columns.

n The column attributes are stored in an internal table (one entry per column of the internal table).
For each column, it maintains the attributes stored in the structure SCREEN, plus the special table
control column attributes column position, a selection and a visibility flag, and a field for the
displayed width.

n For information about the names of the attributes and their precise meanings, refer to the keyword
documentation in the ABAP Editor for the CONTROLS statement (then choose Tableview ->
CXTAB_CONTROL), and the online documentation in appendix reference TAB-1.

n You can change a table control dynamically by modifying the contents of the fields in the table
control structure declared in your program.

n The fields of the table control structure also provide information about user interaction with the table
control. For example, you can use the selected field to determine whether the user has selected a
particular column.

n For performance reasons, you read the data for the table control once from the database and store it
in an internal table using an array fetch.

n The system fills the table control lines from this internal table.

n Before you can display data from an internal table in a table control, you must first fill the table.
Make sure that you do not fill the internal table in every PBO event, but only when the key fields
change (in the above example, airline and flight number).

n For the table control processing, you need to know how far the user can scroll vertically (the size of
the internal table). You should therefore use the DESCRIBE TABLE statement to find out the
number of entries in the internal table, and save this in the LINES field of the table control.

n There is only one work area for processing lines in the table control. For this reason, you need a
LOOP … ENDLOOP. structure in both the PBO and PAI events for each table control.

n In the PBO processing block, you must fill one line of the table control with the corresponding line
from the internal table in each loop pass.

n Similarly, in the PAI processing block, you must pass the changes made in the table control back to
the correct line of the internal table.

n When you process functions, you must distinguish between those that should only apply to
individual lines of a table control, and those that should apply to the entire screen.

n There are three steps involved in displaying buffered data from the internal table in the table control:

­ The system loops through the lines of the table control. The lines of the screen table are
processed one by one. For each line, the system carries out the following steps:

The current line of the internal table is placed in the work area of the internal table. (Note that it
is possible to scroll in the table on the screen.)

The data from the work area of the internal table is copied into the relevant line of the table
control.

n When you use table controls on a screen, the field transport sequence changes.

n In the PBO processing block, data is transferred from the ABAP program to the screen after each
loop pass in the flow logic. The rest of the screen fields are filled, as normal, at the end of the PBO.

n The loop statement in the flow logic LOOP AT <itab> INTO <wa_itab> WITH CONTROL
<tc_name>
starts a loop through the screen table, and reads the line of the internal table corresponding to the
current line of the screen table, placing it in <wa_itab>.
<itab> is the name of the internal table containing the data, <wa_itab> is the name of the work
area for the internal table, and <tc_name> is the name of the table control on the screen.

n If the fields in your table control have the same structure and name as those in the work area
<wa_itab>, the system can transport data between the ABAP program and the screen
automatically (step 3).

n If you are not using the same structure for the table control fields and the work area of the internal
table, you must call a module between LOOP and ENDLOOP that moves the data from the work area
<wa_itab> into the screen fields (MOVE-CORRESPONDING <wa_itab> TO …) .

n The system calculates the value of <ctrl>-TOP_LINE when you scroll, but not when you scroll a
page at a time outside the table control.

n Transferring changed values from the table control back to the internal table involves the following
three steps:

­ The system loops through the lines of the table control. The lines of the screen table are
processed one by one. For each line, the system carries out the following steps:

The data from the current line of the table control is copied into the header line of the internal
table.

The data in the work area must then be placed in the line of the internal table corresponding to
the line of the table control that is being processed. (Note that it is possible to scroll in the table
on the screen.)

n In the PAI processing block, all screen fields that do not belong to a table control and that are not
listed in a FIELD statement are transported back to the work fields in the ABAP program first.

n The contents of the table control are transported line-by-line to the corresponding work area in the
ABAP program in the appropriate loop.

n Lastly, the fields that occur in FIELD statements are transported directly before the corresponding
statement.

n The LOOP AT <itab>. ... ENDLOOP block processes a loop through the lines of the table
on the screen.

n If the fields on your screen have the same names as the fields in the internal table, you must return
the data from the header line of the internal table to the body of the table itself. You do this using the
field <control>-current_line.

n If the fields on your screen do not have the same names as the fields in the internal table, you must
first copy the data into the header line of the internal table. You can then copy the data back into the
internal table itself. You can also use the field <control>-current_line to do this.

n You can modify the attributes of a table control by overwriting the field contents of the structure
created in the CONTROLS statement.

n To change the attributes of individual cells temporarily (!), change the table SCREEN in a PBO
module that you processes between LOOP and ENDLOOP in the flow logic (LOOP AT SCREEN,
MODIFY SCREEN).

n In the LOOP, the runtime system initializes the attributes set statically for the table control in the
Screen Painter. You can only change these in a module called from a loop through the table control.

n You can change a table control dynamically by modifying the contents of the fields of its structure.

n The fields of the table control structure also provide information about user interaction with the table
control. For example, you can use the selected field to determine whether the user has selected a
particular column.

n You can change a table control dynamically by modifying the contents of the fields of its structure.

n The fields of the table control structure also give you information about user interaction with the
table control. For example, you can use the selected field to determine whether the user has selected
a particular column.

n It is possible to change the attributes of table control fields temporarily. These changes are only
effective while the current screen is being processed.

n To do this, you call a module from within the table control loop in the flow logic, in which you
change the attributes of the current line.

n To change the attributes of the fields of a line in the table control, use a LOOP AT SCREEN. ...
ENDLOOP. block to loop through the fields of the current line. Within this loop, you can change the
attributes of the fie lds of the current line of the table control.

n You can easily sort the table control display by a particular column using the table control attribute
<ctrl>-selected and <ctrl>-screen-name

n You can scroll a page at a time in a table control using the table control attribute
<ctrl>-top_line.

n In the PAI processing block, you need to know the current number of lines in the corresponding table
control.

n The system field sy-loopc contains the number of table control lines in the PBO processing block.
However, in the PAI, it contains the number of filled lines.

n Sy-loopc is only filled between LOOP and ENDLOOP, since it always refers to the current loop.

n Note that you must catch any overflow or shortfall yourself (see processing above for 'F22').

n See also the function module SCROLLING_IN_TABLE.

n The LINE parameter in the GET or SET statement refers to the system field sy-stepl, the special
loop index in the flow logic.

n You calculate the internal table line that corresponds to the selected table control line as follows:
Line = <ctrl>-TOP_LINE + cursor position - 1.

n The GET CURSOR statement sets the return code as follows: sy-subrc = 0. The cursor was on a
field. sy-subrc = 4: The cursor was not positioned on a field.

n If you use a step loop on your screen, you can place the cursor on a particular element within the step
loop block. To do this, use the LINE parameter and enter the line on which the cursor should be
positioned: SET CURSOR FIELD <field_name> LINE <line>.

n You can also use the OFFSET and LINE parameters together.

Unit: Table control

Theme: Creating a table control

At the conclusion of these exercises, you will be able to:

• Use a table control and its processing logic in your program

On the third page of your tabstrip control, create a table control in which
you can maintain bookings for your flight.

9-1 For the third page of your tabstrip control, create a table control containing the
booking information for a flight.

9-1-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410SUBS_TABSTRIP). You can use
the model solution SAPBC410SUBS_TABLE_CONTROL1 for
orientation.

9-1-2 Create a subscreen screen 130: Call the subscreen screen for the third page
of your tabstrip control.

9-1-3 Creating the table control area:
On subscreen screen 130, create a table control with the following attributes:

 Table control Name:
MY_TABLE_CONTROL

Attributes:
Vert. And horiz. Resizing:
ON
Vert. and horiz. separators:
ON
Column selection: SINGLE
Line selection: MULTIPLE
Column headers: On
Configurable: ON
Selection column:
SDYN_BOOK-MARK
No. of fixed columns: 2

 Note: You cannot set the number of fixed columns attribute for the table
control until you have created all of its columns
In the TOP include, create a complex data object for the attributes of your
table control: CONTROLS: MY_TABLE_CON...

Creating the table control columns: Use the following structure fields to
create the columns in the table control:

Input/output
field
Text field
(in table
control)

Name:
SDYN_BOOK
 - BOOKID
 - CUSTOMID
 - CUSTTYPE
 - SMOKER
 - LUGGWEIGHT
 - WUNIT
 - INVOICE
 - CLASS
 - FORCURAM
 - FORCURKEY
 - LOCCURAM
 - LOCCURKEY
 - ORDER_DATE
 - COUNTER
 - AGENCYNUM

Attributes:
Input: Off
Output: On

Now enter the number of fixed columns in the table control attributes.

9-1-4 Declaring the internal table: In the TOP include of your program, create
an internal table IT_SDYN_BOOK. This will buffer the bookings that you
are going to display in the table control. Create the internal table with type
STANDARD and no header line. Declare a suitable work area for the internal
table. Use the line type SDYN_BOOK to declare both the internal table and
the work area.

9-1-5 Reading the data: In the flow logic of screen 130, create a PBO module in
which you read all of the bookings for the flight selected from the basic list
that have not been canceled. The data should only be read if the flight
selection from the basic list has changed. Include an appropriate query for
this in the module. The LINES field in your table control requires the
number of lines in your internal table. To find out the value, use the
DESCRIBE TABLE ... statement.

9-1-6 Implementing the table control: Program a loop for the table control in
both the PBO and PAI events of screen 130 (reads the entries in the internal
table). LOOP ... ENDLOOP. In the PBO loop, call a module to copy
data from the work area of the internal table into the screen fields In the PAI
loop, call a module to copy the data from the screen into the internal table.
The module should only be called for lines that have been selected on the
screen (FIELD ... MODULE ... ON REQUEST.).

Note: You can test whether your changes are transferred to and from the
screen properly by scrolling in the table control (selecting a line represents a
change). Select a line, then scroll down and up again in the table control. If
the selected entry is still selected after you have scrolled, your changes have
been copied correctly from the internal table to the table control.

9-2 Implement functions for canceling a booking, selecting all unmarked table control
lines, and deselecting all marked table control lines.

9-2-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410TABS_TABLE_CONTROL1).
You can use the model solution SAPBC410TABS_TABLE_CONTROL2
for orientation.

9-2-2 Creating Pushbuttons: Create the following pushbuttons on screen 130:

Pushbutton Name:
SELECT_ALL

Function code: SELE
Function type: <blank>
Icon: ICON_SELECT_ALL

Pushbutton Name:
DESELECT_ALL

Function code: DSELE
Function type: <blank>
Icon:
ICON_DESELECT_ALL

Pushbutton Name:
P_DELETE

Function code: DELE
Function type: <blank>
Icon: ICON_DELETE
Input: Off
Output: Off
Invisible: On

9-2-2 Implementing the functions: Extend the OK_CODE processing for screen
100 to implement cancellation function. The pushbutton for canceling a
booking should only appear if the user is in “Maintain bookings” mode. To
do this, create a PBO module for screen 130 in which you change the
attributes of pushbutton P_DELETE at runtime (LOOP AT SCREEN
...). Ensure that the function code for the “Maintain bookings” checkbox
is set to trigger PAI.
In the TOP include of your program, create a new internal table
IT_SDYN_BOOK_UPD with type STANDARD and no header line, as well as
a work area. Use the line type SBOOK to declare both the internal table and
the work area. Copy the selected entries from the internal table
IT_SDYN_BOOK into the table IT_SBOOK_UPD, copying the selection
column flag to the field CANCELLED. Pass both internal tables to the
function module BC_GLOBAL_UPDATE_BOOK. The function module
makes the database changes for table SBOOK and the resulting changes in
table SFLIGHT. Initialize the table IT_SDYN_BOOK_UPD and return to
the basic list. Ensure that the changed data is displayed on the basic list
straight away.

9-2-3 Extend the function code processing of screen 100 or 130 to include the
functions “Select all” and “Deselect all”.

9-3 In the table control, implement the functions “Scroll using standard toolbar” and
“Sort”.

9-3-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410TABS_TABLE_CONTROL2).
You can use the model solution SAPBC410TABS_TABLE_CONTROL3
for orientation.

9-3-2 Sorting the table control You can sort the table control by a selected
column as follows:
Creating Pushbuttons: Create the following pushbuttons on screen 130:

Pushbutton Name:
P_SRTU

Function code: SRTU
Function type: <blank>
Icon: ICON_SORT_UP

Pushbutton Name:
P_SRTD

Function code: SRTD
Function type: <blank>
Icon: ICON_SORT_DOWN

9-3-3 Implementing the functions: Extend the OK_CODE processing for screen
130 to implement the two sort functions. Use the table control structure
MY_TABLE_CONTROL to find out the column in the table control selected
by the user. You will need to write a loop for the internal table
MY_TABLE_CONTROL-COLS. This means that you will also need a work
area for MY_TABLE_CONTROL-COLS. Create this in the TOP include of
your program (suggested name: WA_COLS). ii) Use the fields
MY_TABLE_CONTROL-COLS-SELECTED and WA_COLS-SCREEN-
NAME to find out the name of the column selected by the user. Since the
field WA_COLS-SCREEN-NAME contains the name of the screen field
(SDYN_BOOK-<fname>), you will need to find out the field name using
an offset specification. Sort the internal table containing the data for the tree
control by the selected field in the chosen direction.

9-3-4 Scrolling in the table control (screen): You can allow the user to scroll
through a table control using pushbuttons as follows:
Creating the buttons in the standard toolbar: Assign the following
function codes to the functions in the standard toolbar:

Button in
standard
toolbar

Icon
First page

Function code: P--
Function type: <blank>

Button in
standard
toolbar

Icon
Previous page

Function code: P-
Function type: <blank>

Button in
standard
toolbar

Icon
Next page

Function code: P+
Function type: <blank>

Button in
standard
toolbar

Icon
Last page

Function code: P++
Function type: <blank>

9-3-5 Implementing the functions: Extend the OK_CODE processing for screen
100 to implement the scroll functions.
In order to scroll through the table control using pushbuttons, your program

needs to know how many lines can currently be displayed within the control
(if the screen is of variable size, the user may resize the control). The system
field SY-LOOPC contains this information between LOOP and ENDLOOP in
the PBO. Store this value in a global field in your program, which you
should declare in the TOP include (suggested name: LOOPLINES) in a
module between LOOP and ENDLOOP in the PBO processing of screen 130.
To find out the new value of MY_TABLE_CONTROL-TOP_LINE, use the
function module SCROLLING_IN_TABLE. Pass the value of the fields
MY_TABLE_CONTROL-TOP_LINE, MY_TABLE_CONTRL-LINES,
LOOPLINES and the function code of the scrolling pushbutton to the
function module. It returns the new value for MY_TABLE_CONTROL-
TOP_LINE.

Unit: Table control

Theme: Creating a table control

9-1 Model solution SAPBC410TABS_TABLE_CONTROL1
Add the coding in bold type, and create new modules where appropriate using forward
navigation.

 SCREEN 100
PROCESS BEFORE OUTPUT.
 MODULE STATUS.
 MODULE GET_SFLIGHT_DATA.
 MODULE MODIFY_SCREEN.
 MODULE FILL_DYNNR.
 CALL SUBSCREEN SUB INCLUDING SY-CPROG DYNNR.
*
PROCESS AFTER INPUT.
 MODULE EXIT AT EXIT-COMMAND.
 CHAIN.
 FIELD: SDYN_CONN-CARRID,
 SDYN_CONN-CONNID,
 SDYN_CONN-FLDATE MODULE CHECK_SFLIGHT
 ON CHAIN-REQUEST.
 ENDCHAIN.
 CHAIN.
 FIELD: SDYN_CONN-PLANETYPE,
 SDYN_CONN-SEATSMAX MODULE CHECK_PLANETYPE
 ON CHAIN-REQUEST.
 ENDCHAIN.
 MODULE TRANS_FROM_100.
 CALL SUBSCREEN SUB.
 MODULE SAVE_OK_CODE.
 MODULE USER_COMMAND_100.

 SCREEN 130

PROCESS BEFORE OUTPUT.
 MODULE GET_SBOOK.
 LOOP AT IT_SDYN_BOOK INTO WA_SDYN_BOOK
 WITH CONTROL MY_TABLE_CONTROL.
 MODULE MOVE_TO_DYNP.
 ENDLOOP.
*
PROCESS AFTER INPUT.
 LOOP AT IT_SDYN_BOOK.
 FIELD SDYN_BOOK-MARK MODULE UPDATE_ITAB ON REQUEST.
 ENDLOOP.
--

Module pool

Add the following coding to your ABAP program.

Top include

TABLES sdyn_book.
* workarea and internal table for table control
DATA: wa_sdyn_book TYPE sdyn_book,
 it_sdyn_book LIKE TABLE OF wa_sdyn_book.
* definition of table control structure
CONTROLS my_table_control TYPE TABLEVIEW
 USING SCREEN '0130'.

PBO module

&--
*& Module FILL_DYNNR OUTPUT
&--
MODULE FILL_DYNNR OUTPUT.
 CASE MY_TABSTRIP-ACTIVETAB.
 WHEN 'FC1'.
 DYNNR = '0110'.
 WHEN 'FC2'.
 DYNNR = '0120'.
 WHEN 'FC3'.
 DYNNR = '0130'.
 WHEN OTHERS.
 MY_TABSTRIP-ACTIVETAB = 'FC1'.
 DYNNR = '0110'.
 ENDCASE.
ENDMODULE. " FILL_DYNNR OUTPUT

&--
*& Module GET_SBOOK OUTPUT
&--
MODULE GET_SBOOK OUTPUT.
 IF SDYN_CONN-CARRID <> KEY_SFLIGHT-CARRID OR
 SDYN_CONN-CONNID <> KEY_SFLIGHT-CONNID OR
 SDYN_CONN-FLDATE <> KEY_SFLIGHT-FLDATE.

 MOVE-CORRESPONDING SDYN_CONN TO KEY_SFLIGHT.

 SELECT * INTO CORRESPONDING FIELDS OF TABLE
 IT_SDYN_BOOK FROM SBOOK
 WHERE CARRID = WA_SFLIGHT-CARRID
 AND CONNID = WA_SFLIGHT-CONNID
 AND FLDATE = WA_SFLIGHT-FLDATE
 AND CANCELLED = ' '.
 DESCRIBE TABLE IT_SDYN_BOOK LINES
 MY_TABLE_CONTROL-LINES.
 ENDIF.
ENDMODULE. " GET_SBOOK OUTPUT

&--
*& Module MOVE_TO_DYNP OUTPUT

&--
MODULE MOVE_TO_DYNP OUTPUT.
 MOVE-CORRESPONDING WA_SDYN_BOOK TO SDYN_BOOK.
ENDMODULE. " MOVE_TO_DYNP OUTPUT

PAI module

&--
*& Module USER_COMMAND INPUT
&--
MODULE USER_COMMAND_100 INPUT.
 CASE SAVE_OK.
 WHEN 'FC1' OR 'FC2' OR 'FC3'.
 MY_TABSTRIP-ACTIVETAB = SAVE_OK.
 ENDCASE.
ENDMODULE. " USER_COMMAND INPUT

&--
*& Module UPDATE_ITAB INPUT
&--
MODULE UPDATE_ITAB INPUT.
 MOVE SDYN_BOOK-MARK TO WA_SDYN_BOOK-MARK.
 MODIFY IT_SDYN_BOOK FROM WA_SDYN_BOOK INDEX
 MY_TABLE_CONTROL-CURRENT_LINE.
ENDMODULE. " UPDATE_ITAB INPUT

1-2 Model solution SAPBC410TABS_TABLE_CONTROL2
Add the coding in bold type, and create new modules where appropriate using forward
navigation.

 SCREEN 130

PROCESS BEFORE OUTPUT.
 MODULE MODIFY_BUTTON.
 MODULE GET_SBOOK.
 LOOP AT IT_SDYN_BOOK INTO WA_SDYN_BOOK
 WITH CONTROL MY_TABLE_CONTROL.
 MODULE MOVE_TO_DYNP.
 ENDLOOP.
*
PROCESS AFTER INPUT.
 LOOP AT IT_SDYN_BOOK.
 FIELD SDYN_BOOK-MARK MODULE UPDATE_ITAB ON REQUEST.
 ENDLOOP.
 MODULE USER_COMMAND_0130.
--

Module pool

Add the following coding to your ABAP program.

Top include

* workarea and internal table for update sbook
DATA: wa_sdyn_book_upd TYPE sbook,
 it_sdyn_book_upd LIKE TABLE OF wa_sdyn_book_upd.

* flag for update
DATA upd_flag.

PBO module

&--
*& Module MODIFY_BUTTON OUTPUT
&--
MODULE MODIFY_BUTTON OUTPUT.
 IF NOT MAINTAIN_BOOKINGS IS INITIAL.
 LOOP AT SCREEN.
 IF SCREEN-NAME = 'P_DELETE'.
 SCREEN-INVISIBLE = 0.
 ENDIF.
 MODIFY SCREEN.
 ENDLOOP.
 ENDIF.
ENDMODULE. " MODIFY_BUTTON OUTPUT

&--
*& Module GET_SBOOK OUTPUT
&--
MODULE GET_SBOOK OUTPUT.
 IF SDYN_CONN-CARRID <> KEY_SFLIGHT-CARRID OR
 SDYN_CONN-CONNID <> KEY_SFLIGHT-CONNID OR
 SDYN_CONN-FLDATE <> KEY_SFLIGHT-FLDATE OR
 UPD_FLAG = 'X'.

 MOVE-CORRESPONDING SDYN_CONN TO KEY_SFLIGHT.

 SELECT * INTO CORRESPONDING FIELDS OF TABLE
 IT_SDYN_BOOK FROM SBOOK
 WHERE CARRID = WA_SFLIGHT-CARRID
 AND CONNID = WA_SFLIGHT-CONNID
 AND FLDATE = WA_SFLIGHT-FLDATE
 AND CANCELLED = ' '.
 DESCRIBE TABLE IT_SDYN_BOOK LINES
 MY_TABLE_CONTROL-LINES.
 CLEAR UPD_FLAG.
 ENDIF.
ENDMODULE. " GET_SBOOK OUTPUT

PAI module

&--
*& Module USER_COMMAND INPUT
&--
MODULE USER_COMMAND_100 INPUT.
 CASE SAVE_OK.
 WHEN 'DELE'.
 PERFORM UPDATE_SBOOK.
 LEAVE TO SCREEN 0.
 ENDCASE.
ENDMODULE. " USER_COMMAND INPUT

&--
*& Module USER_COMMAND_0130 INPUT
&--
MODULE USER_COMMAND_0130 INPUT.
 CASE OK_CODE.
* WHEN 'DELE'. used in USER_COMMAND_0100 because of
* SET SCREEN
 WHEN 'DSELE'.
 LOOP AT IT_SDYN_BOOK INTO WA_SDYN_BOOK
 WHERE MARK = 'X'.
 WA_SDYN_BOOK-MARK = ' '.
 MODIFY IT_SDYN_BOOK FROM WA_SDYN_BOOK.
 ENDLOOP.
 WHEN 'SELE'.
 LOOP AT IT_SDYN_BOOK INTO WA_SDYN_BOOK
 WHERE MARK = ' '.
 WA_SDYN_BOOK-MARK = 'X'.
 MODIFY IT_SDYN_BOOK FROM WA_SDYN_BOOK.
 ENDLOOP.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0130 INPUT

FORM routines

&--
*& Form UPDATE_SBOOK
&--
FORM UPDATE_SBOOK.
* Check if entries have to be updated
 READ TABLE IT_SDYN_BOOK WITH KEY MARK = 'X'
 TRANSPORTING NO FIELDS.
 IF SY-SUBRC NE 0.
 MESSAGE S022.
* No update (no booking to cancel)
 LEAVE TO SCREEN 0.
 ENDIF.

* Copy cancelled bookings to update table
 LOOP AT IT_SDYN_BOOK INTO WA_SDYN_BOOK
 WHERE MARK = 'X'.
 MOVE-CORRESPONDING WA_SDYN_BOOK TO WA_SDYN_BOOK_UPD.

 MOVE WA_SDYN_BOOK-MARK TO WA_SDYN_BOOK_UPD-CANCELLED.
 APPEND WA_SDYN_BOOK_UPD TO IT_SDYN_BOOK_UPD.
 ENDLOOP.

* Call function for update table SBOOK.
 CALL FUNCTION 'BC_GLOBAL_UPDATE_BOOK'
 TABLES
 BOOKING_TAB = IT_SDYN_BOOK
 BOOKING_TAB_UPD = IT_SDYN_BOOK_UPD
 EXCEPTIONS
 OTHERS = 1.
 CLEAR: WA_SDYN_BOOK_UPD, IT_SDYN_BOOK_UPD.
 UPD_FLAG = 'X'.
ENDFORM. " UPDATE_SBOOK

Events

&--
*& Event AT LINE-SELECTION.
&--
AT LINE-SELECTION.
 CALL SCREEN 100.
* update list of flights if necessary
 IF NOT PLANETYPE_CHANGED IS INITIAL.
 CLEAR PLANETYPE_CHANGED.
 PERFORM READ_FLIGHTS.
 PERFORM DISPLAY_FLIGHTS.
 ELSEIF NOT UPD_FLAG IS INITIAL.
 PERFORM READ_FLIGHTS.
 PERFORM DISPLAY_FLIGHTS.
 ENDIF.
 SY-LSIND = SY-LSIND - 1.

1-3 Model solution SAPBC410TABS_TABLE_CONTROL3
Add the coding in bold type, and create new modules where appropriate using forward
navigation.

 SCREEN 130

PROCESS BEFORE OUTPUT.
 MODULE MODIFY_BUTTON.
 MODULE GET_SBOOK.
 LOOP AT IT_SDYN_BOOK INTO WA_SDYN_BOOK
 WITH CONTROL MY_TABLE_CONTROL.
 MODULE GET_LOOPLINES.
 MODULE MOVE_TO_DYNP.
 ENDLOOP.
*
PROCESS AFTER INPUT.
 LOOP AT IT_SDYN_BOOK.
 FIELD SDYN_BOOK-MARK MODULE UPDATE_ITAB ON REQUEST.
 ENDLOOP.
 MODULE USER_COMMAND_0130.

--

Module pool

Add the coding below to your ABAP program

TOP include

* sy-loopc at PBO
DATA looplines LIKE sy-loopc.
* workarea for Table Control structure COLS
DATA wa_cols LIKE LINE OF my_table_control-cols.

PBO module

&--
*& Module GET_LOOPLINES OUTPUT
&--
MODULE GET_LOOPLINES OUTPUT.
 LOOPLINES = SY-LOOPC.
ENDMODULE. " GET_LOOPLINES OUTPUT

PAI module

&--
*& Module USER_COMMAND INPUT
&--
MODULE USER_COMMAND_100 INPUT.
 CASE SAVE_OK.
 WHEN 'P--' OR 'P-' OR 'P+' OR 'P++'.
 PERFORM TABLE_PAGING
 USING SAVE_OK MY_TABLE_CONTROL-TOP_LINE
 MY_TABLE_CONTROL-LINES LOOPLINES.
 ENDCASE.
ENDMODULE. " USER_COMMAND INPUT

&--
*& Module USER_COMMAND_0130 INPUT
&--
MODULE USER_COMMAND_0130 INPUT.
 CASE OK_CODE.
 WHEN 'SRTU'.
 READ TABLE MY_TABLE_CONTROL-COLS INTO WA_COLS
 WITH KEY SELECTED = 'X'.
 IF SY-SUBRC = 0.
 SORT IT_SDYN_BOOK BY (WA_COLS-SCREEN-NAME+10)
 ASCENDING.
 ENDIF.
* second method
* LOOP AT MY_TABLE_CONTROL-COLS INTO WA_COLS WHERE
* SELECTED = 'X'.

* SORT IT_SDYN_BOOK BY (WA_COLS-SCREEN-NAME+10)
* ASCENDING.
* ENDLOOP.

* determine fieldname dynamically
* 1. 'slower' version
* DATA SORTFIELD LIKE SCREEN-NAME.
* IF WA_COLS-SCREEN-NAME CS '-'.
* POS = SY-FDPOS + 1.
* SORTFIELD = TC_COL-SCREEN-NAME+POS.
* SORT IT_SDYN_BOOK BY (SORTFIELD).
* ENDIF.
* 2. 'faster' version
* FIELD_SYMBOLS <sort_field>.
* IF WA_COLS-SCREEN-NAME CS '-'.
* POS = SY-FDPOS + 1.
* ASSIGN WA_COLS-SCREEN-NAME+POS(*) TO
* <SORT_FIELD>.
* SORT IT_SDYN_BOOK BY (<SORT_FIELD>).
* ENDIF.
 WHEN 'SRTD'.
 READ TABLE MY_TABLE_CONTROL-COLS INTO WA_COLS
 WITH KEY SELECTED = 'X'.
 IF SY-SUBRC = 0.
 SORT IT_SDYN_BOOK BY (WA_COLS-SCREEN-NAME+10)
 DESCENDING.
 ENDIF.
* second method
* LOOP AT MY_TABLE_CONTROL-COLS INTO WA_COLS WHERE
* SELECTED = 'X'.
* SORT IT_SDYN_BOOK BY (WA_COLS-SCREEN-NAME+10)
* DESCENDING.
* ENDLOOP.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0130 INPUT

FORM routines

*&---
-----*
*& Form TABLE_PAGING
*&---
-----*
* Implementation of table paging
*--
-----*
* -->P_SAVE_OK function
code
* -->P_MY_TABLE_CONTROL_TOP_LINE table index
* (TOP_LINE)
* -->P_MY_TABLE_CONTROL_LINES itab rows
* (maximum
index)

* -->P_LOOPLINES screen rows
* (SY-LOOPC at
PBO)
*--
-----*
FORM TABLE_PAGING USING P_SAVE_OK

P_MY_TABLE_CONTROL_TOP_LINE
 P_MY_TABLE_CONTROL_LINES
 P_LOOPLINES.

 CALL FUNCTION 'SCROLLING_IN_TABLE'
 EXPORTING
 ENTRY_ACT =
P_MY_TABLE_CONTROL_TOP_LINE
 ENTRY_TO =
P_MY_TABLE_CONTROL_LINES
 LOOPS = P_LOOPLINES
 OK_CODE = P_SAVE_OK
 IMPORTING
 ENTRY_NEW =
P_MY_TABLE_CONTROL_TOP_LINE
 EXCEPTIONS
 NO_ENTRY_OR_PAGE_ACT = 1
 NO_ENTRY_TO = 2
 NO_OK_CODE_OR_PAGE_GO = 3
 OTHERS = 4.
 IF SY-SUBRC <> 0.
* not required
 ENDIF.
ENDFORM. " TABLE_PAGING

 SAP AG 1999

l Creating, using and modifying context menus

Contents:

Context Menus on Screens

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n Context menus (right mouse key, SHIFT F10) are shortcuts for functions that are frequently used.

n They can be used to display context-sensitive menus. The context is defined by the position (cursor
for SHIFT F10, mouse location for right mouse key) where the user called the context menu. If
needed, you can specify the context more precisely with the displayed contents. This permits the user
to select functions that are relevant for the current context using the context menu.

n You define whether a context menu should be offered when you create a screen object (screens,
input fields, table controls, boxes, ...). When the user selects a context menu on an object, an event
mechanism (as understood by ABAP objects) calls a certain subroutine in the application program.
The program is assigned a menu reference. The program uses this menu reference to build the
display menu. Menus defined with the Menu Painter and dynamic menus can be used here.
After the user executes a menu function, the application program regains control and can react to the
user input.

n Context menus are assigned to output fields. When you assign a context menu to a box, table control
or screen (normal or subscreen), all the subordinate output fields that do not have a context menu
inherit that one.

n You can create a context menu from within the object list of the Object Navigator. Position the
cursor on GUI status and right-click. The Object Navigator automatically opens the Menu Painter.

n Of course you can also create a context menu directly in the Menu Painter.

n A context menu is a special GUI status. Assign it a name, a descriptive text and status type Context
menu.

n In a context menu you can link any function codes and function texts. In particular, you can take
advantage of your screen pushbuttons. The functions already provided in the interface can be used as
an F4 input help.

n The link technique ensures consistent context menus in large applications.

n You should observe the following rules when designing context menus.

� Do not use any functions that cannot be found elsewhere in the system (pushbuttons or interface).

� Avoid using more than two hierarchy levels in context menus.

� Do not use more than 10 entries, but map all the available pushbuttons.

� Use separators to structure the context menu optically.

� Place object-specific statements at the beginning of the menu.

n Pressing the right mouse key triggers a callback routine in your program. You can create this
callback routine in your application program with forward navigation. It is named
ON_CTMENU_<name>. You define which callback routine is called in the Screen Painter.

n You can directly assign a callback routine to input/output fields, text fields and status icons.
Checkboxes, radio buttons and pushbuttons do not have their own callback routines. However, these
fields can inherit context menus from boxes or screens.

n If you assign a callback routine to a table control, it is triggered for all the fields of the table control
that do not have their own callback routine.

n The callback routine has the following form:

 FORM ON_CTMENU_<name> USING p_menu TYPE REF TO cl_ctmenu.
 <definition of the context menu>.
 ENDFORM.

n The context menu is built with a method call for the instance of class cl_ctmenu that was passed.

n Clicking with the right mouse key on an output field triggers the corresponding callback routine.

n You can now use the static method load_gui_status of class cl_ctmenu to load a context
menu that was predefined in the Menu Painter. Using other methods of class cl_ctmenu (see next
slide) you can also completely rebuild the context menu or modify a loaded menu.

n If the user triggers a function in the context menu, the corresponding function code is placed in the
command field and triggered depending on function type PAI of the screen.

n The class cl_ctmenu provides a number of other methods in addition to the static method
load_gui_status. You can use them to adjust the context menu at runtime (e.g. using the
values in data fields).

n The corresponding methods are called within the callback routine.

n You can find further information in the documentation for class cl_ctmenu in the Class Builder.

Unit: Context Menus on Screens

Theme: Creating and Using a Context Menu

At the conclusion of these exercises, you will be able to:

Use context menus in your programs.

Make the functions for your table control available in a context menu.

10-1 Create a GUI status with type context menu and use it for the output fields on
screen 130.

10-1-1 Extend your program Z##BC410_SOLUTION from the previous exercise
(or copy the model solution SAPBC410TABS_TABLE_CONTROL3).
You can use the model solution SAPBC410CONS_CONTEXTMENU for
orientation.

10-1-2 Create the GUI status sub130 with type context menu and the short
description Table control subscreen. Assign the following functions to the
menu:

Context menu Function code:
SELE
DSELE
DELE
SRTU
SRTD

Separator
P- -
P-
P+
P+ +

Function text
Select all
Deselect all
Delete line
Sort ascending
Sort descending

First page
Previous page
Next page
Last page

10-1-3 Assign function type ‘ ’ (space) to all of the functions. Deactivate the
function DELE.

10-1-4 In the screen attributes of 130, declare that you want to use subroutine
on_ctmenu_sub130 to create the context menu.

10-1-5 Write the subroutine to create the context menu.

10-1-6 Additional task:
Activate the DELE function at runtime if the user is in booking maintenance
mode. Note that you must pass the function code to the method in a table
with type ui_functions .

Unit: Context Menus on Screens

Theme: Creating and Using a Context Menu

10-1 Model solution: SAPBC410CONS_CONTEXTMENU
Add the coding in bold type to your program, and create the subroutine.
--

Subroutine include

&---

*& Form ON_CTMENU_SUB130

&---

FORM on_ctmenu_sub130 USING p_menu TYPE REF TO cl_ctmenu.

data fcodes type ui_functions.

load of the context menu defined in the menu painter

CALL METHOD cl_ctmenu=>load_gui_status

EXPORTING program = sy-cprog

status = 'SUB130'

menu = p_menu.

activate DELE for deleting bookings in maintain booking mode

CHECK NOT maintain_bookings IS INITIAL.

append 'DELE' to fcodes.

CALL METHOD p_menu->enable_functions EXPORTING fcodes = fcodes.

ENDFORM. " ON_CTMENU_SUB130

 SAP AG 1999

l Lists on screens

Contents:

Lists in Screen Programming

n Unit 1 Course Overview

n Unit 2 Basics for Interactive Lists

n Unit 3 The Program Interface

n Unit 4 Interactive List Techniques

n Unit 5 Introduction to Screen Programming

n Unit 6 Screen Elements for Output

n Unit 7 Screen Elements for Input/Output

n Unit 8 Screen Elements: Subscreens and Tabstrip Controls

n Unit 9 Screen Elements: Table Controls

n Unit 10 Context Menus on Screens

n Unit 11 Lists in Screen Programming

n Unit 12 Preview: Control Framework

n A list is generally used to output mass data. It can be output on either the screen or a printer.

n List may contain colors, symbols and icons as well as text.

n There is a standard GUI status for lists. Lists may also have a header and up to four lines of column
headers. These are independent program objects, and are translatable.

n You can also program interactive lists, which allow users to select lines or particular values. A
selection triggers further processing. This might, for example, generate a further list containing a
detail list.

n To find out more about list processing, refer to the units Basics for Interactive Lists, The Program
Interface and Interactive List Techniques.

n You fill the corresponding basic list buffer with WRITE statements at PBO or PAI. You can create
your own list and column headers by programming a TOP-OF-PAGE event. This event will be
triggered whenever a new page is created in the list buffer (NEW-PAGE) .

n You can direct the output directly to the spool with the NEW-PAGE PRINT ON statement.

n To create interactive lists on screens, you can use the list events AT LINE-SELECTION, AT
USER-COMMAND, TOP-OF-PAGE, END-OF-PAGE and TOP_OF_PAGE DURING LINE-
SELECTION.

n There is no common list buffer outside of a CALL level.

n The list display is processed at the end of the screen in which LEAVE TO LIST-PROCESSING
was programmed at PBO or PAI.

n To direct the output to the spool, use the NEW-PAGE PRINT ON statement, but not LEAVE TO
LIST-PROCESSING.

n To create a list that is displayed on a screen, use the ABAP statement LEAVE TO LIST-
PROCESSING. This sets a switch that ensures that the contents of the list buffer are output once
the current screen has been processed. The SET PF-STATUS SPACE statement ensures that the
list is displayed with the standard GUI status for lists.

n Once the screen has been fully processed and LEAVE TO LIST- PROCESSING was executed,
the list is displayed on list screen 120 (screen for a basis program).

n You can also use the following form: LEAVE TO LIST-PROCESSING AND RETURN TO
SCREEN 0. SET PF-STATUS SPACE. WRITE ... LEAVE SCREEN.

n When the system exits list processing (user presses F3, or ABAP statement LEAVE LIST-
PROCESSING), the system carries on processing the program with the screen following the one
from which the list processing was started. You can override this by using the AND RETURN TO
SCREEN <scr> addition in the LEAVE TO LIST-PROCESSING statement.

n If you include the ABAP statement SUPPRESS DIALOG in a PBO module, the current screen is
not displayed.

n If you want to display a list in a dialog box within a transaction, you must call a screen, but include
the SUPPRESS DIALOG statement in its PBO processing block.

n To return to the calling screen after leaving the list, declare: LEAVE TO LIST-PROCESSING
AND RETURN TO SCREEN 0.

Unit: Lists in Screen Programming

Theme: Displaying a list on a screen

At the conclusion of these exercises, you will be able to:

Use lists on screens in your programs.

Extend your flight maintenance screen to display a booking list. Allow
the user to display the bookings by choosing a pushbutton or menu entry.
Make it possible to sort the list dynamically.

Program the booking list.

Extend your program Z##BC410_SOLUTION from the previous exercise (or copy the model
solution SAPBC410CONS_CONTEXTMENU). You can use the model solution
SAPBC410LISS_LISTS_ON_DYNPROS for orientation.

Create a function BOOK in status STATUS_100, assigning it to function key F5, a pushbutton,
and a menu entry. The function is already in the function list of your interface, so you can use
the F4 help.

Call screen 200 if the user chooses the BOOK function. Create the screen (type: normal). In
the PBO event of the screen, call a module in which you create the list. Screen 200 is only a
container – you should not actually display it. Use your subroutines to read and display the
booking data. Set the GUI status and GUI title BOOK and start list processing.

Use the TOP-OF-PAGE to create list headers in the same way you would in TOP-OF-PAGE
DURING LINE-SELECTION. Make sure that the headings are not displayed on the flight list
as well. Stop the standard list header from being displayed on the booking list. (NEW-PAGE
NO-TITLE NO-HEADING before the first display.) If there are no bookings for the selection
data, display message 186 from message class BC410 as an information message.

Test your program. Good work for just a week, isn’t it!

Unit: Lists in Screen Programming

Theme: Displaying a list on a screen

Model solution: SAPBC410LISS_LISTS_ON_DYNPROS
Add the coding in bold type to your program, and create the module.

--

Flow logic for screen 200

PROCESS BEFORE OUTPUT.

MODULE list.

*

PROCESS AFTER INPUT.

--

Top include

number of lines of an internal table

DATA lines type i.

--

Event include

TOP-OF-PAGE.

CHECK sy-dynnr = 200.

FORMAT COLOR COL_HEADING.

ULINE.

WRITE: / 'Flight:'(t01), wa_sbook-carrid, wa_sbook-connid,

AT sy-linsz space,

/ 'Date:'(t02), wa_sbook-fldate, AT sy-linsz space.

ULINE.

--

PBO module include

&---

*& Module LIST OUTPUT

&---

CHECK NOT wa_sflight-carrid IS INITIAL.

CHECK NOT wa_sflight-connid IS INITIAL.

CHECK NOT wa_sflight-fldate IS INITIAL.

REFRESH it_sbook.

PERFORM read_bookings

USING wa_sflight-carrid

wa_sflight-connid

wa_sflight-fldate

' '.

APPEND LINES OF it_sbook_read TO it_sbook.

DESCRIBE TABLE it_sbook LINES lines.

IF lines = 0.

MESSAGE i186(bc410).

ELSE.

SORT it_sbook BY carrid connid fldate bookid.

NEW-PAGE NO-TITLE NO-HEADING.

PERFORM display_bookings.

SET PF-STATUS 'BOOK'.

SET TITLEBAR 'BOOK'.

ENDIF.

CLEAR: wa_sbook-bookid.

LEAVE TO LIST-PROCESSING AND RETURN TO SCREEN 0.

SUPPRESS DIALOG.

ENDMODULE. " LIST OUTPUT

 SAP AG 1999

l This section contains supplementary material
to be used for reference

l This material is not part of the standard course

l Therefore, the instructor might not cover this
during the course presentation

Appendix

n Documentation Links

Ref.
number

Path in documentation

ILB-1 SAP Library → Basis Components→ ABAP Programming and Runtime
Environment → BC - ABAP Programming → ABAP User Dialogs → Selection
Screens

ILB-2 SAP Library → Basis Components→ ABAP Programming and Runtime
Environment → BC - ABAP Programming → ABAP User Dialogs → Selection
Screens → Defining Selection Screens

GUI-1 In the Menu Painter: Goto → Interface objects;
Function key settings → <name> → Pushbutton settings;
Interface → Subobject → Create

GUI-2 BC - Basis → ABAP Workbench → BC - ABAP Workbench: Tools → ABAP
Workbench: Tools → Menu Painter → Functions

GUI-3 In the Menu Painter: Utilities → Help texts → Internal key numbers

ILS-1 In the Menu Painter: Utilities → Help texts → Standards/proposals

ILS-2 In the ABAP Editor: Utilities → Help on... , ABAP term: READ

ILS-3 In the ABAP Editor: Utilities → Help on... , ABAP term: MODIFY

ILS-3 In the ABAP Editor: Utilities → Help on... , ABAP term: GET CURSOR

DIA-1 SAP Library → Getting Started with the SAP System → Layout Menu

DIA-2 SAP Library → Basis → ABAP Workbench → BC - ABAP Workbench: Tools →
ABAP Workbench: Tools → Screen Painter → Working with element attributes

DIA-3 SAP Library → Basis → ABAP Workbench → BC - ABAP Workbench: Tools →
ABAP Workbench: Tools → Screen Painter → Creating screens.

OUT-1 In the Screen Painter: Goto → Translation

OUT-2 SAP Library → Basis Components→ ABAP Workbench → BC - SAP Style Guide → R/3
Icons and symbols→ Icons → Icons as status displays.

INP-1 SAP Library → Basis Components → ABAP Workbench → BC – SAP Style Guide →
Interface elements → Input/output fields

INP-2 SAP Library → Basis Components → ABAP Workbench → BC - ABAP Workbench:
Tools → ABAP Workbench: Tools → Screen Painter → Defining the Element Attributes
→ Choosing Field Formats

INP-3 SAP Library → Basis Components→ ABAP Workbench → BC - SAP Style Guide →
Functions – General guidelines → Navigation functions - Overview.

INP-4 SAP Library → Basis Components → ABAP Workbench → BC - SAP Style Guide →
Functions – General guidelines → Navigation Functions – Overview → Comparison of
Exit, Back, and Cancel.

SUB-1 SAP Library → Basis Components→ ABAP Programming and Runtime Environment →
BC - ABAP Programming→ ABAP User Dialogs → Screens → Complex Screen
Elements → Tabstrip Controls

SUB-2 SAP Library → Basis Components→ ABAP Programming and Runtime Environment →
BC - ABAP Programming→ ABAP User Dialogs → Selection Screens → Subscreens
and Tabstrip Controls on Selection Screens

TAB-1 SAP Library → Basis Components→ ABAP Programming and Runtime Environment →
BC - ABAP Programming→ ABAP User Dialogs → Screens → Complex Screen
Elements → Table Controls

Each entry in the glossary contains a reference to the application component to which it belongs. You can use this
path in the R/3 Library to find further information. For example, for more information about ABAP Dictionary,
look under ABAP Workbench (application component BC-DWB).

A

ABAP Workbench (BC-DWB)

Central and redundancy-free storage facility for all data used in the R/3 System. The ABAP Dictionary describes
the logical structure of application development objects and their representation in the structures of the underlying
relational database. All runtime environment components such as application programs or the database interface,
get information about these objects from the ABAP Dictionary. The ABAP Dictionary is an active data dictionary
and is fully integrated into the ABAP Workbench.

ABAP Workbench (BC-DWB)

ABAP Native SQL allows you to include database-specific SQL statements in an ABAP program. Most ABAP
programs containing database-specific SQL statements do not run with different databases. If different databases
are involved, use Open SQL. To execute ABAP Native SQL in an A BAP program, use the statement EXEC.

ABAP Workbench (BC-DWB)

Subset of standard SQL statements.

To avoid conflicts between database tables and to keep ABAP programs independent from the database system
used, SAP has generated its own set of SQL statements known as Open SQL.

Using Open SQL allows you to access all database tables available in the R/3 System, regardless of the
manufacturer.

ABAP Workbench (BC-DWB)

Program written in the ABAP programming language.

An ABAP program consists of a collection of processing locks, which are processed sequentially as soon as they
are called by the runtime system.

There are two main kinds of ABAP program:

• Report programs (ABAP reports)

• Dialog programs

Basis Services/Communication Interfaces (BC-SRV)

ABAP Workbench tool that allows users without knowledge of the ABAP programming language, or table or
field names, to define and execute their own reports.

To determine the structure of reports in ABAP Query, users only have to enter texts, and select fields and options.
Fields are selected from functional areas and can be assigned a sequence by numbering.

There are three types of report available:

• Basic lists

• Statistics

• Ranked lists

ABAP Workbench (BC-DWB)

ABAP program that reads and analyzes the data in database tables without modifying the database.

ABAP report programs are defined as type '1' programs and are linked to a particular logical database. Both of
these values are specified in the program attributes.

When you execute an ABAP report program, you can display the resulting output list - also known as a report - on
the screen or send it to a printer.

ABAP Workbench (BC-DWB)

SAP's integrated graphical programming environment.

The ABAP Workbench supports the development and modification of R/3 client/server applications written in

You can use the tools of the ABAP Workbench to

• write ABAP code

• design screens

• create user interfaces

• use predefined functions

• get access to database information

• control access to development objects

• test applications for efficiency

• debug applications

ABAP Workbench (BC-DWB)

Process that makes an object available at runtime.

When you activate an object, the system generates a load version that application programs and screens can access
and use.

Graphical User Interface (BC-FES-GUI)

Dialog box, allowing the user to work on one screen without the previous screen first being closed.

Business Navigator (BC-BE-NAV)

Organizational tool for displaying all of the business applications in the R/3 System.

The application hierarchy has a user interface similar to that of a file manager, with a hierarchical structure. You
can display either the standard applications delivered with the system, or a company-specific hierarchy.

Integration Technology ALE (CA-BFA-ALE)

Application Link Enabling (ALE) refers to the creation and operation of distributed applications.

The basic idea is to guarantee a distributed, but integrated, R/3 installation. This involves business-controlled
message exchange with consistent data across loosely linked SAP applications.

Application integration is achieved not via a central database, but via synchronous and asynchronous
communication.

ALE comprises the following three layers:

• application services

• distribution services

communication services

Graphical User Interface (BC-FES-GUI)

Element of the graphical user interface,

The application toolbar is situated below the standard toolbar on the screen. It contains pushbuttons, which allow
users quick access to application-specific functions, and occupies the whole of the primary window.

Before you can assign a function to a pushbutton, you must assign it to a function key.

Computing Center Management System (BC-CCM)

Authority to perform a particular action in the R/3 System.

Each authorization refers to one authorization object and defines one or more permissible values for each
authorization field listed in the authorization object.

Authorizations are combined in profiles which are entered in a user's master record.

Computing Center Management System (BC-CCM)

Element of an authorization object.

In authorization objects, authorization fields represent values for individual system elements which are supposed
to undergo authorization checking to verify a user's authorization.

Computing Center Management System (BC-CCM)

Element of the authorization concept.

Authorization objects allow you to define complex authorizations.

An authorization object groups together up to 10 authorization fields in an AND relationship in order to check
whether a user is allowed to perform a certain action.

To pass an authorization test for an object, the user must satisfy the authorization check for each field in the
object.

Computing Center Management System (BC-CCM)

Element of the authorization concept.

An authorization profile gives a user access to the system. It contains authorizations, identified by the name of an
authorization object. Users have all of the authorizations contained in each profile entered in their user master
record.

B
Basis Services/Communications Interfaces (BC-SRV)

Interface allowing you to import large amounts of data into an R/3 System.

You use batch input to import legacy data into your new R/3 System, and for periodic imports of external data.

Basis Services/Communications Interfaces (BC-SRV)

Set of transactions supplied with data by a program.

The transactions are stored as a stack. You can then run the session later in dialog mode. The database changes are
not made until you have run the session.

This method allows you to import large quantities of data into an R/3 System in a short time.

C
ABAP Workbench (BC-DWB)

Information folder in the Workbench Organizer and Customizing Organizer for entering and administrating all
changes to Repository objects and Customizing settings made during a development project.

ABAP Workbench (BC-DWB)

A change request that can be transported into other systems once it has been released.

Business Engineer (BC-BE)

In commercial, organizational and technical terms, a self-contained unit in an R/3 System with separate master
records and its own set of tables.

See also the glossary entry for "logical system".

Graphical User Interface (BC-FES-GUI)

Memory resource that stores a copy of the last information to be copied with the 'Copy' function, or cut with the
'Cut' function.

You can use the 'Paste' function to copy data stored in the clipboard to the current program.

The clipboard is managed by the operating system.

Graphical User Interface (BC-FES-GUI)

Input field in the standard toolbar to the right of the ENTER pushbutton.

You can enter fastpaths or transaction codes in this field, to choose menu entries or call transactions respectively.

ABAP Workbench (BC-DWB)

Point at which the system changes from one control group to another in a report.

The control group change represents a change in the value of whichever field is currently most significant. In an
ABAP program, you trigger it with the AT NEW statement.

D

ABAP Workbench (BC-DWB)

Language used to define all the attributes and properties of a database management system

The query language SQL (Structured Query Language) consists of two kinds of statements:

• DDL (data definition language)

• DML (data manipulation language)

ABAP Workbench (BC-DWB)

Sequential dataset in the memory area of a report.

ABAP Workbench (BC-DWB)

Language for processing data in a database management system.

The query language SQL (Structured Query Language) consists of two kinds of statements:

• DDL (data definition language)

DML (data manipulation language)

Data Model (BC-RMC-DMO)

Structured description of data objects, their attributes, and the relationships between them.

There are different types of data model, depending on the types of data structure you want to define (for example,
relational data model).

ABAP Workbench (BC-DWB)

Physical unit used by a program.

Each data object has a certain data type, which defines how ABAP processes it. All data object occupy memory
space.

ABAP Workbench (BC-DWB)

Attribute of a Data Object

Data types describe the technical attributes of data objects. They are purely descriptions, and occupy no memory
space.

ABAP Workbench (BC-DWB)

In a database commit, all of the database update requests from the current logical unit of work (LUW) are written
to the database.

In the R/3 System, database commits are either triggered automatically or manually, using the ABAP statement
COMMIT WORK (or, in Native SQL, the database-specific equivalent).

ABAP Workbench (BC-DWB)

If you discover an error within an LUW, you can undo all of the update requests in the LUW (that is, since the last
commit) using a database rollback.

In the R/3 System, database rollbacks are either triggered automatically or manually, using the ABAP statement
ROLLBACK WORK (or, in Native SQL, the database-specific equivalent).

ABAP Workbench (BC-DWB)

A type of view in the ABAP Dictionary.

Database views are implemented using an equivalent view in the underlying database system.

ABAP Workbench (BC-DWB)

Group of logically related development objects. A development class contains all the objects which must be
corrected and transported as a whole. The objects which make up a transaction usually belong to one development
class. Customer development classes begin with 'Y' or 'Z'.

E
IDoc Interface / Electronic Data Interchange (CA-EDI)

Electronic Data Interchange.

Business-to-business electronic data interchange (for example, sales documents). The business partners may be in
different countries, and might be using different hardware, software, and communication services. The data is
formatted according to fixed standards.

In addition, SAP ALE enables companies to exchange data internally.

ABAP Workbench (BC-DWB)

Type of ABAP keyword.

An event keyword defines a processing block in an ABAP program. The processing block is processed when the
particular event occurs.

Examples. GET, START -OF-SELECTION, AT SELECTION-SCREEN.

F

ABAP Workbench (BC-DWB)

Group of functions that logically belong together and use a shared program context at runtime.

The function group is a container program for the function modules that it contains. Functions that work with the
same data are usually all included in the same function group.

Function groups are an administrative unit within the Function Builder.

ABAP Workbench (BC-DWB)

Reusable function.

Function modules are external subroutines that you maintain centrally in the Function Builder, and which can be
called from any ABAP program. This allows you to avoid redundancy in your coding and makes programming
more efficient.

Unlike normal subroutines, function modules have a defined interface.

Basis Services/Communications Interfaces (BC-SRV)

You can use ABAP Query to define reports without any previous programming knowledge. When you create a
query, you must assign it to a functional area, which determines the tables and fields that the query can use.
Functional areas in ABAP Query are usually subsets of logical databases.

Basis Services/Communications Interfaces (BC-SRV)

Element of ABAP Query

A functional group is a collection of fields that forms a logical unit. You use them to provide users with a
selection of fields so that he or she does not need to sort through all of the fields in a logical database in order to
create a query.

You must assign a field to a functional group in order for it to be used later in a query.

G
Graphical User Interface (BC-FES-GUI)

Main element of the graphical user interface.

A GUI status consists of:

• A menu bar with menus

• A standard toolbar

• An application toolbar

• Functions, and function key settings

H
ABAP Workbench (BC-DWB)

Main memory area for storing key fields of a line in a report list.

If you want to select further data based on a line selection, the system can find the key fields that it requires in the
hide area.

You must place the key fields into the hide area yourself using the HIDE statement.

I
Graphical User Interface (BC-FES-GUI)

Graphical representation of an object or functions. Icons are small colored bitmaps that are used for pushbuttons,
checkboxes, and radio buttons, either with or without text.

Unlike symbols, icons always have the same size, which is one of two, selected automatically by the system
according to the font size.

IMG (BC-BE-IMG)

The R/3 International Demonstration and Education System.

IDES contains several fictional companies that model the different business processes in the R/3 System. Simple
user guides and sample master and transaction data allow you to simulate a wide range of scenarios. This makes
IDES a useful tool for training your project team.

ABAP Workbench (BC-DWB)

Data Modeler (BC-RMC-DMO)

Passing of attributes from one data object to another.

Attributes can either be passed generally (all attributes), or by copying individual characteristics.

Workflow (BC-BMT-WFM)

„is a“ relationship between object types in which shared attributes and methods of supertypes are passed
automatically to subtypes.

Subtypes usually have the same key fields as the supertype, but a more wide-ranging function.

ABAP Workbench (BC-DWB)

Temporary data structure that exists during the runtime of a program.

Internal tables are one of two structured data types in ABAP. They consist of any number of table lines, each of
which has the same structure. They may or may not have a header line.

The header line is a structure, and serves as a work area for the internal table. The data type of the line can be
either elementary or structured.

L
Graphical User Interface (BC-FES-GUI)

Standard function in the R/3 System used to display lists.

ABAP Workbench (BC-DWB)

First line of the screen in a list.

The list header is often the same as the title of the program. However, you can maintain it independently of the
program title.

ABAP Workbench (BC-DWB)

Special ABAP program that combines the contents of certain database tables.

You can attach a logical database to an ABAP report program as one of the program attributes. It supplies the
report with a set of hierarchically-structured table lines, which can come from different database tables. This saves
the programmer from having to retrieve the data him- or herself.

The term „logical database“ applies not only to the program, but also to the data itself.

ABAP Workbench (BC-DWB)

Inseparable sequence of database operations, working on the all-or-nothing principle, where the operations are
either all carried out, or all canceled.

From the point of view of the database system, logical units of work (LUWs) are crucial to the integrity of the
data in the database.

M
Graphical User Interface (BC-FES-GUI)

Graphical element for choosing functions.

Menus are graphical elements that present the user with a series of options, each of which triggers a function in
the system. This can include opening a submenu.

There are two types of menu:

• Menu bars

• Action menus

To choose a menu entry, single-click it with the mouse, or position the cursor on it using the arrow keys and press
ENTER.

Graphical User Interface (BC-FES-GUI)

Element of the graphical user interface.

The menu bar appears directly below the title bar in the primary window.

When you choose an entry in the menu bar, the system opens the corresponding action menu below the entry. You
can put up to 6 menus in the menu bar, to which the system automatically adds the ‘System’ and ‘Help’ menus.

ABAP Workbench (BC-DWB)

Placeholder in the standard system for customers’ own menu entries.

Menu exits allow you to link your own functions to menu entries reserved in the standard system as part of the
enhancement concept (Transaction CMOD). You use an associated function module exit to implement the
function.

ABAP Workbench (BC-DWB)

Development tool in the ABAP Workbench for designing the graphical user interface of an ABAP program. Each
GUI consists of a title and a GUI status.

The GUI status contains the following elements:

• Menu bar with menus

• Standard toolbar

• Application toolbar

Functions, assigned to function keys.

ABAP Workbench (BC-DWB)

Collection of messages that are used by a particular application.

Each ABAP program is linked to a message class. The name of the class can be up to 20 characters.

ABAP Workbench (BC-DWB)

Data that describes other data.

Metadata are data definitions, usually stored in a data dictionary.

Graphical User Interface (BC-FES-GUI)

Dialog box that must be processed or canceled before the screen behind it can be processed further.

ABAP Workbench (BC-DWB)

Customer-specific change to an R/3 Repository object.

When you upgrade the system, you need to check, and possibly update, your modified objects.

P
ABAP Workbench (BC-DWB)

Group of program statements that are processed together as a unit at a particular point.

ABAP is an event-oriented language (the flow of a program is controlled by events). Program sections are
therefore grouped into processing blocks, which are assigned to particular events. Events are triggered in the
program using event keywords.

A processing block consists of all of the statements between two event keywords or between an event keyword
and a FORM statement.

ABAP Workbench (BC-DWB)

A set of statements that provides a solution to a task.

A program consists of a set of statements that are interpreted and executed by a computer.

Q
Basis Services/ Communication Interfaces (BC-SRV)

Report that users without programming expertise can generate using ABAP Query.

There are three different types of query:

• Basic list

• Statistic

Ranked list

R
ABAP Workbench (BC-DWB)

Central store for development objects in the ABAP Workbench.

Development objects include ABAP programs, screens, documentation, and so on.

ABAP Workbench (BC-DWB)

Information system that enables you to find information about al of the development objects in the R/3 System
and the relationships between them.

The user interface of the R/3 Repository Information System displays objects in a hierarchical structure similar to
a file manager.

The R/3 Repository Information allows you to:

• Create lists of programs, tables, fields, data elements, and domains.

• Find out where tables and fields are used in ABAP programs and screens.

Display foreign key relationships.

ABAP Workbench (BC-DWB)

Remote Function Call.

RFC is an SAP interface protocol based on CPI-C. This simplifies the process of programming communication
between systems.

RFC allows you to call and execute predefined functions in a remote system. They have built-in communication
control, parameter passing, and error handling.

S
ABAP Workbench (BC-DWB)

Global, user-specific memory.

You address the SAP memory using SPA/GPA parameters.

ABAP Workbench (BC-DWB)

A screen (in the sense of a 'dynpro' or DYNamic PROgram) consists of a screen and its underlying flow logic.

The main components of a screen are:

• attributes (e.g. screen number, next screen)

• layout (the arrangement of texts, fields, and other elements)

• field attributes (definition of the properties of individual fields)

• flow logic (calls the relevant ABAP modules)

Graphical User Interface (BC-FES-GUI)

Screen in an ABAP report program.

You use the selection screen to enter the selection criteria by which the system should retrieve data from the
database.

ABAP Workbench (BC-DWB)

Internal table containing selection criteria.

The system creates a selection table for each SELECT-OPTIONS statement that you use in an ABAP report
program. They allow you to save complex selections in a standard format.

T
ABAP Workbench (BC-DWB)

Tabular collection of data. The definition is stored in the ABAP Dictionary, the contents are stored in the
database.

A table consists of columns (sets of data values with the same type) and lines (data records).

Each line of a table can be identified uniquely using a field or a combination of fields.

ABAP Workbench (BC-DWB)

Data object created in an ABAP program using the TABLES statement.

A table work area is a structure with the same construction as the corresponding table in the ABAP Dictionary.

ABAP Workbench (BC-DWB)

Information carrier in the Workbench Organizer for entering and managing all changes to Repository objects and
Customizing settings performed by employees within a development project.

A task is assigned to a change request

ABAP Workbench (BC-DWB)

Text constant that you create and maintain outside programs.

You use text symbols instead of text literals to make texts easier to maintain and translate.

Each text symbol is identified by a three-character code.

Graphical User Interface (BC-FES-GUI)

Element in the graphical user interface.

The title bar is the top line of every primary window and dialog box in the R/3 System.

It contains the title of the window, and icons that allow you to control the window size.

ABAP Workbench (BC-DWB)

A logical process in the R/3 System.

From the user’s point of view, a transaction is a logical unit (for example, to generate a list of customers, change a
customer’s address, create a reservation for a flight, or run a program). From the programmer’s point of view, it is
a complex object, consisting of a module pool and a set of screens. You start transactions using a transaction code.

After logging onto the R/3 System, there are three levels - the SAP level, work area level, and application level. A
transaction is a process at application level. To start the transaction, you can either use the menus or enter a four-
character transaction code. Using the transaction code saves you having to remember the menu path.

To start a program from the ABAP Workbench, you can either choose Tools → ABAP Workbench → ABAP
Editor, or enter SE38 in the command field.

ABAP Workbench (BC-DWB)

Sequence of up to twenty characters that identifies an SAP transaction.

When you enter a transaction code in the command field, the corresponding transaction is started in the R/3
System.

For example, the transaction code SM31 identifies the transaction „Display Table“.

ABAP Workbench (BC-DWB)

Table type in the ABAP Dictionary.

You define transparent tables in the ABAP Dictionary. They are created in the database.

Computing Center Management System (BC-CCM)

Document for copying corrections between different kinds of system.

Released corrections are collected in a transport request. When you release the request, it is transported.

For example, you can transport corrections from an integration system into a consolidation system.

ABAP Workbench (BC-DWB)

Function in the ABAP Editor that enables you to avoid unnecessary type conversions in ABAP programs.

When the function is called, the system analyzes the parameters in the PERFORM statements and searches in the
FORM statements for formal parameters with similar technical attributes (type and length). Whenever it finds
two parameters that correspond, it suggests a type for the formal parameter in the FORM statement. You can then
change your coding accordingly.

Basis Services/Communication Interfaces (BC-SRV)

Object in ABAP Query.

The assignment to a user group determines which queries a user is allowed to execute and/or maintain.

ABAP Workbench (BC-DWB)

Technical features and functions available to the user to exchange information with the computer system.

In the R/3 System, you design the user interface in the ABAP Workbench with the Screen Painter and the Menu
Painter.

V
ABAP Workbench (BC-DWB)

Application-specific view of different tables in the ABAP Dictionary.

When you create a table, you assign a key according to technical criteria. However, the key fields may be
insufficient for solving certain problems, or some of them may be irrelevant. In this case, you can use a view to
access part of a table or a series of tables.

W
Web Basis (CA-B-WEB)

WebRFC applicat allowing Internet users to access information in the R/3 System.

Users can access SAP reports, display lists, and navigate through reporting trees using URLs.

