

 TABC42 ABAP Programming Techniques
2/2
 TABC42 2/2

R/3 System

Release 46B

30.05.2000

TABC42 ABAP Programming Techniques 2/2..0-1

Copyright...0-2

Section Overview..0-4

Section: Programming Database Updates..1-1

Content: Programming Database Updates ..1-2

Course Overview..2-1

Course Goals ..2-2

Course Overview Diagram ..2-3

Database Updates With Open SQL...3-1

Course Overview Diagram - Open SQL..3-2

Overview: Database Updates ..3-3

Open SQL: Portability and Buffering...3-4

Open SQL Property: Target Set On The Database..3-5

Open SQL Properties: Client Dependency, Results Confirmations ...3-6

Creating a Single Record..3-7

Creating a Set of Records...3-8

Changing a Single Record..3-9

Changing Record Sets Via Conditions ..3-10

Changing Record Sets Via Internal Tables ...3-11

Modifying Single Records and Sets...3-12

Deleting a Single Record..3-13

Deleting Record Sets Via Conditions ..3-14

Deleting Record Sets Via Internal Tables ...3-15

DB Rollback With Error Messages of Open SQL Change Statements..3-16

Database Updates With Open SQL: Unit Summary ...3-17

Navigating in the Exercises ...3-18

Exercises ...3-19

Tips on Model Solutions for this Course...3-22

Solutions..3-23

LUWs and Client/Server Architecture ...4-1

Course Overview Diagram - LUWs...4-2

SAP Logical Unit of Work (SAP LUW):Preliminary Definition ...4-3

Database LUW ...4-4

R/3 Software View: Client/Server Architecture...4-5

System Architecture: Implicit DB Commit...4-6

Target: Bundling The DB Changes Of An SAP LUW ...4-7

LUWs and Client/Server Architecture: Unit Summary ..4-8

Exercises ...4-9

Solutions..4-11

SAP Lock Concept...5-1

Overview: Overview...5-3

Why Set Locks?...5-4

Database Locks Are Not Enough..5-5

SAP Lock Concept: Logical Locks ..5-6

Overview: Setting and Releasing Locks..5-7

Setting and Deleting Logical Locks ...5-8

Calling the Lock Modules..5-9

Lock Table ..5-10

Lock Arguments ..5-11

Lock Mode..5-12

Using the Lock Mode: Other Users..5-13

Using the Lock Mode: Same Program...5-14

Locks: Timescale ...5-15

Overview: Lock Objects...5-16

SAP Lock Objects ...5-17

Generating Lock Modules..5-18

Overview: Using Locks: Time Sequence..5-19

Reading Current Data ...5-20

Risk of Inconsistent Data as a Result of Using Locks Incorrectly ..5-21

Using a Lock Container..5-22

SAP Lock Concept: Unit Summary ...5-23

Exercises ...5-24

Solutions..5-27

Organizing Database Updates ..6-1

Course Overview Diagram - Database Updates...6-2

Overview Organizing Database Updates: Direct Changes From the Dialog ..6-3

Direct Changes from the Dialog: Timescale ...6-4

Direct Changes From the Dialog: Data Flow ...6-5

Direct Changes From the Dialog: Locks ...6-6

Overview of Changes From the Dialog: Using Delayed Subroutines..6-7

PERFORM ON COMMIT: Timescale (1)..6-8

PERFORM ON COMMIT: Timescale (2)..6-9

PERFORM ON COMMIT: Data Flow..6-10

Overview Organizing Database Updates: Update Techniques..6-11

Summary: Database Updates From the Dialog ..6-12

Overview Update Techniques: Process...6-13

Update: Principle ...6-14

Process: Writing Requests ...6-15

Process: Completing Requests ..6-16

Process: Reading Requests ..6-17

Process: Performing DB Updates ...6-18

Process: Deleting Requests ..6-19

Process: Flow ...6-20

Overview Update Techniques: Technical Implementation..6-21

Update Modules...6-22

Writing Requests ...6-23

Completing Requests ..6-24

The Result of ROLLBACK WORK ..6-25

ROLLBACK WORK and Memory States..6-26

Rollback in the Update Program...6-27

Update: Locks ..6-28

Overview Update Techniques: Use..6-29

Asynchronous Update...6-30

Local Update ..6-31

Synchronous Update...6-32

SAP LUW: Comparison of the Timescale ..6-33

Overview Update Techniques: V1 and V2 Updates..6-34

V1 and V2 Update Modules ..6-35

Generating V1 and V2 Updates ..6-36

V1 Update...6-37

V2 Update...6-38

Update and Lock Durations (Scope = 2) ...6-39

Overview Update Techniques: The Concept of the SAP LUW ..6-40

The SAP LUW - Developer Perspective...6-41

Properties of an SAP LUW ..6-42

Asynchronous Update in Three-Phase Model..6-43

Local Update in Three-Phase Model..6-44

Synchronous Update in Three-Phase Model...6-45

Overview Update Techniques: Tips for Optimizing Database Changes6-46

DB LUW and Database Locks ..6-47

PERFORM ON COMMIT in the Update..6-48

Organizing Database Updates: Unit Summary...6-49

Exercises ...6-50

Solutions..6-52

Complex LUW Processing...7-1

Course Overview Diagram - Complex LUW Processing...7-2

Overview Complex LUW Processing:Call Techniques for Programs ...7-3

Synchronous Calls ...7-4

Calling an Executable Program..7-5

Calling a Transaction..7-6

Encapsulating Dialogs in Function Modules..7-7

Overview of Complex LUW Processing:Logical Memory Level Model..7-8

The Logical Memory Level Model ..7-9

CALL TRANSACTION <tcode>, SUBMIT <program> AND RETURN...7-10

Implicit End of a Program or LEAVE PROGRAM ..7-11

LEAVE TO TRANSACTION <tcode> ..7-12

SUBMIT <program> ..7-13

CALL FUNCTION <func>...7-14

Asynchronous Call of a Function Module ..7-15

Overview of Complex LUW Processing:Data Transfer Between Programs ..7-16

Data Transfer Between Programs: Overview...7-17

Data Transfer Via the Program Interface ..7-18

SUBMIT Statement: The WITH Addition..7-19

ABAP Memory and SAP Memory ...7-20

Data Transfer Via the ABAP Memory ..7-21

Parameter Transfer Via the SAP Memory ..7-22

SAP Memory and CALL TRANSACTION...7-23

Overview Complex LUW Processing:LUW Processing for Program Calls ...7-24

SAP LUWs With Synchronous Program Calls ..7-25

SAP LUW for CALL TRANSACTION ...7-26

Combined, Simplified Transaction Sequence...7-27

SAP LUWs For Function Modules Called Asynchronously ..7-28

Possible Use of Program Calls ..7-29

Overvie w Complex LUW Processing:Locks for Program Calls ...7-30

Locks Entries for Program Calls ...7-31

Complex LUW Processing: Unit Summary ..7-32

Exercises ...7-33

Solutions..7-35

Appendix...8-1

Solutions..8-2

Solutions..8-12

Authorization Checks ...8-36

Authorization Checks: Unit Objectives...8-37

Course Overview Diagram - Authorization Checks ...8-38

Authorization Objects and Authorizations..8-39

Performing Authorization Checks..8-40

Administering Authorizations...8-41

Authorization Checks for Transactions...8-42

Authorization Checks: Unit Summary ..8-43

Section: Enhancements and Modifications..9-1

Content: Enhancements and Modifications ..9-2

Introduction: Contents ...10-1

Course Objective ...10-2

Course Overview Diagram ..10-3

Main Business Scenario ...10-4

Changing the SAP Standard ...11-1

Overview Diagram: Changing the Standard...11-2

Change Levels ..11-3

Procedure for Changing a Function..11-4

Customizing..11-5

Personalization...11-6

Change Levels in the ABAP Workbench..11-7

Table Enhancements ...11-8

Table Enhancements: SAP and the Customer ..11-9

Field Exits ...11-10

Program Enhancements: How they Work ...11-11

Program Enhancements: SAP and the Customer...11-12

Menu Enhancements: SAP and the Customer..11-13

Screen Enhancements ...11-14

Modifications ...11-15

Changing the SAP Standard: Unit Summary ..11-16

Data Used..11-17

Personalization..12-1

Personalization: Business Scenario ..12-2

Personalizing the Work Center: Unit Objectives ...12-3

Overview Diagram Personalization..12-4

Personalization Levels ..12-5

Description of the Work Center..12-6

Area Menus ..12-7

Area Menus: Objects...12-8

Creating Area Menus..12-9

Maintaining Area Menus: Important Functions...12-10

Area Menus: Migration of Earlier Techniques...12-11

Role -Based Menus ..12-12

Activity Groups: Work Steps ..12-13

Creating Activity Groups...12-14

Activity Groups: Build Menu..12-15

Activity Groups: Maintain authorizations...12-16

Activity Groups: Assign Users..12-17

Using Delivered Activity Groups...12-18

Personalizing Transactions: Topic Objectives ...12-19

Transaction Variants: Objectives..12-20

Transaction Variants: Example ...12-21

Transaction Variants: Principle ...12-22

Transaction Variants: Options:..12-23

Creating Transaction Variants...12-24

Transaction Variants: Evaluating Fields..12-25

Screen Variants ..12-26

GuiXT..12-27

GuiXT: Script Language..12-28

Starting Transaction Variants..12-29

Creating Variant Transactions...12-30

Inserting Variant Transactions in the Menu..12-31

Personalization: Unit Summary ..12-32

PersonalizationExercises..12-33

Personalization Solutions...12-38

Enhancements to Dictionary Elements...13-1

Enhancements to the ABAP Dictionary Overview Diagram...13-2

Enhancements to Dictionary Elements ..13-3

Table Enhancements: Overview ...13-4

Append Structures...13-5

Append Structures at Upgrade..13-6

Customizing Includes ...13-7

Enhancements to Dictionary Elements ..13-8

Global Enhancements ...13-9

Field Exits ...13-10

Global and Local Field Exits ...13-11

Creating Field Exits...13-12

Field Exits: Source Code..13-13

Local Field Exit ...13-14

Activate Field Exit ..13-15

Enhancements to Dictionary Elements: Unit Summary ...13-16

Enhancements to Dictionary Objects Exercises...13-17

Erweiterungen an Objekten des Enhancements to Dictionary Objects Solutions..13-20

Enhancements Using Customer Exits...14-1

Enhancements using Customer Exits Overview Diagram..14-2

Customer Exits: Overview...14-3

SAP Application Enhancements ...14-4

Customer Enhancement Projects ..14-5

Enhancements and Enhancement Projects ..14-6

Customer Exits: Enhancement Management..14-7

The SAP Enhancement Creation Procedure ...14-8

Procedure at the Customer's Premises ...14-9

Creating Customer Enhancement Projects..14-10

Assigning SAP Enhancements to Customer Projects..14-11

Editing Components..14-12

Activating Enhancement Projects...14-13

Transporting Projects..14-14

Customer Exits: Function Module Exit ...14-15

Program Exits Overview..14-16

Function Module Exit: Process Flow...14-17

Calling and Creating Function Modules..14-18

Finding Function Module Exits ..14-19

Editing Function Module Exits ...14-20

Structure of a Function Group...14-21

Structure of an Exit Function Group..14-22

Exit Function Group: Global Data..14-23

Customer Source Code ...14-24

Exit Function Group: Other SAP Objects ...14-25

Exit Function Group: Customer Objects ...14-26

Customer Screens..14-27

Summary: Function Module Exits..14-28

Customer Exits: Menu Exit ..14-29

Menu Exits Overview...14-30

Menu Exit Requirements..14-31

Editing Menu Exits..14-32

Menu Exits and Function Module Exits ..14-33

Summary: Menu Exits ..14-34

Customer Exits: Screen Exit..14-35

Screen Exits Overview...14-36

Subscreens in the R/3 System ...14-37

Calling a Normal Subscreen..14-38

Defining Screen Exits ...14-39

Calling Customer Subscreens..14-40

Transporting Data to Subscreens ..14-41

Transporting Data from Subscreens...14-42

Editing Subscreens (1)..14-43

Editing Subscreens (2)..14-44

Summary: Screen Exits ..14-45

Enhancements using Customer Exits: Unit Summary ..14-46

Customer Exits Exercises...14-47

Customer Exits Solutions...14-50

Business Transaction Events ..15-1

Overview: Transaction Events ..15-2

BTE: Software Delivery Process ..15-3

Business Transaction Events (BTE)...15-4

BTE: Possible Scenarios (1)..15-5

BTE: Possible Scenarios (2)..15-6

Publish & Subscribe Interfaces; Process Interfaces...15-7

BTE Functions: Process Flow..15-8

BTE: Calling Program..15-9

Business Transaction Events: SAP and the Customer ..15-10

Finding a Business Transaction Event...15-11

BTE: Documentation..15-12

BTE: The Product Function...15-13

Implementing a BTE...15-14

Customer Exits and BTE: Differences...15-15

Business Transaction Events: Unit Summary...15-16

Business Add-Ins:..16-1

Business Add-Ins: Business Scenario ..16-2

Add-Ins: Overview Diagram...16-3

Business Add-Ins: Motivation...16-4

Software Delivery Process...16-5

Business Add-Ins: Interfaces in ABAP Objects...16-6

Objects...16-7

Instances of Function Groups as Objects ..16-8

Classes Generalize Function Groups..16-9

Interfaces...16-10

Business Add-Ins: Implementing business add-ins...16-11

Business Add-Ins: Architecture ..16-12

Business Add-Ins: Components..16-13

Business Add-Ins: Process Flow...16-14

Business Add-Ins: Calling Program...16-15

Business Add-In Definition: Naming Conventions (1)...16-16

Finding a Business Add-In...16-17

Implementing Business Add-Ins: Initial Screen ...16-18

Business Add-In Implementation: Naming Conventions...16-19

Implementing Business Add-Ins: Methods...16-20

Implementing Business Add-Ins: Private Methods...16-21

Implementing Business Add-Ins: Activation..16-22

BAdI: Function Codes - Overview...16-23

Business Add-In: Function Codes - Prerequisites..16-24

Business Add-Ins: Function Codes - Restrictions..16-25

Business Add-Ins: Function Code Processing in the Program ..16-26

Business Add-Ins: Defining business add-ins ..16-27

BAdI Definition: Initial Screen...16-28

Business Add-in Definition: Attributes ...16-29

BAdI Definition: Function Codes...16-30

BAdI Definition: Interface Methods ..16-31

Business Add-in Definition: Method Interface Parameters ...16-32

BAdI Definition: Activating the Interface ..16-33

Business Add-in Definition: Call in Program...16-34

Calling a Filter-Dependent BAdI..16-35

Comparison With Other Enhancement Techniques ..16-36

Business Add-Ins: Unit Summary ..16-37

Business Add-Ins Exercises...16-38

Business Add-Ins Solutions...16-41

Modifications..17-1

Modifications: Overview Diagram...17-2

Modifications: What are Modifications...17-3

Originals and Copies...17-4

Corrections and Repairs ...17-5

Modifications and Upgrades..17-6

Modifications: Procedure ...17-7

Registering Modifications in SSCR ...17-8

Carrying Out a Registered Modification ...17-9

When the Modification is Finished..17-10

Versions...17-11

Critical Success Factors (1) ...17-12

Critical Success Factors (2) ...17-13

Critical Success Factors (3) ...17-14

Modifications: Modification Assistant ..17-15

Modification Assistant: Objectives ..17-16

Modification Adjustments Then and Now..17-17

Modification Assistant: Software Layers ..17-18

Modification Assistant: Tools Supported..17-19

Modification Assistant: Prerequisites ..17-20

Modification Assistant Icons...17-21

Example: ABAP Editor..17-22

Modification Overview..17-23

Restoring the Original...17-24

Modifications: Modification Browser..17-25

Modification Browser: Initial Screen...17-26

Modifications: Non-registered modifications...17-27

Documenting Modifications in Programs ...17-28

Modification Logs: Example ...17-29

Modifications: User exits ...17-30

User Exit: Structure of a Module Pool...17-31

User Exits..17-32

User Exit: Example ...17-33

Using User Exits ..17-34

Modifications: Modification Adjustments ..17-35

Objects for Adjustment...17-36

Modification Adjustment: SPDD and SPAU..17-37

Modification Adjustment: Objects ...17-38

Transporting Adjustments between Systems ..17-39

Modification Adjustment: Initial Screen ...17-40

Modification Assistant Icons...17-41

Modifications: Unit Summary ...17-42

Modifications Exercises ...17-43

Modifications Solutions ...17-45

Epilog ...18-1

Modifications: Critical Repository Objects ..18-2

The Amount of Work Necessary at Upgrade Increases..18-3

Avoiding Adjustments..18-4

Modifying versus Copying ..18-5

Evaluation of ABAP Development Projects...18-6

Naming Conventions for Repository Objects...18-7

Epilog: Unit Summary ..18-8

 SAP AG 1999

TABC42 ABAP Programming Techniques 2/2

TABC42 2/2TABC42 2/2
ABAP Programming
Techniques

Part 2 of 2

ABAP Programming
Techniques

Part 2 of 2
 SAP AG

n R/3 System

n Release 4.6B

n May 2000

n Material number 50039584

 SAP AG 1999

Copyright 2000 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may
be copied or reproduced in any form or by any means,
or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

Copyright

n Trademarks:

n Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®,
Multimedia Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ®
are registered trademarks of Microsoft Corporation.

n Lotus ScreenCam ® is a registered trademark of Lotus Development Corporation.

n Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.

n ARIS Toolset ® is a registered Trademark of IDS Prof. Scheer GmbH, Saarbrücken

n Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.

n TouchSend Index ® is a registered trademark of TouchSend Corporation.

n Visio ® is a registered trademark of Visio Corporation.

n IBM ®, OS/2 ®, DB2/6000 ® and AIX ® are a registered trademark of IBM Corporation.

n Indeo ® is a registered trademark of Intel Corporation.

n Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.

n OSF/Motif ® is a registered trademark of Open Software Foundation.

n ORACLE ® is a registered trademark of ORACLE Corporation, California, USA.

n INFORMIX ®-OnLine for SAP is a registered trademark of Informix Software Incorporated.

n UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.

n ADABAS ® is a registered trademark of Software AG

n The following are trademarks or registered trademarks of SAP AG; ABAP/4, InterSAP, RIVA, R/2,

R/3, R/3 Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript,
SAPtime, SAPtronic, SAP-EDI, SAP EarlyWatch, SAP ArchiveLink, SAP Business Workflow, and
ALE/WEB. The SAP logo and all other SAP products, services, logos, or brand names included
herein are also trademarks or registered trademarks of SAP AG.

n Other products, services, logos, or brand names included herein are trademarks or registered
trademarks of their respective owners.

 SAP AG 1999

Section Overview

Section Basis Technology Overview

Section ABAP Workbench Concepts and Tools

Section Managing ABAP Development Projects
Section ABAP Dictionary

Section ABAP Programming Techniques

Section Techniques for List Creation and SAP Query

Section Transaction Programming
Section Programming Database Updates

Section Enhancements and Modifications

Section Data Transfer

 SAP AG 1999

Section: Programming Database Updates

 SAP AG 1999

Unit SAP Lock Concept

Unit Organizing Database
Updates

Unit Complex LUW
Programming

Unit Introduction

Unit Database Updates with
Open SQL

Unit LUWs and Client Server
Architecture

Content: Programming Database Updates

Appendix

 SAP AG 1999

l Course goals

l Course objectives

l Course content

l Course overview diagram

l Main business scenario

Contents:

Course Overview

 SAP AG 1999

This course will prepare you to:

l Program database updates in the same way that
you process transactions in the SAP R/3 System

Course Goals

 SAP AG 1999

Course Overview Diagram

PrefacePreface

L
U

W
s

an
d

 C
lie

n
t/

L
U

W
s

an
d

 C
lie

n
t/

S
er

ve
r

A
rc

h
it

ec
tu

re
S

er
ve

r
A

rc
h

ite
ct

u
re

7

1 Course OverviewCourse Overview

O
pe

n
S

Q
L

O
p

en
 S

Q
L

S
A

P
 L

o
ck

S
A

P
 L

oc
k

C
o

n
ce

p
ts

C
o

n
ce

p
ts

3

42

ChangeChange
DocumentsDocuments 8

5

6

NumberNumber
AssignmentAssignment

AuthorizationAuthorization
ChecksChecks 9

Complex LUW ProcessingComplex LUW Processing

Organizing Database UpdatesOrganizing Database Updates

 SAP AG 1999

l Open SQL

l Single record operations

l Set operations

Contents:

Database Updates With Open SQL

 SAP AG 1999

Course Overview Diagram - Open SQL

O
pe

n
O

p
en

 S
Q

L
S

Q
L

2 Database Updates
 With Open SQL

 SAP AG 1999

Overview: Database Updates

Open SQL Native SQL

INSERT ...
UPDATE ...
DELETE ...
MODIFY ...

INSERT ...
UPDATE ...
DELETE ...
MODIFY ...

EXEC SQL.
 INSERT ...
ENDEXEC.
 . . .

EXEC SQL.
 INSERT ...
ENDEXEC.
 . . .

DML DML

EXEC SQL.
 CREATE TABLE ...
ENDEXEC.
 . . .

EXEC SQL.
 CREATE TABLE ...
ENDEXEC.
 . . .

DDL

ABAP
specific

cluster database

IMPORT FROM
 DATABASE ...
EXPORT TO
 DATABASE ...

IMPORT FROM
 DATABASE ...
EXPORT TO
 DATABASE ...

DML

n You can update databases either using ABAP's Open SQL commands, or with the database-specific
commands of your database's Native SQL command set.

n You can access ABAP cluster databases using special ABAP commands.

n You can access the data in database tables using the Open SQL commands. The command set
includes operations of the Data Manipulation Language (DML). The Data Definition Language
(DDL) operations are not available in Open SQL, as these functions are performed by the ABAP
Dictionary.

n Native SQL commands allow you to carry out both DML and DDL operations.

n The commands for ABAP cluster databases enable operations to be carried out on the data in the
cluster databases. The tables themselves are created in the ABAP Dictionary as transparent tables.
For general information on cluster tables, refer to the course appendix.

n For further information on Native and Open SQL, see the ABAP Editor keyword documentation for
the term SQL.

 SAP AG 1999

Open SQL: Portability and Buffering

Communication system

Database

Application server 1

Open SQL Native SQL

ABAP program

DB SQL

SAP
table
buffer

SAP
table
buffer

Application server 2

DB interface

n Each time you access the database using Open SQL, the database interface of each work process
(application server) converts this to a database-specific command. For this reason, the ABAP
programs themselves are independent of the database used and can be transferred to other system
platforms (with a different database system) without additional programming requirements.

n SAP database tables can be buffered at the application server level. The aims of buffering are to

� Reduce the time needed to access data with read accesses. Data on the application server can be
accessed more quickly than data on the database.

� Reduce the load on the database. Reading the data from application server buffers reduces the
number of database accesses.

n The buffered tables are accessed exclusively via database interface mechanisms.

n Database accesses with Native SQL enable database-specific commands to be used. This requires a
detailed knowledge of the syntax in question. Programs that use Native SQL commands need
additional programming after they are transported to different system environments (different
database systems), since the syntax of the SQL commands generally varies from one database to the
next.

 SAP AG 1999

Open SQL Property: Target Set On The Database

Open SQLOpen SQL

Tab 1

Tab 3

Tab 2

INSERT INTO
UPDATE (<dbtabvar>)
DELETE FROM

INSERT INTO
UPDATE (<dbtabvar>)
DELETE FROM

Single record Set of
records

Table
name

n The target quantity can be limited on the database using all the Open SQL commands discussed here.

n One or more rows can be processed with a SQL command. Each command also provides the option
of specifying the table name dynamically.

n In addition to this, each type of operation has a syntax variant, which can be used to change
individual fields in a row.

n With masked field selections (WHERE <field1> LIKE '<search_mask>'), note that '_'
masks an individual character and '%' masks a character string of any length (in line with the SQL
standard).
Example: If the airlines Alitalia (carrid = 'AZ') and American Airlines (carrid = 'AA') offer
flights in the SFLIGHT table, you can change the price for both airlines (and for all other airlines
whose ID codes begin with 'A') to 1000 USD as follows:
 UPDATE sflight
 SET price = '1000'
 currency = 'USD'
 WHERE carrid LIKE 'A%'.

 SAP AG 1999

Open SQL Properties: Client Dependency, Results
Confirmations

Open SQLOpen SQL

... CLIENT SPECIFIED ...
WHERE MANDT = ...

without addition = current client
with addition
 valuated = specified client
 not valuated = all clients

SY-SUBRC
SY-DBCNT

n For all Open SQL commands, you can edit data in the current client (standard). To do so, you do not
specify any command additions and leave the client field non valuated.

n If you want to edit data from other clients explicitly, use the SQL command with the addition
CLIENT SPECIFIED and enter the number of the client in which the SQL operation is to be
carried out in the WHERE clause of the command.

n All Open SQL commands return confirmation of the success or failure of the database operation in
the form of a return code. This is always returned by the database interface in the sy-subrc
system field. The return code '0' (zero) always means that the operation has been completed
successfully. All other values mean that errors have occurred. For further details, please refer to the
keyword documentation for the command in question.

n In addition, the sy-dbcnt system field displays the number of records for which the desired
database operation was actually carried out.

n Note that Open SQL commands do not perform any automatic authorization checks. You need to
carry these out separately (see unit Authorization Checks).

 SAP AG 1999

 Creating a Single Record

INSERT INTO <dbtab> [CLIENT SPECIFIED] VALUES <wa>.INSERT INTO <dbtab> [CLIENT SPECIFIED] VALUES <wa>.

DATA wa_spfli TYPE spfli.
 ...
wa_spfli-carrid = 'LH'.
wa_spfli-connid = '0007'.
wa_spfli-cityto = 'SINGAPORE'.
 ...
INSERT INTO spfli VALUES wa_spfli.
IF sy-subrc NE 0.
 ...

DATA wa_spfli TYPE spfli.
 ...
wa_spfli-carrid = 'LH'.
wa_spfli-connid = '0007'.
wa_spfli-cityto = 'SINGAPORE'.
 ...
INSERT INTO spfli VALUES wa_spfli.
IF sy-subrc NE 0.
 ...

wa_spfli

spfli

LH 0007 ...SINGAPORE

n To insert a new row in a database table, enter the command INSERT INTO <dbtab> VALUES
<wa>. To do so, you must specify the data to be written to the database in the <wa> structure (key
and non-key fields) before the command.

n The <wa> structure must be typed according to the row structure of the database table to be updated
(DATA <wa> TYPE <dbtab>).

n Rows can also be inserted for views. However, there are two restrictions here: The view may only
contain fields from one table and must be created in the ABAP Dictionary with maintenance status
'read and change'.

n The INSERT command has the two return codes '0' (row could be inserted) and '4' (row could not be
inserted, as a row with the same key already exists).

n The following ABAP short forms exist:

� Short form 1: INSERT <dbtab> [CLIENT SPECIFIED] FROM <wa>.

� Short form 2: INSERT <dbtab> [CLIENT SPECIFIED].

n The second short form requires that the data, which is to be added to the database, be available in a
table work area called <dbtab>. This table work area must be declared in the program with
TABLES: <dbtab>.

n The second short form is forbidden using ABAP Objects.

 SAP AG 1999

Creating a Set of Records

INSERT <dbtab> [CLIENT SPECIFIED] FROM TABLE <itab>.INSERT <dbtab> [CLIENT SPECIFIED] FROM TABLE <itab>.

DATA:
 it_spfli TYPE STANDARD TABLE OF spfli,
 wa_itab LIKE LINE OF it_spfli.
 ...
wa_itab-carrid = 'LH'.
wa_itab-connid = '0009'.
wa_itab-cityto = 'HONGKONG'.
 ...
APPEND wa_itab TO it_spfli.
INSERT spfli FROM TABLE it_spfli.
IF sy-subrc NE 0.
 ...

DATA:
 it_spfli TYPE STANDARD TABLE OF spfli,
 wa_itab LIKE LINE OF it_spfli.
 ...
wa_itab-carrid = 'LH'.
wa_itab-connid = '0009'.
wa_itab-cityto = 'HONGKONG'.
 ...
APPEND wa_itab TO it_spfli.
INSERT spfli FROM TABLE it_spfli.
IF sy-subrc NE 0.
 ...

it_spfli

spfli

LH 0007 ...SINGAPORE
LH 0008 ...MUNIC
LH 0009 ...HONGKONG

n You can use the command INSERT <dbtab> FROM TABLE <itab> to create several rows in
a database table. The internal table <itab> contains the data in the rows that are to be inserted.
The internal table <itab> must be typed to row type <dbtab>.

n If the operation can be carried on all rows, the return code sy-subrc returns the value zero. If
even one data record cannot be created, a runtime error is triggered. This means that no data record is
inserted by the command.

n You can prevent the runtime error occurring with the addition ACCEPTING DUPLICATE KEYS.
In the event of an error, the addition sets return code 4 instead of the runtime error. The data records
that were successfully inserted are not rejected (no DB ROLLBACK)

n The sy-dbcnt system field contains the number of rows that were successfully inserted in the
database.

 SAP AG 1999

Changing a Single Record

UPDATE <dbtab> [CLIENT SPECIFIED]
 SET <f1> = <g1> ... <fn> = <gn>
 WHERE <fix_key>.

UPDATE <dbtab> [CLIENT SPECIFIED]
 SET <f1> = <g1> ... <fn> = <gn>
 WHERE <fix_key>.

DATA wa_spfli TYPE spfli.
 ...
wa_spfli-carrid = 'LH'.
wa_spfli-connid = '0010'.
wa_spfli-cityto = 'ROME'.
wa_spfli-countryto = 'I'.
 ...
UPDATE spfli
 SET cityto = wa_spfli-carrid
 countryto = wa_spfli-countryto
 WHERE carrid = wa_spfli-carrid
 AND connid = wa_spfli-connid.
IF sy-subrc NE 0.
 ...

DATA wa_spfli TYPE spfli.
 ...
wa_spfli-carrid = 'LH'.
wa_spfli-connid = '0010'.
wa_spfli-cityto = 'ROME'.
wa_spfli-countryto = 'I'.
 ...
UPDATE spfli
 SET cityto = wa_spfli-carrid
 countryto = wa_spfli-countryto
 WHERE carrid = wa_spfli-carrid
 AND connid = wa_spfli-connid.
IF sy-subrc NE 0.
 ...

wa_spfli

spfli

LH 0010 CHBERN

LH 0010 IROME ...

UPDATE <dbtab> [CLIENT SPECIFIED] FROM <wa>.UPDATE <dbtab> [CLIENT SPECIFIED] FROM <wa>.

n The command UPDATE <dbtab> SET <f1> = <g1> ... <fn> = <gn> WHERE
<fix_key> allows you to change data in one row in a database table. After the SET command, you
specify the fields in the rows whose values you want to change and the key of the database row in
the WHERE clause. The key must be specified completely; each individual field must be specified
with the rela tional operator '='.

n For numeric fields, the data following the SET command may be specified in the form of a
"calculation rule" carried out on the database: f = g, f = f + g, f = f - g.

n The command has the two return codes 0 (row could be changed) and 4 (row could not be changed).

n Rows can also be changed in views. However, there are two restrictions here: The view may only
contain fields from one table and must be created in the ABAP Dictionary with maintenance status
'read and change'.

n The following short forms exist:

� Short form 1: UPDATE <dbtab> FROM <wa>.

� Short form 2: UPDATE dbtab.

n With short form 1, the entire data record must have been written to the <wa> structure (key and
non-key fields) before it is called up. The <wa> structure must be typed to the row type of the
database table (DATA: <wa> TYPE <dbtab>. The short form is not field-specific, but sends the
entire structure to the database interface.

n The second short form requires that the data, which is to be updated in the database, be available in a
table work area called <dbtab>. This table work area must be declared in the program with
TABLES: <dbtab>.

n The second short form is forbidden using ABAP Objects.

n If identical changes are to be made to several rows in a table, use the syntax specified on the slide.
Using the WHERE clause, specify the rows for which the change is to be carried out.

n The following "calculations" are also possible here for the numerical fields to be changed:
f = g, f = f + g, f = f - g.

n The command has the two return codes 0 (at least one row has been changed) and 4 (no rows could
be updated).

n The sy-dbcnt field contains the number of updated rows in the database table.

n There is a short form UPDATE <dbtab> SET <f1> = <g1> ...<fn> = <gn>. This
requires that a table work area has been created with TABLES <dbtab> and changes the fields
specified after SET for all rows in the current client.

n The short form is forbidden using ABAP Objects.

n If changes are to be made to several rows in a database table, whereby the changes for each row are
determined via an internal table, use the syntax UPDATE <dbtab> FROM TABLE <itab>.
Here, the internal table <itab> contains the data of the rows to be changed (key and non-key
fields). The internal table <itab> must have the row type <dbtab>.

n The command has the two return codes 0 (all rows have been updated) and 4 (at least one row of the
internal table was not used to update the database; the remaining rows have been updated).

n The system field sy-dbcnt contains the number of rows that have been updated in the database.

n The MODIFY command is SAP-specific . It includes the operations of the two commands
INSERT ... and UPDATE ...:

� In other words, MODIFY <dbtab> FROM <wa> inserts a new data record if the structure
<wa> specifies a data record that does not yet exist in the database.

� If the <wa> structure specifies an existing data record, the command updates the row in question.

n Using the different syntax variants, you can make changes to individual rows, make similar changes
to several rows, and carry out operations on sets of records.

n All variants of the MODIFY .. syntax have the two return codes 0 (all rows were inserted or
updated) and 4 (at least one line was not inserted or updated).

n The operation can also be carried out on views. However, there are two restrictions here: The view
may only contain fields from one table and must be created in the ABAP Dictionary with
maintenance status 'read and change'.

n The field sy-dbcnt contains the number of rows that have been changed or inserted in the
database.

n The command DELETE FROM <dbtab> WHERE <fixkey> enables one row to be deleted
from a database table. In the WHERE clause, specify all the key fields with the relational operator '='.

n The command has the two return codes 0 (row has been deleted) and 4 (row has not been deleted).

n A row can also be deleted from views. However, there are two restrictions here: The view may only
contain fields from one table and must be created in the ABAP Dictionary with maintenance status
'read and change'.

n The following short forms exist:

� Short form 1: DELETE <dbtab> [CLIENT SPECIFIED] FROM <wa>,

� Short form 2: DELETE <dbtab> [CLIENT SPECIFIED].

n Short form 1 requires that the <wa> structure has been filled with the key fields of the row to be
deleted before it is called up. The structure must have the row type <dbtab>.

n Short form 2 requires that the key fields of the row to be deleted be available in a table work area
called <dbtab>. This table work area must be declared in the program with TABLES: <dbtab>.

n The second short form is forbidden using ABAP Objects.

n The command DELETE FROM <dbtab> WHERE <condition> enables several rows to be
deleted from a database table. Here, you can specify the rows that are to be deleted with the WHERE
clause.

n The command has the two return codes 0 (at least one row was deleted) and 4 (no rows were
deleted).

n The system field sy-dbcnt contains the number of rows that have been updated on the database.

n To delete several specific rows from a database using a database operation, use the statement
DELETE <dbtab> FROM TABLE <itab>. The internal table <itab> here contains the
key fields for the rows that are to be deleted. The internal table <itab> must have the row type
<dbtab>.

n The command has the two return codes 0 (all rows have been deleted) and 4 (at least one row could
not be deleted, the rest have been deleted).

n There are two ways of deleting all the rows from a table in the current client:

� Either DELETE FROM <dbtab> WHERE <field> IN <itab> with a blank internal table
<itab>

� or DELETE FROM <dbtab> WHERE <field> LIKE '%'.

n The number of rows deleted from the database is shown in the system field sy-dbcnt.

n If you receive a return code other than zero from the database interface in response to an Open SQL
statement for changing data in the database, you should make sure that the database is reset to the
status it had before the change attempt was made. You can do this by means of a database rollback.
The database rollback undoes any changes made to the current database LUW (see the next unit).

n For return codes from DB change statements (Open SQL), the most suitable means of triggering a
database rollback is to send a termination dialog message (A message or X message). This triggers a
database rollback and terminates the associated program.

n All other message types (E,W, I) also involve a dialog but do not trigger a database rollback.

n You can also trigger a database rollback using the ABAP statement ROLLBACK WORK (without
terminating the program at the same time). You should not use the ROLLBACK WORK statement
directly, unless you do not want to reset the program context (unlike a termination dialog message)
(see unit Organizing Database Updates).

Unit: Keywords for DB Updates

Topic: Single Record Changes

At the conclusion of these exercises, you will be able to:

• Insert and modify single records in database tables.

The program SAPBC414T_CREATE_CUSTOMER_01 enables new
customer data to be entered in screen 100.

Extend this program to include the database dialog:
After the function code SAVE is triggered (e.g. by clicking the Save
icon), the customer data is to be written to the database table SCUSTOM.

Program: SAPMZ##_CUSTOMER1

Transaction code: Z##_CUSTOMER1

Template: SAPBC414T_CREATE_CUSTOMER_01

Model solution: SAPBC414S_CREATE_CUSTOMER_01

1-1 Copy the program template SAPBC414T_CREATE_CUSTOMER_01 with all sub-
objects to SAPMZ##_CUSTOMER1 (## is the group number). Assign transaction
code Z##_CUSTOMER1 to the program.

1-2 The ABAP statements for the database dialog are encapsulated in the subroutine
SAVE_SCUSTOM. The subroutine has already been created (and is empty).

1-2-1 Insert the new customer data record in the database table SCUSTOM. The set
message S015 is to be output if the new data record is inserted successfully.
If the data record was not inserted successfully, the termination message
A048 is to be output.

The customer data is stored in the structure SCUSTOM.

The message class BC414 is set as an addition for the PROGRAM
statement and therefore is globally valid (throughout the program).

Optional Exercise

Unit: Keywords for DB Updates

Topic: Changing Data Sets

At the conclusion of these exercises, you will be able to:

• Insert and modify data sets in database tables.

In the program SAPBC414T_UPDATE_STRAVELAG, a list is generated
that presents the data of the travel agencies maintained in the
STRAVELAG table. The user can select the travel agency data that is to
be changed on the next screen 100 by selecting one or more rows.

Extend the program to include the database dialog:
The changed data is to be saved to the STRAVELAG database table by
clicking the Save icon (function code SAVE) on screen 100.

Program: SAPMZ##_UPDATE_STRAVELAG

Template: SAPBC414T_UPDATE_STRAVELAG

Model solution: SAPBC414S_UPDATE_STRAVELAG

2-1 Copy the program template SAPBC414T_ UPDATE_STRAVELAG with all sub-
objects to SAPMZ##_UPDATE_STRAVELAG (## is the group number). As this is a
type 1 program, a transaction code is not required.

2-2 The database dialog is initiated by triggering the function code SAVE. Here, the
subroutine SAVE_CHANGES, which contains the database dialog, is called up in
the PAI module USER_COMMAND_0100 (screen 100). This subroutine has
already been created (empty).

2-2-1 Save the changed address data to the database table STRAVELAG. When
doing so, note the performance aspects. If the change is successful, the set
message S030 is to be output. If it is unsuccessful, information message
I048 is to be output.

The travel agency data is buffered in the internal table ITAB_TRAVEL
(work area WA_TRAVEL). The rows in the internal table have the same
structure as those in STRAVELAG, with the exception of the additional
field MARK_CHANGED (C(1)). If the address data on the screen 100 has

 been changed, MARK_CHANGED has the value 'X'. Otherwise it is blank
or 0.

The model solutions provided here repeat the statements of the flow
logic and ABAP program parts that will be required.

The exercises for course BC414 are designed to expand on two
larger programs accompanying the contents of the unit in question.
For the sake of clarity, not all of the model solutions are provided
with complete coding. The following procedure is used instead:

• The model solution for the activity in which a program is edited
for the first time is displayed completely.

• Any model solutions that expand on this only explain flow logic,
subroutines, and modules, which have changed or appear for the
first time. The statements in the repeated modularization units
that need to be completed in order to solve the activity are
highlighted in bold.

• A complete version of both programs is provided in the appendix
in the training folder.

The second activity in the unit on Database Updates With Open
SQL, which is marked as optional, is an exception to this procedure.
Since the program associated with this activity is not dealt with in
the following units, the model solution for this activity is explained
fully.

Unit: Keywords for DB Updates

Topic: Single Record Changes

Model Solution SAPBC414S_CREATE_CUSTOMER_01

Module Pool
&---

*& Modulpool SAPBC414S_CREATE_CUSTOMER_01 *

&---
INCLUDE BC414S_CREATE_CUSTOMERTOP.

INCLUDE BC414S_CREATE_CUSTOMERO01.

INCLUDE BC414S_CREATE_CUSTOMERI01.
INCLUDE BC414S_CREATE_CUSTOMER_01F01.

SCREEN 100
PROCESS BEFORE OUTPUT.
 MODULE status_0100.

PROCESS AFTER INPUT.

 MODULE exit AT EXIT-COMMAND.

 MODULE save_ok_code.
 FIELD: scustom-name MODULE mark_changed ON REQUEST.

 MODULE user_command_0100.

TOP Include
&---

*& Include BC414S_CREATE_CUSTOMERTOP *

&---
PROGRAM sapbc414s_create_customer MESSAGE-ID bc414.

DATA: answer, flag.

DATA: ok_code LIKE sy-ucomm, save_ok LIKE ok_code.

TABLES: scustom.

PBO Modules
--

***INCLUDE BC414S_CREATE_CUSTOMERO01 .
--

&---

*& Module STATUS_0100 OUTPUT

&---
MODULE STATUS_0100 OUTPUT.

 SET PF-STATUS 'DYN_0100'.
 SET TITLEBAR 'DYN_0100'.

ENDMODULE. " STATUS_0100 OUTPUT

PAI Modules
--
***INCLUDE BC414S_CREATE_CUSTOMERI01 .

--

&---

*& Module EXIT INPUT
&---

MODULE exit INPUT.
 CASE ok_code.

 WHEN 'EXIT'.

 IF sy-datar IS INITIAL AND flag IS INITIAL.
* no changes on screen 100

 LEAVE PROGRAM.

 ELSE.
 PERFORM ask_save USING answer.

 CASE answer.
 WHEN 'J'.

 ok_code = 'SAVE&EXIT'.

 WHEN 'N'.
 LEAVE PROGRAM.

 WHEN 'A'.
 CLEAR ok_code.

 SET SCREEN 100.

 ENDIF.

 WHEN 'CANCEL'.

 IF sy-datar IS INITIAL AND flag IS INITIAL.
* no changes on screen 100

 LEAVE TO SCREEN 0.
 ELSE.

 PERFORM ask_loss USING answer.

 CASE answer.
 WHEN 'J'.

 LEAVE TO SCREEN 0.
 WHEN 'N'.

 CLEAR ok_code.

 SET SCREEN 100.
 ENDCASE.

 ENDIF.

 ENDCASE.
ENDMODULE. " EXIT INPUT

&---
*& Module SAVE_OK_CODE INPUT

&---

MODULE save_ok_code INPUT.
 save_ok = ok_code.

 CLEAR ok_code.
ENDMODULE. " SAVE_OK_CODE INPUT

&---
*& Module USER_COMMAND_0100 INPUT

&---

MODULE user_command_0100 INPUT.
 CASE save_ok.

 WHEN 'SAVE&EXIT'.
 PERFORM save.

 LEAVE PROGRAM.

 WHEN 'SAVE'.
 IF flag IS INITIAL.

 SET SCREEN 100.
 ELSE.

 PERFORM save.

 SET SCREEN 0.
 ENDIF.

 WHEN 'BACK'.

 IF flag IS INITIAL.

 SET SCREEN 0.
 ELSE.

 PERFORM ask_save USING answer.
 CASE answer.

 WHEN 'J'.

 PERFORM save.
 SET SCREEN 0.

 WHEN 'N'.
 SET SCREEN 0.

 WHEN 'A'.

 SET SCREEN 100.
 ENDCASE.

 ENDIF.

 ENDCASE.
ENDMODULE. " USER_COMMAND_0100 INPUT

&---

*& Module MARK_CHANGED INPUT
&---

MODULE mark_changed INPUT.
* set flag to mark changes were made on screen 100

 flag = 'X'.

ENDMODULE. " MARK_CHANGED INPUT

FORM Routines
--

***INCLUDE BC414S_CREATE_CUSTOMER_01F01 .
--

&---

*& Form NUMBER_GET_NEXT

&---
* -->P_WA_SCUSTOM text

--
FORM number_get_next USING p_scustom LIKE scustom.

 DATA: return TYPE inri-returncode.

* get next free number in the number range '01'
* of number range object'SBUSPID'

 CALL FUNCTION 'NUMBER_GET_NEXT'

 EXPORTING
 nr_range_nr = '01'

 object = 'SBUSPID'
 IMPORTING

 number = p_scustom-id

 returncode = return
 EXCEPTIONS

 OTHERS = 1.
 CASE sy-subrc.

 WHEN 0.

 CASE return.
 WHEN 1.

* number of remaining numbers critical

 MESSAGE s070.
 WHEN 2.

* last number
 MESSAGE s071.

 WHEN 3.

* no free number left over
 MESSAGE a072.

 ENDCASE.
 WHEN 1.

* internal error

 MESSAGE a073 WITH sy-subrc.

 ENDCASE.

ENDFORM. " NUMBER_GET_NEXT

&---

*& Form ASK_SAVE

&---
* -->P_ANSWER text

--
FORM ask_save USING p_answer.

 CALL FUNCTION 'POPUP_TO_CONFIRM_STEP'

 EXPORTING
 textline1 = 'Data has been changed.'(001)

 textline2 = 'Save before leaving transaction?'(002)
 titel = 'Create Customer'(003)

 IMPORTING

 answer = p_answer.
ENDFORM. " ASK_SAVE

&---
*& Form ASK_LOSS

&---
* -->P_ANSWER text

--

FORM ask_loss USING p_answer.
 CALL FUNCTION 'POPUP_TO_CONFIRM_LOSS_OF_DATA'

 EXPORTING
 textline1 = 'Continue?'(004)

 titel = 'Create Customer'(003)

 IMPORTING
 answer = p_answer.

ENDFORM. " ASK_LOSS

&---
*& Form ENQ_SCUSTOM

&---

FORM enq_scustom.
 CALL FUNCTION 'ENQUEUE_ESCUSTOM'

 EXPORTING
 id = scustom-id

 EXCEPTIONS

 foreign_lock = 1

 system_failure = 2

 OTHERS = 3.

 CASE sy-subrc.
 WHEN 0.

 WHEN 1.
 MESSAGE e060.

 WHEN OTHERS.

 MESSAGE e063 WITH sy-subrc.
 ENDCASE.

ENDFORM. " ENQ_SCUSTOM

&---
*& Form DEQ_ALL

&---

FORM deq_all.
 CALL FUNCTION 'DEQUEUE_ALL'.

ENDFORM. " DEQ_ALL
&---

*& Form SAVE

&---
FORM save.

* get SCUSTOM-ID from number range object SBUSPID
 PERFORM number_get_next USING scustom.

* save new customer

 PERFORM save_scustom.
ENDFORM. " SAVE

&---

*& Form SAVE_SCUSTOM
&---

FORM save_scustom.
 INSERT INTO scustom VALUES scustom.
 IF sy-subrc <> 0.

* insertion of dataset in DB-table not possible
 MESSAGE a048.

 ELSE.

* insertion successfull
 MESSAGE s015 WITH scustom-id.

 ENDIF.

ENDFORM. " SAVE_SCUSTOM

Solutions

Unit: Keywords for DB Updates

Topic: Changing Data Sets

Model Solution SAPBC414S_UPDATE_STRAVELAG

Module Pool
&---
*& Modulpool SAPBC414S_UPDATE_STRAVELAG *

&---

INCLUDE bc414s_update_stravelagtop.
INCLUDE bc414s_update_stravelagf01.

INCLUDE bc414s_update_stravelago01.
INCLUDE bc414s_update_stravelagi01.

INCLUDE bc414s_update_stravelage01.

SCREEN 100
PROCESS BEFORE OUTPUT.

 MODULE STATUS_0100.

* fill table control (only agencies, marked on list)
 LOOP AT ITAB_TRAVEL INTO WA_TRAVEL WITH CONTROL TC_STRAVELAG.

 MODULE TRANS_TO_DYNPRO.

 ENDLOOP.
*

PROCESS AFTER INPUT.

 MODULE EXIT AT EXIT-COMMAND.

 LOOP AT ITAB_TRAVEL.
 CHAIN.

 FIELD: STRAVELAG-STREET, STRAVELAG-POSTBOX, STRAVELAG-POSTCODE,
 STRAVELAG-CITY, STRAVELAG-COUNTRY, STRAVELAG-REGION,

 STRAVELAG-TELEPHONE, STRAVELAG-URL, STRAVELAG-LANGU.

* mark datasets, that were changed in table control (subset of all

* agencies, thet were shown on table control)

 MODULE SET_MARKER ON CHAIN-REQUEST.
 ENDCHAIN.

 ENDLOOP.
 MODULE SAVE_OK_CODE.

 MODULE USER_COMMAND_0100.

TOP Include
&---

*& Include BC414S_UPDATE_STRAVELAGTOP *
&---

PROGRAM sapbc414s_update_stravelag NO STANDARD PAGE HEADING
 LINE-SIZE 120

 LINE-COUNT 10

 MESSAGE-ID bc414.

* Line type definition for internal table itab_travel
TYPES: BEGIN OF stravel_type.

 INCLUDE STRUCTURE stravelag.

TYPES: mark_changed,
 END OF stravel_type.

* Standard internal table for travel agency data buffering and
* corresponding workarea

DATA: itab_stravelag LIKE STANDARD TABLE OF stravelag
 WITH NON-UNIQUE KEY agencynum,

 wa_stravelag TYPE stravelag.

* Workarea for transport of field values from/to screen 100

TABLES: stravelag.

* Transport function code from screen 100

DATA: ok_code TYPE sy-ucomm, save_ok LIKE ok_code.

* Table control structure on screen 100

CONTROLS: tc_stravelag TYPE TABLEVIEW USING SCREEN '0100'.

* Internal table to collect marked list entries, corresponding
* workarea

DATA: itab_travel TYPE STANDARD TABLE OF stravel_type

 WITH NON-UNIQUE KEY agencynum,
 wa_travel TYPE stravel_type.

* Mark field displayed as checkbox on list

DATA: mark.

* Flags:

DATA: flag, "changes performed on table control

 modify_list. "modification of list buffer is neccessary

* Positions of fields on list
CONSTANTS: pos1 TYPE i VALUE 1,

 pos2 TYPE i VALUE 3,

 pos3 TYPE i VALUE 14,
 pos4 TYPE i VALUE 40,

 pos5 TYPE i VALUE 71,
 pos6 TYPE i VALUE 82,

 pos7 TYPE i VALUE 108.

PBO Modules
--

***INCLUDE BC414S_UPDATE_STRAVELAGO01 .
--

&---

*& Module STATUS_0100 OUTPUT

&---
MODULE status_0100 OUTPUT.

 SET PF-STATUS 'DYNPRO'.
 SET TITLEBAR 'DYNPRO'.

ENDMODULE. " STATUS_0100 OUTPUT

&---

*& Module TRANS_TO_DYNPRO OUTPUT
&---

MODULE trans_to_dynpro OUTPUT.
* Field transport to screen

 MOVE-CORRESPONDING wa_travel TO stravelag.

ENDMODULE. " TRANS_TO_DYNPRO OUTPUT

PAI Modules
--
***INCLUDE BC414S_UPDATE_STRAVELAGI01 .

--

&---

*& Module USER_COMMAND_0100 INPUT
&---

MODULE user_command_0100 INPUT.

 CASE save_ok.
 WHEN 'SAVE'.

 IF flag IS INITIAL.
* enries on table control not changed.

 SET SCREEN 0.

* at least one field on table control changed

 PERFORM save_changes.

 SET SCREEN 0.
 ENDIF.

 ENDCASE.
ENDMODULE. " USER_COMMAND_0100 INPUT

&---

*& Module SAVE_OK_CODE INPUT
&---

MODULE save_ok_code INPUT.

 save_ok = ok_code.
 CLEAR: ok_code.

ENDMODULE. " SAVE_OK_CODE INPUT

&---
*& Module EXIT INPUT

&---

MODULE exit INPUT.
 CASE ok_code.

 WHEN 'CANCEL'.
 IF sy-datar IS INITIAL AND flag IS INITIAL.

* no changes performed on screen

 LEAVE TO SCREEN 0.
 ELSE.

* at least one field on table control changed.

 PERFORM popup_to_confirm_loss_of_data.
 ENDIF.

 ENDCASE.
ENDMODULE. " EXIT INPUT

&---

*& Module SET_MARKER INPUT
&---

MODULE set_marker INPUT.

 MOVE-CORRESPONDING stravelag TO wa_travel.
 wa_travel-mark_changed = 'X'.

* mark datasets in internal table as modified

 MODIFY TABLE itab_travel FROM wa_travel.

* at least one dataset is modified in table control
 flag = 'X'.

ENDMODULE. " SET_MARKER INPUT

Events
--

* INCLUDE BC414S_UPDATE_STRAVELAGE01 *
--

&---

*& Event START-OF-SELECTION

&---
START-OF-SELECTION.

* Read data from STRAVELAG into internal table ITAB_STRAVELAG
 PERFORM read_data USING itab_stravelag.

* Write data from ITAB_STRAVELAG on list

 PERFORM write_data.

&---
*& Event TOP-OF-PAGE

&---
TOP-OF-PAGE.

* Write page title and page heading

 PERFORM write_header.

&---

*& Event END-OF-SELECTION

&---
END-OF-SELECTION.

* Set PF-Status and Title of list

 SET PF-STATUS 'LIST'.
 SET TITLEBAR 'LIST'.

&---

*& Event AT USER-COMMAND
&---

AT USER-COMMAND.
 CLEAR: modify_list, flag, itab_travel.

* Collect data corresponding to marked lines into internal table

 PERFORM loop_at_list USING itab_travel.

* Call screen if any line on list was marked

 CHECK NOT itab_travel IS INITIAL.

 PERFORM call_screen.
* Modify list buffer if database table was modified -> submit report

 CHECK NOT modify_list IS INITIAL.
 SUBMIT (sy-cprog).

FORM Routines
--

***INCLUDE BC414S_UPDATE_STRAVELAGF01 .
--

&---

*& Form READ_DATA

&---
* -->P_ITAB_STRAVELAG text

--
FORM read_data USING p_itab_stravelag LIKE itab_stravelag.

 SELECT * FROM stravelag

 INTO CORRESPONDING FIELDS OF TABLE p_itab_stravelag.
ENDFORM. " READ_DATA

&---

*& Form WRITE_DATA
&---

FORM write_data.

 LOOP AT itab_stravelag INTO wa_stravelag.
 WRITE AT: /pos1 mark AS CHECKBOX,

 pos2 wa_stravelag-agencynum COLOR COL_KEY,
 pos3 wa_stravelag-name,

 pos4 wa_stravelag-street,

 pos5 wa_stravelag-postcode,
 pos6 wa_stravelag-city,

 pos7 wa_stravelag-country.

 HIDE: wa_stravelag.
 ENDLOOP.

ENDFORM. " WRITE_DATA

&---
*& Form WRITE_HEADER

&---
FORM write_header.

 WRITE: / 'Travel agency data'(007), AT sy-linsz sy-pagno.

 ULINE.

 FORMAT COLOR COL_HEADING.

 WRITE AT: /pos2 'Agency'(001),

 pos3 'Name'(002),
 pos4 'Street'(003),

 pos5 'Postal Code'(004),
 pos6 'City'(005),

 pos7 'Country'(006).

 ULINE.
ENDFORM. " WRITE_HEADER

&---

*& Form LOOP_AT_LIST

&---
* -->P_ITAB_AGNECYNUM text

--
FORM loop_at_list USING p_itab_travel LIKE itab_travel.

 DO.

 CLEAR: mark.
 READ LINE sy-index FIELD VALUE mark.

 IF sy-subrc <> 0.
 EXIT.

 ENDIF.

 CHECK NOT mark IS INITIAL.
 APPEND wa_stravelag TO p_itab_travel.

 ENDDO.

ENDFORM. " LOOP_AT_LIST

&---

*& Form CALL_SCREEN

&---
FORM call_screen.

* Initialize table control on screen
 REFRESH CONTROL 'TC_STRAVELAG' FROM SCREEN '0100'.

* Show screen in modal dialog box.

 CALL SCREEN 100 STARTING AT 5 5
 ENDING AT 80 15.

ENDFORM. " CALL_SCREEN

&---
*& Form POPUP_TO_CONFIRM_LOSS_OF_DATA

&---

FORM popup_to_confirm_loss_of_data.
 DATA answer.

 CALL FUNCTION 'POPUP_TO_CONFIRM_LOSS_OF_DATA'
 EXPORTING

 textline1 = 'Cancel processing of travel agencies?'(008)

 titel = 'Cancel processing'(009)

 IMPORTING

 answer = answer.

 CASE answer.
 WHEN 'J'.

 LEAVE TO SCREEN 0.
 WHEN 'N'.

 LEAVE TO SCREEN '0100'.

 ENDCASE.
ENDFORM. "
POPUP_TO_CONFIRM_LOSS_OF_DATA

&---

*& Form SAVE_CHANGES

&---
FORM save_changes.
* declare internal table and workarea of same linetype as DB table
 DATA: itab TYPE STANDARD TABLE OF stravelag,

 wa LIKE LINE OF itab.

* search for datasets changed on the screen
 LOOP AT itab_travel INTO wa_travel

 WHERE mark_changed = 'X'.
* fill workarea fitting to DB table

 MOVE-CORRESPONDING wa_travel TO wa.

* fill corresponding internal table
 APPEND wa TO itab.

 ENDLOOP.

* mass update on stravelag -> best performance
 UPDATE stravelag FROM TABLE itab.

* check success
 IF sy-subrc = 0.

* all datasets are successfully updated

 MESSAGE s030.
 ELSE.

* at least one dataset from the internal table could not be updated
* on the database table

 MESSAGE i048.

 ENDIF.
* Flag: List does not show correct data any more

 modify_list = 'X'.

ENDFORM. " SAVE_CHANGES

 SAP AG 1999

l SAP LUW

l Database LUW

l Consequences of the client/server architecture

Contents:

LUWs and Client/Server Architecture

 SAP AG 1999

Course Overview Diagram - LUWs

L
U

W
s

L
U

W
s

an
d

 C
lie

n
t/

 a
n

d
 C

lie
n

t/
S

er
ve

r
A

rc
h

it
ec

tu
re

S
er

ve
r

A
rc

h
ite

ct
u

re

3

LUWs and Client/
Server Architecture

 SAP AG 1999

SAP Logical Unit of Work (SAP LUW):
Preliminary Definition

SAP LUW

Step 1 Step 2 . . . Step n

Elementary
business process

n An SAP logical unit of work (LUW) is a functionally complete set of steps within a business
process in the R/3 System.

n The process steps must be logically related.

n SAP LUWs work on an all-or-nothing principle: Either all or none of its steps are carried out.

n The business process to be mapped must be basic. For example, you would not have a single SAP
LUW consisting of all of the steps between a customer processing an order and an invoice being
produced. Instead, you would split this up into separate parts, each of which would then be
represented in the R/3 System by its own LUW. What constitutes an "elementary" process depends
on the overall process and how you have modeled it.

n For further information, see the ABAP Editor keyword documentation for the term transaction
processing .

 SAP AG 1999

Database LUW

Consistent
 status 1

Intermediate states

Consistent
 status 2

ROLLBACK
possible

Database operations
insert, update, delete

DB COMMIT

n A database logical unit of work (LUW) is a non-separable sequence of database operations. At the
beginning and end of the LUW, the database is in a consistent state.

n The database LUW is either fully carried out by the database system, or is not carried out at all.

n A database LUW is opened with every dialog step and by a database commit of the previous DB
LUW.

n The database LUW is closed with a database commit. It is only in the commit that the data is written
to the database (after which it can no longer be reversed). Before the database commit, you can undo
the changes using a database rollback. Here, the database is reset to the status that it had before the
first change was made to the current DB LUW.

n Data that has been written to the database permanently with a database commit cannot be rolled
back.

n Database LUWs allow you to encapsulate logically related actions from a business process. For
example, when transferring sums of money in financial accounting, you must deduct an amount from
one account and then add it to another account. Before and after the process, the data is consistent,
but in between the two steps, it can be inconsistent.

n For further information, see the ABAP Editor keyword documentation for the term transaction
processing .

 SAP AG 1999

R/3 Software View: Client/Server Architecture

SAPGUI

Work
process

Dispatcher

Work
process

Work
process

Database
work processes

SAPGUI SAPGUI SAPGUI

n The SAP R/3 System is based on the three-tier architecture of a client/server system. The three tiers
are the database, application, and presentation server layers.

n This architecture, along with the distribution of users' requests (user dispatching), leads to a highly-
efficient, cost-effective multi-user system.

n The three-tier architecture means that a la rge number of users with low-cost desktop computers (with
low performance) can be mapped to a small number of high-performance (and considerably more
expensive) work processes on application servers. Each work process on an application server is
assigned a work process on a high-performance database server.

n Distributing user requests to work processes assigns individual clients at presentation server level to
a work process for a particular period. In turn, the work process uses another work process in the
database. After the work process has processed the user input in a dialog step, the user, along with
the program context, is removed from the work process, which can then be used by another user.

n The three-tier architecture is far more scalable than a "fat" client architecture, in which the
presentation and application levels run on one server. With a three-tier architecture, the number of
database users is considerably lower than the number of users active in the system. This has a
positive effect on the behavior of the database.

 SAP AG 1999

System Architecture: Implicit DB Commit

DB LUW 1 DB LUW 2 DB LUW 3 DB LUW 4 Time

DB COMMITDB COMMIT DB COMMIT

Screen 1 Screen 2 Screen 3

n The three-tier architecture of the R/3 System has certain consequences for process handling. When a
work process is released for use by another user (client), an implicit database commit is triggered for
the database process assigned to it (via a basis program).

n Work processes on the application server and database are released before each user dialog. This
ensures that long user dialogs in which the system is "only displaying a screen" are not included in
database LUWs. The duration of the user interaction will be longer than the DB LUW duration.
Shorter database LUWs lead to less load on the database.

n Implicit commits on the database are triggered whenever the work process has to wait. This includes:

­ When the system sends a new screen

­ When the system sends a dialog message

­ When you make a synchronous remote function call (RFC)

­ When you use the CALL TRANSACTION <t_code> or SUBMIT <program> statement.

 SAP AG 1999

Target: Bundling The DB Changes Of An SAP LUW

DB LUW

SAP LUW

DB changes

ABAP
program

User dialogs

n Using an SAP LUW to represent a business process chain usually involves user dialogs as well as the
changes to the database. The aim of an R/3 transaction is to represent the information exchanged in
the SAP LUW as an indivisible unit in the database. This means that an SAP LUW can only use a
single database LUW.

n Since SAP LUWs usually involve several database LUWs, you need to bundle the database changes
in a single database LUW within your transaction.

 SAP AG 1999

LUWs and Client/Server Architecture: Unit
Summary

l Explain the meaning of the terms database LUW
and SAP LUW

l Explain why you need to bundle changes to
database tables in the client/server architecture of
the R/3 System

You are now able to:

Exercises

Unit: LUW Concepts

At the conclusion of these exercises, you will be able to:

• Assess function modules and subroutines for LUW processing
suitability.

The program SAPBC414T_BOOKINGS_01 allows you to cancel
bookings for a flight. For this purpose, bookings can be prepared for
cancellation by selecting the appropriate checkbox on screen 200.

Implement the database dialog:
By clicking the Save icon (function code SAVE) on screen 200, the
bookings selected in the SBOOK table are to be changed. In addition and
within the same database LUW, the flight in question must be modified in
the SFLIGHT table (the total number of bookings and number of
reserved seats will change as a result of the cancellation). The changes
made to the data records of both database tables must be made within one
database LUW. Existing function modules are to be used for this purpose.

Program: SAPMZ##_BOOKINGS1

Transaction code: Z##_BOOKINGS1

Template: SAPBC414T_BOOKINGS_01

Model solution: SAPBC414S_BOOKINGS_01

1-1 Copy the program template SAPBC414T_ BOOKINGS_01 with all sub-objects to
SAPMZ##_BOOKINGS1 (## is the group number) and assign transaction code
Z##_BOOKINGS1 to the program. Familiarize yourself with the program
functionality.

1-2 The ABAP statements for the database updates are to be encapsulated in the
subroutine SAVE_MODIFIED_BOOKING, which is called up from the PAI
module USER_COMMAND_0200 (screen 200).

The database update is to be performed using the available function modules. A
choice of two function modules is available for each table : UPDATE_SBOOK,
UPDATE_SBOOK_A, UPDATE_SFLIGHT and UPDATE_SFLIGHT_A. Calling up

the function modules with the right combination and sequence will ensure that the
data remains consistent throughout all of the database tables in the case of an error.

1-2-1 Which function modules must be called up and in what order? For this
purpose, check the source code in the function modules for ABAP
statements, which terminate the database LUW prematurely and can,
therefore, result in inconsistent data being written to the tables permanently.

1-2-2 Call up the function modules in the appropriate order from the subroutine
SAVE_MODIFIED_BOOKING.

1-2-3 Deal with the exceptions of the function modules. Possible user messages:

 Flight / bookings updated ⇒ Message 034
Error with flight / booking update ⇒ Message 044
Updates unsuccessful ⇒ Message 048
Flight sold out ⇒ Message 045
Flight does not exist ⇒ Message 046

The data records to be changed in the database table SBOOK are buffered
in the internal table ITAB_SBOOK_MODIFY.

The key fields of the corresponding flight can be captured via the
WA_SFLIGHT structure.

For information on the functionality of the template, see the attached
graphic.

Unit: LUW Concepts

Model Solution SAPBC414S_BOOKINGS_01

Module Pool
&---

*& Modulpool SAPBC414S_BOOKINGS_01 *
&---

INCLUDE BC414S_BOOKINGS_01TOP.

INCLUDE BC414S_BOOKINGS_01O01.
INCLUDE BC414S_BOOKINGS_01I01.

INCLUDE BC414S_BOOKINGS_01F01.
INCLUDE BC414S_BOOKINGS_01F02.

INCLUDE BC414S_BOOKINGS_01F03.

INCLUDE BC414S_BOOKINGS_01F04.
INCLUDE BC414S_BOOKINGS_01F05.

INCLUDE BC414S_BOOKINGS_01F06.

SCREEN 100
PROCESS BEFORE OUTPUT.

 MODULE STATUS_0100.

*
PROCESS AFTER INPUT.

 MODULE EXIT AT EXIT-COMMAND.
 MODULE SAVE_OK_CODE.

 CHAIN.

* cancel booking: check if flight exists or flight can be created
 FIELD: SDYN_CONN-CARRID, SDYN_CONN-CONNID, SDYN_CONN-FLDATE.

 MODULE USER_COMMAND_0100.
 ENDCHAIN.

SCREEN 200
PROCESS BEFORE OUTPUT.

 MODULE STATUS_0200.
 MODULE TRANS_DETAILS.

 CALL SUBSCREEN SUB1 INCLUDING SY-CPROG '0201'.
 LOOP AT ITAB_BOOK INTO WA_BOOK WITH CONTROL TC_SBOOK.

 MODULE TRANS_TO_TC.

* allow only modification of bookings, that are not allready
cancelled

 MODULE MODIFY_SCREEN.
 ENDLOOP.

*

PROCESS AFTER INPUT.
 LOOP AT ITAB_BOOK.

* mark changed bookings in internal table itab_book

 FIELD SDYN_BOOK-CANCELLED MODULE MODIFY_ITAB ON REQUEST.
 ENDLOOP.

 MODULE EXIT AT EXIT-COMMAND.
 MODULE SAVE_OK_CODE.

 MODULE USER_COMMAND_0200.

SCREEN 201
PROCESS BEFORE OUTPUT.

PROCESS AFTER INPUT.

SCREEN 300
PROCESS BEFORE OUTPUT.
 MODULE STATUS_0300.

 MODULE TABSTRIP_INIT.

 MODULE TRANS_DETAILS.
 CALL SUBSCREEN TAB_SUB INCLUDING SY-CPROG SCREEN_NO.

*

PROCESS AFTER INPUT.
 CALL SUBSCREEN TAB_SUB.

 MODULE EXIT AT EXIT-COMMAND.
 MODULE SAVE_OK_CODE.

 MODULE TRANS_FROM_0300.

 MODULE USER_COMMAND_0300.

SCREEN 301
PROCESS BEFORE OUTPUT.
* MODULE HIDE_BOOKID.

PROCESS AFTER INPUT.

SCREEN 302
PROCESS BEFORE OUTPUT.

PROCESS AFTER INPUT.

SCREEN 303
PROCESS BEFORE OUTPUT.

PROCESS AFTER INPUT.

TOP Include
&---

*& Include BC414S_BOOKINGS_01TOP *
&---

PROGRAM sapbc414s_bookings_01 MESSAGE-ID bc414.

* line type of internal table itab_book, used to display bookings in

* table control
TYPES: BEGIN OF wa_book_type.

INCLUDE: STRUCTURE sbook.
TYPES: name TYPE scustom-name,

 mark,

 END OF wa_book_type.

* work area and internal table used to display bookings in table
* control
DATA: wa_book TYPE wa_book_type,

 itab_book TYPE TABLE OF wa_book_type.

* bookings to be modified on database table

DATA: itab_sbook_modify TYPE TABLE OF sbook.

* change documents: bookings before changes are performed
DATA: itab_cd TYPE TABLE OF sbook WITH NON-UNIQUE KEY

 carrid connid fldate bookid customid.

* work areas for database tables spfli, sflight, sbook.

DATA: wa_sbook TYPE sbook, wa_sflight TYPE sflight, wa_spfli TYPE
 spfli.

* complex transactions: number of the customer created in the called
* transaction

data: scust_id(20).

* transport function codes from screens

DATA: ok_code TYPE sy-ucomm, save_ok LIKE ok_code.
* define subscreen screen number on tabstrip, screen 300

DATA: screen_no TYPE sy-dynnr.

* used to handle sy-subrc, which is determined in form
DATA sysubrc LIKE sy-subrc.

* transporting fields to/from screen

TABLES: sdyn_conn, sdyn_book.
* table control declaration (display bookings),

* tabstrip declaration (create booking)
CONTROLS: tc_sbook TYPE TABLEVIEW USING SCREEN '0200',

 tab TYPE TABSTRIP.

PBO Modules
--

***INCLUDE BC414S_BOOKINGS_01O01 .
--

&---

*& Module STATUS_0100 OUTPUT

&---
MODULE status_0100 OUTPUT.

 SET PF-STATUS 'DYN_100'.
 SET TITLEBAR 'DYN_100'.

ENDMODULE. " STATUS_0100 OUTPUT

&---

*& Module STATUS_0200 OUTPUT
&---

MODULE status_0200 OUTPUT.
 SET PF-STATUS 'DYN_200'.

 SET TITLEBAR 'DYN_200' WITH sdyn_conn-carrid sdyn_conn-connid

 sdyn_conn-fldate.
ENDMODULE. " STATUS_0200 OUTPUT

&---

*& Module STATUS_0300 OUTPUT
&---

MODULE status_0300 OUTPUT.

 SET PF-STATUS 'DYN_300'.
 SET TITLEBAR 'DYN_300' WITH sdyn_conn-carrid sdyn_conn-connid

 sdyn_conn-fldate.
ENDMODULE. " STATUS_0300 OUTPUT

&---

*& Module TRANS_DETAILS OUTPUT
&---

MODULE trans_details OUTPUT.

 MOVE-CORRESPONDING: wa_spfli TO sdyn_conn,

 wa_sflight TO sdyn_conn,

 wa_sbook TO sdyn_book.

ENDMODULE. " TRANS_DETAILS OUTPUT

&---

*& Module TRANS_TO_TC OUTPUT

&---
MODULE trans_to_tc OUTPUT.

 MOVE-CORRESPONDING wa_book TO sdyn_book.
ENDMODULE. " TRANS_TO_TC OUTPUT

&---

*& Module MODIFY_SCREEN OUTPUT

&---
MODULE modify_screen OUTPUT.

 LOOP AT SCREEN.
 CHECK screen-name = 'SDYN_BOOK-CANCELLED'.

 CHECK (NOT sdyn_book-cancelled IS INITIAL) AND

 (sdyn_book-mark IS INITIAL).
 screen-input = 0.

 MODIFY SCREEN.
 ENDLOOP.

ENDMODULE. " MODIFY_SCREEN OUTPUT

&---

*& Module TABSTRIP_INIT OUTPUT
&---

MODULE tabstrip_init OUTPUT.
 CHECK tab-activetab IS INITIAL.

 tab-activetab = 'BOOK'.

 screen_no = '0301'.
ENDMODULE. " TABSTRIP_INIT OUTPUT

&---

*& Module HIDE_BOOKID OUTPUT
&---

MODULE hide_bookid OUTPUT.

* hide field displaying customer number when working with number
range

* object BS_SCUSTOM
 LOOP AT SCREEN.

 CHECK screen-name = 'SDYN_BOOK-BOOKID'.

 screen-active = 0.
 MODIFY SCREEN.

 ENDLOOP.
ENDMODULE. " HIDE_BOOKID OUTPUT

PAI Modules
--

***INCLUDE BC414S_BOOKINGS_01I01 .
--

&---

*& Module EXIT INPUT

&---
MODULE exit INPUT.

 CASE ok_code.
 WHEN 'CANCEL'.

 CASE sy-dynnr.

 WHEN '0100'.
 LEAVE PROGRAM.

 WHEN '0200'.

 LEAVE TO SCREEN '0100'.
 WHEN '0300'.

 LEAVE TO SCREEN '0100'.
 WHEN OTHERS.

 ENDCASE.

 WHEN 'EXIT'.
 LEAVE PROGRAM.

 WHEN OTHERS.
 ENDCASE.

ENDMODULE. " EXIT INPUT

&---

*& Module SAVE_OK_CODE INPUT
&---

MODULE save_ok_code INPUT.
 save_ok = ok_code.

 CLEAR ok_code.

ENDMODULE. " SAVE_OK_CODE INPUT

&---

*& Module USER_COMMAND_0100 INPUT

&---

MODULE user_command_0100 INPUT.

 CASE save_ok.

****************************CANCEL BOOKING**************************
 WHEN 'BOOKC'.

 PERFORM read_sflight USING wa_sflight sysubrc.
* process returncode - if flight does not exist: e-message

 PERFORM process_sysubrc_bookc.

 PERFORM read_spfli USING wa_spfli.
 PERFORM read_sbook USING itab_book itab_cd.

 REFRESH CONTROL 'TC_SBOOK' FROM SCREEN '0200'.
****************************CREATE BOOKING**************************

 WHEN 'BOOKN'.

 PERFORM read_sflight USING wa_sflight sysubrc.
* process returncode - if flight does not exist: e-message

 PERFORM process_sysubrc_bookn.

 PERFORM read_spfli USING wa_spfli.
 PERFORM initialize_sbook USING wa_sbook.

 WHEN 'BACK'.
 SET SCREEN 0.

 WHEN OTHERS.

 SET SCREEN '0100'.
 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

&---
*& Module USER_COMMAND_0200 INPUT

&---

MODULE user_command_0200 INPUT.
 CASE save_ok.

 WHEN 'SAVE'.
* collect marked (changed) data sets in seperate internal table

 PERFORM collect_modified_data USING itab_sbook_modify.

* perform database changes
 PERFORM save_modified_booking.

 SET SCREEN '0100'.
 WHEN 'BACK'.

 SET SCREEN '0100'.

 WHEN OTHERS.
 SET SCREEN '0200'.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0200 INPUT

&---
*& Module MODIFY_ITAB INPUT

&---

MODULE modify_itab INPUT.
 wa_book-cancelled = sdyn_book-cancelled.

 wa_book-mark = 'X'.
 MODIFY itab_book FROM wa_book INDEX tc_sbook-current_line.

ENDMODULE. " MODIFY_ITAB INPUT

&---

*& Module USER_COMMAND_0300 INPUT
&---

MODULE user_command_0300 INPUT.
 PERFORM tabstrip_set.

 CASE save_ok.

 WHEN 'NEW_CUSTOM'.
 PERFORM create_new_customer.

 SET SCREEN '0300'.
 WHEN 'SAVE'.

 PERFORM save_new_booking.

 SET SCREEN '0100'.
 WHEN 'BACK'.

 SET SCREEN '0100'.

 WHEN OTHERS.
 SET SCREEN '0300'.

 ENDCASE.
ENDMODULE. " USER_COMMAND_0300 INPUT

&---

*& Module TRANS_FROM_0300 INPUT
&---

MODULE trans_from_0300 INPUT.

 MOVE-CORRESPONDING sdyn_book TO wa_sbook.
ENDMODULE. " TRANS_FROM_0300 INPUT

FORM Routines
F01

--

***INCLUDE BC414S_BOOKINGS_01F01 .

--

&---
*& Form COLLECT_MODIFIED_DATA

&---

* -->P_ITAB_SBOOK_MODIFY text
--

FORM collect_modified_data USING p_itab_sbook_modify

 LIKE itab_sbook_modify.
 DATA: wa_book LIKE LINE OF itab_book,

 wa_sbook_modify LIKE LINE OF p_itab_sbook_modify.
 CLEAR: p_itab_sbook_modify.

* Only bookings are collected, that

* 1) have been changed (mark = 'X')
* 2) shall be cancelled (cancelled = 'X')

 LOOP AT itab_book INTO wa_book
 WHERE mark = 'X'

 AND cancelled = 'X'.

 MOVE-CORRESPONDING wa_book TO wa_sbook_modify.
 APPEND wa_sbook_modify TO p_itab_sbook_modify.

 ENDLOOP.

ENDFORM. " COLLECT_MODIFIED_DATA

&---

*& Form INITIALIZE_SBOOK

&---
* -->P_WA_SBOOK text

--
FORM initialize_sbook USING p_wa_sbook TYPE sbook.

 CLEAR p_wa_sbook.

 MOVE-CORRESPONDING wa_sflight TO p_wa_sbook.

ENDFORM. " INITIALIZE_SBOOK

&---

*& Form PROCESS_SYSUBRC_BOOKC
&---

FORM process_sysubrc_bookc.

 CASE sysubrc.
 WHEN 0.

 SET SCREEN '0200'.
 WHEN OTHERS.

 MESSAGE e023 WITH sdyn_conn-carrid sdyn_conn-connid

 sdyn_conn-fldate.
 ENDCASE.

ENDFORM. " PROCESS_SYSUBRC_BOOKC

&---
*& Form PROCESS_SYSUBRC_BOOKN

&---

FORM process_sysubrc_bookn.
 CASE sysubrc.

 WHEN 0.
 SET SCREEN '0300'.

 WHEN OTHERS.

 MESSAGE e023 WITH sdyn_conn-carrid sdyn_conn-connid
 sdyn_conn-fldate.

 ENDCASE.

ENDFORM. " PROCESS_SYSUBRC_BOOKN

&---

*& Form TABSTRIP_SET

&---
FORM tabstrip_set.

 IF save_ok = 'BOOK' OR save_ok = 'DETCON' OR save_ok = 'DETFLT'.
 tab-activetab = save_ok.

 ENDIF.

 CASE save_ok.
 WHEN 'BOOK'.

 screen_no = '0301'.

 WHEN 'DETCON'.

 screen_no = '0302'.
 WHEN 'DETFLT'.

 screen_no = '0303'.
 ENDCASE.

ENDFORM. " TABSTRIP_SET

&---
*& Form CREATE_NEW_CUSTOMER

&---

FORM create_new_customer.
********************** TO BE IMPLEMENTED LATER *********************

ENDFORM. " CREATE_NEW_CUSTOMER

&---

*& Form NUMBER_GET_NEXT
&---

FORM number_get_next USING p_wa_sbook LIKE sbook.

********************** TO BE IMPLEMENTED LATER *********************
ENDFORM. " NUMBER_GET_NEXT

F02
--

* INCLUDE BC414S_BOOKINGS_01F02
--

--

* FORM ENQ_SFLIGHT

--
FORM enq_sflight.

********************* TO BE IMPLEMENTED LATER **********************
ENDFORM. "ENQ_SFLIGHT

--

* FORM ENQ_SBOOK

--
FORM enq_sbook.

********************* TO BE IMPLEMENTED LATER **********************
ENDFORM. "ENQ_SBOOK

--

* FORM ENQ_SFLIGHT_SBOOK
--

FORM enq_sflight_sbook.

********************* TO BE IMPLEMENTED LATER **********************
ENDFORM. "ENQ_SFLIGHT_SBOOK

--

* FORM DEQ_ALL
--

FORM deq_all.

********************* TO BE IMPLEMENTED LATER **********************
ENDFORM. "DEQ_ALL

F03

* INCLUDE BC414S_BOOKINGS_01F03

--

&---

*& Form READ_SFLIGHT
&---

* -->P_WA_SFLIGHT text

* -->P_SYSUBRC text
--

FORM read_sflight USING p_wa_sflight TYPE sflight
 p_sysubrc LIKE sy-subrc.

 SELECT SINGLE * FROM sflight INTO p_wa_sflight

 WHERE carrid = sdyn_conn-carrid
 AND connid = sdyn_conn-connid

 AND fldate = sdyn_conn-fldate.

 p_sysubrc = sy-subrc.
ENDFORM. " READ_SFLIGHT

&---
*& Form READ_SBOOK

&---

* -->P_ITAB_BOOK text
* -->P_ITAB_CD text

--
FORM read_sbook USING p_itab_book LIKE itab_book

 p_itab_cd LIKE itab_cd.

 TYPES: BEGIN OF wa_custom_type,
 id TYPE scustom-id,

 name TYPE scustom-name,

 END OF wa_custom_type.
 DATA: wa_custom TYPE wa_custom_type,

 itab_custom TYPE STANDARD TABLE OF wa_custom_type
 WITH NON-UNIQUE KEY id,

 wa_book LIKE LINE OF p_itab_book,

 wa_cd LIKE LINE OF p_itab_cd.
 CLEAR: p_itab_book, p_itab_cd.

* Select customer names in buffer table (array fetch)
 SELECT id name FROM scustom INTO CORRESPONDING FIELDS

 OF TABLE itab_custom.

* Select all bookings on selected flight (array fetch)
 SELECT * FROM sbook INTO CORRESPONDING FIELDS OF TABLE p_itab_book

 WHERE carrid = sdyn_conn-carrid

 AND connid = sdyn_conn-connid

 AND fldate = sdyn_conn-fldate.
* read customer names corresponding to customer number from buffer
* table
 LOOP AT p_itab_book INTO wa_book.

 READ TABLE itab_custom INTO wa_custom WITH TABLE KEY

 id = wa_book-customid.
 wa_book-name = wa_custom-name.

 MODIFY p_itab_book FROM wa_book.
 MOVE-CORRESPONDING wa_book TO wa_cd.

 APPEND wa_cd TO p_itab_cd.

 ENDLOOP.
 SORT p_itab_book BY bookid customid.

ENDFORM. " READ_SBOOK

&---
*& Form READ_SPFLI

&---

* -->P_WA_SPFLI text
--

FORM read_spfli USING p_wa_spfli TYPE spfli.
 SELECT SINGLE * FROM spfli INTO p_wa_spfli

 WHERE carrid = sdyn_conn-carrid

 AND connid = sdyn_conn-connid.
 IF sy-subrc <> 0.

 MESSAGE e022 WITH sdyn_conn-carrid sdyn_conn-connid.

 ENDIF.
ENDFORM. " READ_SPFLI

F04
--

* INCLUDE BC414S_BOOKINGS_01F04
--

&---

*& Form SAVE_MODIFIED_BOOKING

&---
FORM save_modified_booking.
* Modify data on database tables sbook and sflight
 CALL FUNCTION 'UPDATE_SBOOK'

 EXPORTING

 itab_sbook = itab_sbook_modify
 EXCEPTIONS

 update_failure = 1

 OTHERS = 2.
 CASE sy-subrc.

 WHEN 0.
 PERFORM update_sflight.

 WHEN OTHERS.

 MESSAGE a044 WITH wa_sflight-carrid wa_sflight-connid
 wa_sflight-fldate.

 ENDCASE.

ENDFORM. " SAVE_MODIFIED_BOOKING

&---
*& Form UPDATE_SFLIGHT

&---

FORM update_sflight.
 CALL FUNCTION 'UPDATE_SFLIGHT'

 EXPORTING
 carrier = wa_sflight-carrid

 connection = wa_sflight-connid

 date = wa_sflight-fldate
 EXCEPTIONS

 update_failure = 1
 flight_full = 2

 flight_not_found = 3

 OTHERS = 4.

 CASE sy-subrc.

 WHEN 0.

 MESSAGE s034 WITH wa_sflight-carrid wa_sflight-connid
 wa_sflight-fldate.

 WHEN 1.
 MESSAGE a044 WITH wa_sflight-carrid wa_sflight-connid

 wa_sflight-fldate.

 WHEN 2.
 MESSAGE a045.

 WHEN 3.
 MESSAGE a046.

 WHEN OTHERS.

 MESSAGE a048.
 ENDCASE.

ENDFORM. " UPDATE_SFLIGHT

&---

*& Form SAVE_NEW_BOOKING

&---
FORM save_new_booking.

********************* TO BE IMPLEMENTED LATER **********************
ENDFORM. " SAVE_NEW_BOOKING

F05
--
* INCLUDE BC414S_BOOKINGS_01F05

--

&---

*& Form CONVERT_TO_LOC_CURRENCY

&---
* -->P_WA_SBOOK text

--
FORM convert_to_loc_currency USING p_wa_sbook TYPE sbook.

 SELECT SINGLE currcode FROM scarr INTO p_wa_sbook-loccurkey

 WHERE carrid = p_wa_sbook-carrid.
 CALL FUNCTION 'CONVERT_TO_LOCAL_CURRENCY_N'

 EXPORTING
 client = sy-mandt

 date = sy-datum

 foreign_amount = p_wa_sbook-forcuram
 foreign_currency = p_wa_sbook-forcurkey

 local_currency = p_wa_sbook-loccurkey

 IMPORTING
 local_amount = p_wa_sbook-loccuram

 EXCEPTIONS
 no_rate_found = 1

 overflow = 2

 no_factors_found = 3
 no_spread_found = 4

 derived_2_times = 5
 OTHERS = 6.

 IF sy-subrc <> 0.

 MESSAGE e080 WITH sy-subrc.

 ENDIF.

ENDFORM. " CONVERT_TO_LOC_CURRENCY

F06
--
* INCLUDE BC414S_BOOKINGS_01F06

--

&---

*& Form CREATE_CHANGE_DOCUMENTS
&---

FORM create_change_documents.

********************* TO BE IMPLEMENTED LATER **********************
ENDFORM. " CREATE_CHANGE_DOCUMENTS

 SAP AG 1999

l Lock modules

l Lock objects

l Monitoring

l Using locks

Contents:

SAP Lock Concept

 SAP AG 1999

Course Overview Diagram - SAP Lock Concept

S
A

P
 L

o
ck

S
A

P
 L

o
ck

C
on

ce
pt

C
on

ce
pt

4

SAP Lock Concept

 SAP AG 1999

Overview: Overview

Using locks: time sequenceUsing locks: time sequence

Lock objectsLock objects

Setting and releasing locksSetting and releasing locks

OverviewOverview

 SAP AG 1999

To avoid competing
accesses to the same
data

Why Set Locks?

Program CProgram C

Tab 1

Tab 2

Tab 3

Tab 4

Tab 5

Tab 6

Program A

Program B

n If several users are competing to access the same resource or resources, you need to find a way of
synchronizing the access in order to protect the consistency of your data.

n Example: In a flight booking system, you would need to check whether seats were still free before
making a reservation. You also need a guarantee that critical data (the number of free seats in this
case) cannot be changed while you are working with the program.

n Locks are a way of coordinating competing accesses to a resource. Each user requests a lock before
accessing critical data.

n It is important to release the lock as soon as possible, so as not to hinder other users unnecessarily.

 SAP AG 1999

Database Locks Are Not Enough

COMMIT
(implicit)

COMMIT
WORK
(explicit)

COMMIT
(implicit)

SELECT
FOR UPD
SELECT
FOR UPD DELETEDELETEINSERTINSERTUPDATEUPDATE

LocksLocks

n Whenever you make direct changes to data on the database in a transaction, the database system sets
corresponding locks.

n The database management system (DBMS) physically locks the table entries that you want to change
(INSERT; UPDATE, MODIFY), and those that you read from the database and intend to change
(SELECT SINGLE <f> FROM <dbtab> FOR UPDATE). Other users who want to access the
locked record or records must wait until the physical lock has been released. In such a case, the
ABAP program waits until the lock has been released again.

n At the end of the database transaction, the database releases all of the locks that it has set during the
transaction.

n In the R/3 System, this means that each database lock is released when a new screen is displayed,
since a change of screen triggers an implicit database commit.

 SAP AG 1999

SAP Lock Concept: Logical Locks

 . . .

Dispatcher

DB Management System

Dialog
WP

Dialog
WP

 . . .

Dispatcher

WP Enqueue
WP

Lock tableLock tableMessage
Server

SAPGUI SAPGUI SAPGUI SAPGUI SAPGUI SAPGUI

n To keep a lock set through a series of screens (from the dialog program to the update program), the
R/3 System has a global lock table at the application server level, which you can use to set logical
locks for table entries.

n One application server contains this lock table and a special enqueue work process, which
administers all requests for logical locks in the R/3 System. All logical lock requests of the R/3
System run using this work process.

n You can also use logical locks to "lock" table entries that do not yet exist on the database (inserting
new lines). You cannot do this with physical database locks.

n For further information, see the ABAP Editor keyword documentation for the term Locking.

 SAP AG 1999

Overview: Setting and Releasing Locks

Using locks: time sequenceUsing locks: time sequence

Lock objectsLock objects

Setting and releasing locksSetting and releasing locks

OverviewOverview

 SAP AG 1999

Setting and Deleting Logical Locks

ABAP
program Lock module

Order:
Generate lock

 Answer:
 Lock set successfully

 No lock set
• Entry already locked
• Error in lock administration

Lock tableLock table

 EXCEPTIONS
 none

 FOREIGN_LOCK
 SYSTEM_FAILURE

n Logical locks are generated when an entry is written in the lock table. You use function modules to
do this.

n You can only set a lock if the relevant table entry is not already locked.

n The SAP transaction receives information on the success of a lock request from a return code sent
via the EXCEPTION interface of the function module. In other words, the control is returned to the
program using the function module. The ABAP program does not need to wait.

n The SAP transaction can react appropriately by analyzing the return code.

n Another user cannot gain access to work with the same table entries that are already locked.

n Depending on the bundling technique in use for database updates), the program must delete the lock
entries it generated using a lock module, or have them deleted indirectly (see unit Organizing
Database Updates).

n If the user terminates the program that generated the lock entries (usually a dialog program), the
locks are released automatically (implicitly). You can do this by entering /n in the command field,
or with the statements LEAVE PROGRAM, LEAVE TO TRANSACTION, and 'A' or 'X'
messages.

 SAP AG 1999

Calling the Lock Modules

Lock table

'DEQUEUE_ESFLIGHT''DEQUEUE_ESFLIGHT'

'ENQUEUE_ESFLIGHT''ENQUEUE_ESFLIGHT'
Set lock entrySet lock entry

SuccessfulSuccessful

Delete lock entryDelete lock entry

CALL FUNCTION
EXPORTING

 CARRID = ...
 CONNID = ...
 FLDATE = ...
EXCEPTIONS FOREIGN_LOCK = 1

 SYSTEM_FAILURE = 2.
CASE sy-subrc.
 WHEN 1. ...
 WHEN 2. ...
ENDCASE.

CALL FUNCTION
EXPORTING

 CARRID = ...
 CONNID = ...
 FLDATE =

n When you call an ENQUEUE function module, the dialog program tries to generate a lock entry.

n The export parameters identify the table entry (or entries) that you want to lock.

n The program that generates the locks (usually dialog program) analyzes the return code for lock
requests and reacts accordingly.

n If the lock could not be set, you should normally output an error message.

n At the end of the dialog program, you can use the corresponding DEQUEUE function module to
delete the entries from the lock table.

n DEQUEUE function modules have no exceptions. If you try to release an entry that is not locked, this
has no effect.

n If you want to release all of the locks that you have set, at the end of your dialog program, you can
use the function module DEQUEUE_ALL.

n The lock table contains the lock arguments for each table (for lock arguments, see the following
slide).

n To display the lock table, use transaction SM12.

n The entries in the lock table are standard. Locks are always set using the values of the key fields in a
table. These form the lock argument.

n You pass the values for the lock argument to the lock modules via their interface (function module
IMPORT parameters).

n If you fail to set any of these parameters, the system interprets it generically, that is, the lock is set
for all table lines that meet the criteria specified in the other parameters. The client parameter is an
exception to this rule, where the default client SY-MANDT applies.

n Lock entries must be assigned to a lock mode .

n There are three different lock modes:

� Mode 'E' for write locks: This is set if you want to write data to the database (change, create, or
delete).

Example: You want to book a seat for a flight. Once you have chosen the flight you want to book,
you should ensure that no other customer books the same flight, to prevent the last free seat from
being occupied more than once. (Technically speaking, you must lock the flight in the SFLIGHT
table -> SEATSOCC field = number of occupied seats).

� Mode 'S' for read locks: This is set if you want to ensure that the data, which you are reading from
the database in your program, is not changed by other users while the program is running. You do
not want to change the data itself in your program.

Example: You are a travel agent and quote a customer the price for a flight that he or she is
considering booking. While the customer is considering whether to buy the flight, you want to
ensure that the price is not changed by another employee.

� Mode 'X' for write locks: Like mode 'E', mode 'X' is used for writing data to the database. The
technical difference between mode 'X' and mode 'E' is that locks of mode 'X' are not accumulated
while a program is being executed. (For further details, see the following pages).

n If someone tries to lock the same data record again with a second program (different user), the
various lock modes take effect as follows:

� Write locks ('E' or 'X') mean that any lock attempts from other users are refused, irrespective of the
mode in which the lock is attempted.

� If a data record is locked in mode 'S' (shared), further locks in mode 'S' may be set by other users.
Lock attempts in other lock modes ('E' or 'X') are refused.

n If you want to try to lock a data record more than once while a program is running (for example
using a function module that you call up, which sets locks itself), the lock system reacts in the
following way:

� Mode 'E' write locks are not refused. Instead, a cumulative counter is incremented. The same
applies to read locks (mode 'S').

� If a data record is locked in mode 'E', a lock request generates a second lock, which is marked as a
read lock.

� If a data record is locked in mode 'S' and no further read locks are set by other users, a lock
attempt in mode 'E' is possible. This generates a second entry in the lock table (for mode 'E').

� If a data record is locked in mode 'X', all further lock requests are refused.

n If you want to ensure that you are reading up-to-date data in your program (with the intention of
changing and returning this to the database), you should use the following procedure for lock
requests and database accesses in your program:

� First, lock the data that you want to edit.

� Then read the current data from the database.

� In the next step, process (change) the data in your program and write this to the database.

� In the final step, release the locks that you set at the beginning.

n This procedure ensures that your changes run fully with lock protection and that you only read data
that has been changed consistently by other programs (provided that these also use the SAP lock
concept and follow the procedure described here).

n Lock modules are created for lock objects and not tables.

n Lock objects are maintained in the dictionary. Customer lock objects must begin with "EY" or "EZ".

n A lock object is a logical object composed of a list of tables that are linked by foreign key
relationships. Lock modules are generated for these objects and enable common lock entries to be set
for all tables contained in the lock object. This allows combinations of table entries to be locked.

Example: A lock object that contains the tables SFLIGHT and SBOOK enables a flight with its
bookings to be locked.

n The list of tables for a lock object consists of a primary table . Further table entries are referred to as
secondary tables. Only tables with foreign key relationships to the primary table can be used as
secondary tables.

n With lock objects, you can assign different names for the parameters that describe the fields of the
lock arguments for the lock modules. The names of the table fields (key fields of the tables) are
proposed by the system.

n You can specify the lock mode (a write lock 'E' or 'X' or a read lock 'S') for each table. These
function as default values for the lock modules.

n After you have assigned tables and default lock modes, lock objects must be generated.

n When you activate a lock object, the system generates an ENQUEUE and a DEQUEUE function
module.

n These have the names ENQUEUE_<object_name> and DEQUEUE_<object_name>
respectively.

n If you want to ensure that you are reading current data in your program (with the intention of
changing and returning this to the database), you should use the following procedure in your
program for lock requests and database accesses:

1. Lock the data that you want to edit.

2. Read the current data from the database.

3. Process (change) the data in your program and write this to the database.

4. Release the locks that you set at the beginning.

n This procedure ensures that your changes run fully with lock protection and that you only read data,
which has been changed consistently by other programs (with the restriction that these are also using
the SAP lock concept and following the procedure described).

n If you change the order of the four steps to Read -> Lock -> Change -> Unlock, you run the risk that
the data read by your program will not be up to date. Your program can read data before another
user's program writes changes to the database. This means that a user of your program will make
decisions for entries that are not based on up-to-date data from the database. For this reason, you
should always follow the recommended procedure.

n Requesting a lock from a program is a communication step with lock administration. The
communication step requires a certain time interval. If your program sets locks for several objects,
this interval occurs more than once.

n By using so-called local lock containers , you can reduce these communication intervals with lock
administration. To do so, collect the required lock requests of your program and send them together
to lock administration.

n The locks (delayed execution) can be collected when the lock modules are called. For this purpose,
qualify the IMPORT parameter_collect with 'X'. The data transferred via the lock module interface is
then registered in a list (lock container) as a lock request that needs to be executed.

n The lock container can be terminated using the FLUSH_ENQUEUE function module and sent to lock
administration.

n When the lock orders of a lock container can be executed, the lock container is deleted.

n If one of the locks in a container cannot be set, the function module FLUSH_ENQUEUE triggers the
exception FOREIGN_LOCK. In this case, none of the registered lock requests is executed. The
registered locks remain in the lock container.

n You can delete the contents of an existing lock container with the function module
RESET_ENQUEUE.

n The specified function modules have release status internally-released.

Unit: SAP Lock Concept

Using the SAP Lock Concept

At the conclusion of these exercises, you will be able to:

• Call and use lock modules.

• Locate the places in programs where locks must be set and released in
order to ensure that the data to be changed is protected adequately
against competing accesses.

The program SAPMZ##_BOOKINGS1 from the previous unit is to be
changed to include locks that will prevent the booking data from being
canceled and the flight data from being changed.

Program: SAPMZ##_BOOKINGS2

Transaction code: Z##_BOOKINGS2

Template: SAPBC414T_BOOKINGS_02

Model solution: SAPBC414S_BOOKINGS_02

1-1 Copy your solution SAPMZ##_BOOKINGS1 or the program template
SAPBC414T_BOOKINGS_02 with all sub-objects to SAPMZ##_BOOKINGS2
(## is your group number). Assign transaction code Z##_BOOKINGS2 to the
program.

1-2 Call the lock modules ENQUEUE_ESFLIGHT, ENQUEUE_ESBOOK,
ENQUEUE_ESFLIGHT_SBOOK and DEQUEUE_ALL in subroutines. The
subroutines in question are already created (blank) and combined in the Include
MZ##_BOOKINGS2F02. To supply the interface parameters for the lock modules,
use the fields in the structures SDYN_CONN and SDYN_BOOK.

1-3 Provide solutions for the exceptions of the lock modules. Possible user messages:

Data record is already being edited ⇒ Message 060

Processing terminated (booking already locked) ⇒ Message 061

Flight and/or bookings are already being edited ⇒ Message 062

Lock request not successful ⇒ Message 063

1-4 Protect the database changes related to the booking cancellations by calling up the
corresponding lock modules (by calling up the corresponding subroutines). If a user
action calls up screen 100, the locks must be canceled.

The lock module ENQUEUE_ESFLIGHT enables locks to be set for
entries in table SFLIGHT. The lock module ENQUEUE_ESBOOK
enables locks to be set for entries in table SBOOK. The lock module
ENQUEUE_ESFLIGHT_SBOOK enables locks to be set in both tables at
the same time (SFLIGHT, SBOOK) (reason: to lock a flight with
booking(s)).

OPTIONAL

1-5 Extend your program for creating a new customer to include the necessary lock
module calls. The calls ENQUEUE_ESCUSTOM (lock customer) and
DEQUEUE_ALL (remove all locks) are already coded and encapsulated in the
subroutines ENQ_SCUSTOM and DEQ_ALL (Include
BC414T_CREATE_CUSTOMER_02F01).

1-5-1 Copy your solution SAPMZ##_CUSTOMER1 or the program template
SAPBC414T_ CREATE_CUSTOMER_02 with all sub-objects to
SAPMZ##_CUSTOMER2 (## is your group number). Assign transaction
code Z##_CUSTOMER2 to the program.

1-5-2 Insert the call for the subroutines ENQ_SCUSTOM and DEQ_SCUSTOM at
the appropriate places in your program. When should the customer data
record be locked? Locate all the places at which the data record lock must
be canceled. Familiarize yourself with the program flow, using the debugger
if necessary.

Optional Exercise

Unit: SAP Lock Concept

Optional Exercise: Lock Objects

At the conclusion of these exercises, you will be able to:

• Search for and find lock objects.

2-1 Find out which function modules are maintained for logically locking flights,
bookings, and flights with all dependent bookings in the system.

Unit: SAP Lock Concept

Model Solution SAPBC414S_BOOKINGS_02

PAI Modules
--

***INCLUDE BC414S_BOOKINGS_02I01 .

--

&---

*& Module EXIT INPUT
&---

MODULE exit INPUT.
 CASE ok_code.

 WHEN 'CANCEL'.

 CASE sy-dynnr.
 WHEN '0100'.

 LEAVE PROGRAM.
 WHEN '0200'.
* remove all database locks

 PERFORM deq_all.

 LEAVE TO SCREEN '0100'.

 WHEN '0300'.
 LEAVE TO SCREEN '0100'.

 WHEN OTHERS.

 ENDCASE.
 WHEN 'EXIT'.

 LEAVE PROGRAM.

 WHEN OTHERS.
 ENDCASE.

ENDMODULE. " EXIT INPUT

&---

*& Module USER_COMMAND_0100 INPUT

&---

MODULE user_command_0100 INPUT.
 CASE save_ok.

****************************CANCEL BOOKING**************************
 WHEN 'BOOKC'.
* set database lock for selected flight and depending bookings

 PERFORM enq_sflight_sbook.

 PERFORM read_sflight USING wa_sflight sysubrc.

 PERFORM process_sysubrc_bookc.
 PERFORM read_spfli USING wa_spfli.

 PERFORM read_sbook USING itab_book itab_cd.

 REFRESH CONTROL 'TC_SBOOK' FROM SCREEN '0200'.
****************************CREATE BOOKING**************************

 WHEN 'BOOKN'.

 PERFORM read_sflight USING wa_sflight sysubrc.
 PERFORM process_sysubrc_bookn.

 PERFORM read_spfli USING wa_spfli.
 PERFORM initialize_sbook USING wa_sbook.

 WHEN 'BACK'.

 SET SCREEN 0.
 WHEN OTHERS.

 SET SCREEN '0100'.
 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

&---

*& Module USER_COMMAND_0200 INPUT
&---

MODULE user_command_0200 INPUT.
 CASE save_ok.

 WHEN 'SAVE'.

 PERFORM collect_modified_data USING itab_sbook_modify.
 PERFORM save_modified_booking.
* remove all database locks
 PERFORM deq_all.

 SET SCREEN '0100'.

 WHEN 'BACK'.
* remove all database locks

 PERFORM deq_all.

 SET SCREEN '0100'.

 WHEN OTHERS.
 SET SCREEN '0200'.

 ENDCASE.
ENDMODULE. " USER_COMMAND_0200 INPUT

FORM Routines
F01

--
***INCLUDE BC414S_BOOKINGS_02F01 .

--

&---

*& Form PROCESS_SYSUBRC_BOOKC
&---

FORM process_sysubrc_bookc.
 CASE sysubrc.

 WHEN 0.

 SET SCREEN '0200'.
 WHEN OTHERS.
* remove all database locks

 PERFORM deq_all.

 MESSAGE e023 WITH sdyn_conn-carrid sdyn_conn-connid

 sdyn_conn-fldate.
 ENDCASE.

ENDFORM. " PROCESS_SYSUBRC_BOOKC

F02
--

* INCLUDE BC414S_BOOKINGS_02F02

--

--
* FORM ENQ_SFLIGHT

--

FORM enq_sflight.
 CALL FUNCTION 'ENQUEUE_ESFLIGHT'

 EXPORTING

 carrid = sdyn_conn-carrid
 connid = sdyn_conn-connid

 fldate = sdyn_conn-fldate
 EXCEPTIONS

 foreign_lock = 1

 system_failure = 2

 OTHERS = 3.

 CASE sy-subrc.
 WHEN 0.

 WHEN 1.
 MESSAGE e060.

 WHEN OTHERS.

 MESSAGE e063 WITH sy-subrc.
 ENDCASE.

ENDFORM. "ENQ_SFLIGHT

--

* FORM ENQ_SBOOK

--
FORM enq_sbook.
 CALL FUNCTION 'ENQUEUE_ESBOOK'
 EXPORTING

 carrid = sdyn_book-carrid

 connid = sdyn_book-connid
 fldate = sdyn_book-fldate

 bookid = sdyn_book-bookid
 customid = sdyn_book-customid

 EXCEPTIONS

 foreign_lock = 1
 system_failure = 2

 OTHERS = 3.

 CASE sy-subrc.
 WHEN 0.

 WHEN 1.
 MESSAGE e061.

 WHEN OTHERS.

 MESSAGE e063 WITH sy-subrc.
 ENDCASE.

ENDFORM. "ENQ_SBOOK

--
* FORM ENQ_SFLIGHT_SBOOK

--

FORM enq_sflight_sbook.
 CALL FUNCTION 'ENQUEUE_ESFLIGHT_SBOOK'

 EXPORTING
 carrid = sdyn_conn-carrid

 connid = sdyn_conn-connid

 fldate = sdyn_conn-fldate
 EXCEPTIONS

 foreign_lock = 1
 system_failure = 2

 OTHERS = 3.

 CASE sy-subrc.

 WHEN 0.

 WHEN 1.

 MESSAGE e062.
 WHEN OTHERS.

 MESSAGE e063 WITH sy-subrc.
 ENDCASE.

ENDFORM. "ENQ_SFLIGHT_SBOOK

*---
* FORM DEQ_ALL

--

FORM deq_all.
 CALL FUNCTION 'DEQUEUE_ALL'.

ENDFORM. "DEQ_ALL

F03
--

* INCLUDE BC414S_BOOKINGS_02F03
--

&---

*& Form READ_SPFLI

&---
* -->P_WA_SPFLI text

*--
--*
FORM read_spfli USING p_wa_spfli TYPE spfli.

 SELECT SINGLE * FROM spfli INTO p_wa_spfli
 WHERE carrid = sdyn_conn-carrid

 AND connid = sdyn_conn-connid.

 IF sy-subrc <> 0.
* remove all database locks

 PERFORM deq_all.

 MESSAGE e022 WITH sdyn_conn-carrid sdyn_conn-connid.

 ENDIF.

ENDFORM. " READ_SPFLI

OPTIONAL:

Model Solution SAPBC414S_CREATE_CUSTOMER_02

FORM Routines
F01

--
***INCLUDE BC414S_CREATE_CUSTOMER_02F01 .

--

&---

*& Form SAVE
&---

FORM save.
* lock dataset
 PERFORM enq_scustom.

 PERFORM number_get_next USING scustom.

 PERFORM save_scustom.
* unlock dataset

 PERFORM deq_all.

ENDFORM. " SAVE

 SAP AG 1999

l Changes from the dialog

n Direct

n Using delayed subroutines

l Update techniques

n Asynchronous, local, and synchronous updates

n V1 and V2 updates

n The concept of the SAP LUW

Contents:

Organizing Database Updates

 SAP AG 1999

Course Overview Diagram - Database Updates

5 Organizing Database UpdatesOrganizing Database Updates

Organizing
Database Updates

 SAP AG 1999

Overview Organizing Database Updates:
Direct Changes From the Dialog

Changes from the dialogChanges from the dialog

DirectDirect

Using delayed subroutines Using delayed subroutines

Update techniquesUpdate techniques

 SAP AG 1999

Direct Changes from the Dialog:
Timescale

SAP Transaction

Last
dialog
step

UPDATE tab1.
UPDATE tab2.
UPDATE tab3...

UPDATE tab1. UPDATE tab2.

save

Time

n If your transaction executes database updates from the dialog program, you must bundle all of your
database updates into a single dialog step (usually the last). This is the only way to ensure that your
database changes are processed on the all-or-nothing principle.

 SAP AG 1999

Direct Changes From the Dialog: Data Flow

SAP Transaction

Dialog
step 1

Dialog
step 2

Last
dialog
step

Global Program Data

Data Data

...

Data

Data

Time

n With database changes from the dialog program, you must save the data you want to change in the
global program data until the database changes are made. This data is written to the database with the
status it had for the last dialog step.

 SAP AG 1999

Direct Changes From the Dialog: Locks

Data
selection

Lock data Release locks

Read data Change data

11 22 33 44

Lock duration

Time

n With database changes from the dialog, your program must set and release SAP locks itself.
The following order is recommended:

� Lock data

� Read data

� Update data on the database

� Release locks

n Note that the lock entries must be deleted by a program. To do so, you can either call up the lock
modules of the object for releasing DEQUEUE_<object_name> or the function module
DEQUEUE_ALL. For more detailed information, consult the function module documentation.

 SAP AG 1999

Overview of Changes From the Dialog:
Using Delayed Subroutines

Changes from the dialogChanges from the dialog

DirectDirect

Using delayed subroutines Using delayed subroutines

Update techniquesUpdate techniques

 SAP AG 1999

PERFORM ON COMMIT: Timescale (1)

SAP Transaction

COMMIT
WORK.

PERFORM x
ON COMMIT.

PERFORM y
ON COMMIT.

Save

Prog_name Nr Name
z_my_prog 2 y
z_my_prog 1 x
.....

System table

Time

n Database updates from the dialog can be executed in bundled form by using the special subroutine
technique PERFORM <subroutine> ON COMMIT.

n The statement PERFORM <subroutine> ON COMMIT registers the subroutine that has been
called up. This will not be executed until the next COMMIT WORK statement is reached.

n If the database updates are encapsulated in the subroutines, they can be separated from the program
logic and relocated to the end of the LUW processing.

n Each subroutine registered with PERFORM ON COMMIT is only executed once per LUW. Calls can
be made more than once (no errors); the subroutine, however, is only executed once.

n From release 4.6 onward nested PERFORM ON COMMIT calls lead to a runtime error.

 SAP AG 1999

PERFORM ON COMMIT: Timescale (2)

SAP Transaction

COMMIT WORK.

Save

Prog_name Nr Name
z_my_prog 2 y
z_my_prog 1 x
.....

System table

FORM x . FORM y .

UPDATE
 tab1.

UPDATE
 tab2.

DB COMMIT

Time

n The COMMIT WORK statement carries out all subroutines registered to be executed and triggers a
database commit (ends the DB LUW).

n Unlike normal subroutines, those that you call using the ON COMMIT addition do not have an
interface. They work instead with global data, that is, the values of the data objects at the point
where the subroutine is actually run. This can also include Imports from memory.

n The PERFORM ... ON COMMIT technique can also be used in the update. This will be discussed
later.

n For further information, see the ABAP Editor keyword documentation for the term PERFORM.

n Update techniques allow you to separate user dialogs from the database changes. Both are executed
by different programs, which generally run in different work processes.

n You work with a program that manages the user dialogs. It is referred to as a dialog program.

n You use a so-called update program that updates the data received by the dialog program on the
database. No dialogs run in the update programs.

n Step 1: The dialog program receives the data changed by the user and writes it to a special log table.
The entries in this table function as requests. The data contained in the log table will be written to the
database later by the update program.

n A dialog program can write several entries to the log table.

n The entries in the log table represent an LUW, in other words they will either be executed on the
database together or not at all (all-or-nothing principle).

n Step 2: The dialog program completes the logical data packet that was written to the log table. The
SAP LUW finishes in the dialog part and informs the Basis system that a packet needs to be updated.

n Step 3: A basis program reads the data associated with the LUW from the log table and supplies it to
the update program.

n Step 4: The update program accepts the data transferred to it and updates the database entries.

n Step 5: If the update program runs successfully, a Basis program deletes all entries for the LUW
from the log table.

n In the event of an error, the entries remain in the log table and are flagged as errored.

n The option of informing users by mail that an update action has failed can be set using the profile
parameters rdisp/vb_mail_user_list and rdisp/vbmail.

� The parameter rdisp/vbmail can be set to '0' (no mail is sent in the event of an error) or '1' (a
mail is sent in the event of an error).

� The rdisp/vb_mail_user_list parameter setting specifies who will be informed in the
event of an error (rdisp/vbmail = 1) ($ACTUSER informs the user who generated the data
record to be updated).

n The monitor transaction for update orders is SM13.

n The dialog program and the update program can be linked in various ways:

� Asynchronously

� Synchronously

� Via a local update

n Technical implementation of the update concept requires a so-called update program as well as the
program that manages the user dialog. The update program tasks are carried out by special function
modules called update modules.

n Create an update function module by choosing the processing radiobutton property 'update
module'.

n Update modules, like other function modules, have an interface for transferring data. The interface
for update function modules only includes IMPORTING and TABLES parameters. These must be
typed using reference fields or structures.

n Export parameters and exceptions are ignored in update modules.

n The function module contains the actual database update statements.

n The entries in the log file are generated from the dialog program. They are generated by calling up
the associated update function module. The function module must be called using the addition IN
UPDATE TASK. This ensures that the module is not executed immediately. Instead, the current data
from the function module interface is written to the log table.

n For every CALL FUNCTION ... IN UPDATE TASK statement in the dialog program, the
system generates an entry in the log table containing the name of the update function module and the
associated parameters.

n All of the update requests in an SAP LUW are stored under the same update key (VB key). The
update key is a unique key.

n When the system reaches the next COMMIT WORK statement, a log header is generated for the
corresponding log entries, concluding the set of update entries for that SAP LUW. The log header
contains information on the dialog program that wrote the log entries, as well as information on the
update modules to be executed.

n As well as the header entry, the ABAP command COMMIT WORK ensures that the dispatcher
process is informed about the availability of a further update packet.

n In a dialog consisting of several steps, you can store multiple entries in the update log table that are
then processed following the ABAP COMMIT WORK command.

n However, you may also need to delete the update requests of the current SAP LUW using a
ROLLBACK WORK statement.

n In a ROLLBACK WORK statement, the system:

­ Deletes all form routines registered using PERFORM <subroutine> ON COMMIT

­ Deletes all database update requests from the log

­ Triggers a rollback on the database, followed by a database commit

­ Starts a new SAP LUW

n With relation to database changes already completed in the dialog, the ROLLBACK WORK statement
means that all changes in the current database LUW are undone.

n The ROLLBACK WORK statement deletes all lock entries generated up to now from the dialog
program.

n The ROLLBACK WORK statement does not affect the program context, in other words all data
objects (program-specific objects and objects from function groups that may be used) remain
unchanged, they are NOT reset.

n You can generally only reset the data objects of your program by ending the dialog program.
Therefore, you should not use the ROLLBACK WORK statement directly. Instead, trigger an implicit
rollback by sending a termination message (type A). This ensures that all of the data from the
program is also reset when the program terminates.

n The task of an update module is to pass the requests for database updates to the database and to
evaluate their return codes.

n If the database cannot successfully complete an update, the update function module must be able to
react.

n If you want to trigger a database rollback in the update task, you can use a termination message. This
triggers an implicit database rollback.

n The rollback ends the update task. The log entry belonging to the SAP LUW is flagged as containing
an error. The termination message is also entered in the log.

n The system sends an express mail to the relevant user, telling him or her that the update was
unsuccessful. You can examine the log entry by using Transaction SM13.

n You may not use the explicit ABAP statements COMMIT WORK or ROLLBACK WORK in an update
module .

n If your program is to run using locks, you must record the locks in the lock table. These are inherited
by the update modules with the ABAP command COMMIT WORK and can then no longer be
accessed by the dialog program.

n To ensure that the update modules run with the protection of locks, the lock entries must not be
released before the COMMIT WORK.

n You do not need to release the locks explicitly in the update modules, since they are automatically
released at the end of the update process by a basis program.

n The locks are also released if one of the update modules triggers a database rollback by sending a
termination message.

n If the update modules allow failed update requests to be reprocessed (see V1 update), you should
note that the data in the database tables at the point of reprocessing may be different from that at the
point of the failed update attempt. Reprocessing failed update requests is only useful if the data to be
updated is not dependent on the database status (e.g. writing of a document failed because of a
tablespace overflow).

n Failed update requests are reprocessed without locks.

n In asynchronous update , the dialog program and update program run separately.

­ The dialog program writes the update requests into the log table VBLOG in the database.

­ You conclude the dialog part of the SAP LUW with the COMMIT WORK statement. A new SAP
LUW immediately starts in the dialog program, which can carry on processing user dialogs
without interruption. The dialog program does not wait for the update program to finish.

­ The update program is run on a special update work process. This need not be on the same
server as the corresponding dialog work process.

­ The SAP LUW that began in the dialog program is continued and then closed by the update
program.

n The log table VBLOG can be implement as a cluster file in your system, or be replaced with the
transparent tables VBHDR, VBMOD, VBDATA, and VBERROR.

n Asynchronous updates are useful in transactions where the database updates take a long time and the
"perceived performance" by the shorter user dialog response time is important.

n Asynchronous update is the standard technique for dialog processing.

n The entries that have a HEADER can be analyzed in SM13.

n In local update , the update functions are run on the same dialog process used by the dialog program
containing the COMMIT WORK statement.

n To do this, you must include the SET UPDATE TASK LOCAL statement in the dialog program.
The effect of this is that update requests are kept in main memory rather than being written into table
VBLOG in the database.

n When the system reaches the COMMIT WORK statement, the corresponding update modules are
processed in the dialog work process currently being used by the dialog program. If all of the update
modules run successfully, a database commit is triggered. If not, a database rollback occurs.

n Once the update function modules have been processed, the dialog program resumes with a new SAP
LUW.

n The SET UPDATE TASK LOCAL flag can only be set if no other update requests were generated
for the same LUW before the program was called up.

n The SET UPDATE TASK LOCAL flag is effective until the next COMMIT WORK or ROLLBACK
WORK command.

n With synchronous updates, the dialog program waits for the end of the update modules. The dialog
program does not begin to process the new SAP LUW until the update modules have terminated.

n To switch from asynchronous to synchronous update, use the AND WAIT addition in the COMMIT
WORK statement.

n The entries that have a HEADER can be analyzed in SM13.

n Asynchronous update is useful in transactions where subsequent user dialogs do not depend on the
database updates being made immediately. Once the update task has been called, control returns
directly to the user.

n Local update is particularly useful for processing dialog transactions in the background. There is no
contact with the database table VBLOG, and if the program is running alone on the server, local
update is faster than either synchronous or asynchronous update. If, as is the usual case, several users
are using the server, the speed of the program depends on the total server load.

n Synchronous update is useful in transactions where you want to use the advantages of update
techniques (logging, opportunity to reprocess failed update requests), but where subsequent user
dialogs nevertheless do depend on the results of the update. One particular application for this
technique is in "transactions within transactions" - where one transaction uses other transactions as
modularization units (CALL TRANSACTION <t_code>). When you use this method, you can
determine in the call the update technique that you want the transaction to use. For further
information, see the keyword documentation in the ABAP Editor for the term CALL
TRANSACTION.

n Update function modules can be separated into two groups . The group determines when the function
module is processed: Function modules that are classified as V1 can be further divided into two
subclasses: Start immediately or Start immediately, no restart. V2 function modules are processed
asynchronously after all V1 update modules have finished running.

n If you have used the Start immediately (V1) option, you can update any records that contained errors
manually, using Transaction SM13. If you use the Start immediately, no restart (V1) option, this is
not possible. V2 update function modules (Start delayed) can always be manually updated.

n V1 update function modules do not normally run using the SAP lock concept. In other words, the V1
update program is executed with the protection of the locks from the dialog program.

n Any lock entries are released at the end of the V1 update. V2 update function modules always run
without logical locks.

n You can also classify an update module using attribute 'Coll. run' (collective run). This option is used
SAP internal only (special form of V2 update, asynchronously, start via program RSM13005).

n The flow diagrams discussed up to now all deal with V1 updates.

n Update requests for V2 update modules are also generated by the dialog program.

n V1 update modules generate update requests in table VBLOG in synchronous and asynchronous
update, and in main memory in local update.

n V2 update modules generate entries in VBLOG and always run asynchronously.

n V1 update modules are handled by the system with priority and are executed before the V2 update
requests.

n V1 updates can be performed synchronously, asynchronously, or locally.

n V2 update function modules are not processed until all V1 update function modules have been
successfully processed.

n The V2 update function modules run in a separate DB LUW. They are executed in a V2 update work
process. If there are no V2 update work processes set up in your system, the V2 update function
modules run in a V1 update work process.

n Once all of the V2 update function modules have been executed successfully, the V2 update requests
are deleted from VBLOG.

n If an error occurs in a V2 update function module to which the function module reacts with a
termination error message, the system triggers a database rollback. All of the V2 changes in the SAP
LUW are undone and an error flag is set in table VBLOG for all of the V2 update requests.

n V2 update function modules run without SAP locks.

n The division between V1 and V2 update function modules allows you to set 'high priority' and 'low
priority' updates.

n V2 update function modules are used for low-priority tasks, such as writing statistics to the database.

n The locks generated in the dialog program are usually inherited by the V1 update modules when the
update takes place. This is controlled by the SCOPE interface parameter of the lock modules. When
SCOPE = 2, the V1 update programs inherit the locks that are set in the dialog program.

n 2 is the default setting for SCOPE when you call a lock module.

n You do not need to release the locks explicitly in your program, since they are automatically released
at the end of the V1 update process.

n The locks are also released if one of the V1 update modules triggers a database rollback by sending a
termination message.

n An SAP LUW maps updates, which are logically related and usually involve several dialog steps, to
a database LUW. The database updates are encapsulated via update modules.

n SAP LUWs are supported specifically by R/3:

� Locks (Scope = 2)

� The CALL FUNCTION IN UPDATE TASK call mechanism

� The command COMMIT WORK

� Type 'A' or 'X' dialog messages.

n An SAP LUW can be divided into three phases (three-phase model).

n Dialogs, user entries, and their input checks take place in phase 1. Calls of update modules are not
allowed here, since they might be registered more than once during an error dialog (E message).
Phase 1 ends when the first update module is called. The data to be updated must be held in global
program data during phase 1.

n Preparations for database updates take place in phase 2. Phase 2 begins when the first update module
is called and ends with the COMMIT WORK statement. The system must now respond to any errors
with a type 'A' or 'X' dialog message. The COMMIT WORK that concludes phase 2 should only be set
at the top level if call hierarchies are used, since the lower-level modularization units in the hierarchy
are not aware of the status of the program context.

n The database updates are performed in phase 3. The system must always respond to any errors in
phase 3 with a type 'A' or 'X' dialog message. This leads to a ROLLBACK of the complete database
LUW as well as a termination of the update.

n Local update processing isactivated using the ABAP command SET UPDATE TASK LOCAL. The
update type can only be changed if it is processed before the first update module is called.

n With local updates, the update modules are executed in the dialog work process that is currently
performing the SAP LUW.

n As is the case with synchronous updates, the user must wait while the update modules are being
executed.

n Local updates should be used for:

- Transactions that are carried out in the background (batch) (CALL TRANSACTION USING)
Exception: If unbuffered number assignments and higher parallel processing is requested at the
same time.

- Dialog transactions with very few database changes (3 - 5 statements) for which the dialog
behavior is not critical.

n Note that the fewer the number of users making changes simultaneously, the better the response time
of the database.

n Synchronous updates are triggered by the ABAP statement COMMIT WORK AND WAIT. With a
synchronous update, the update modules are executed in an update work process.

n Unlike asynchronous updates, the dialog part of the transaction is stopped while the update modules
are being executed.

n The success or failure of the update is displayed in system field sy-subrc once the update has
been completed.

n For every action on the database that prompts table updates, the record to be changed is locked
physically by the database. The same applies if you are reading with SELECT ... FOR UPDATE.

n Other users cannot change the same data for the duration of the lock.

n To reduce the lock duration on the database, you should use the following rule to program the
database updates carried out by the update modules:

� First, new table entries should be created. These present the smallest 'problem' for the other users.

� You should then perform table updates that are not critical to performance. As a rule, these are the
tables that are accessed 'simultaneously' by as few users as possible.

� Tables that are central resources in the system (which many users access at once) should always be
changed as late as possible.

n To lock the central tables (performance critical) for as short a time as possible, you can use
PERFORM uprog ON COMMIT in the update.

n For this purpose, encapsulate the changes to the central tables in FORM routines and call these up in
the update using PERFORM ON COMMIT. The FORM routines are then not executed until the last
update module has been processed.

n After the last update module has been processed, a program executes the ABAP command COMMIT
WORK, which then performs the FORM routines registered in the update.

Unit: Organizing Database Updates

At the conclusion of these exercises, you will be able to:

• Perform database updates using the asynchronous update technique

The program SAPMZ##_BOOKINGS2 from the previous unit is to be
changed or enhanced so that database updates can be performed using the
asynchronous update technique.

Canceling bookings:
To implement the asynchronous update technique, the existing source
code needs to be adjusted here.

Creating a new booking:
The database dialog part is to be implemented here. The data for a new
booking is entered on screen 300. Clicking the Save icon (function code
SAVE) on screen 300 is to insert the new bookings in the SBOOK table
and modify the flight in question in the SFLIGHT table. The updates are
to be performed within a DB LUW and using the asynchronous update
technique.

Program: SAPMZ##_BOOKINGS3

Transaction code: Z##_BOOKINGS3

Template: SAPBC414T_BOOKINGS_03

Model solution: SAPBC414S_BOOKINGS_03

1-1 Copy your solution SAPMZ##_BOOKINGS2 or the program template
SAPBC414T_BOOKINGS_03 with all sub-objects to SAPMZ##_BOOKINGS3
(## is your group number). Assign transaction code Z##_BOOKINGS3 to the
program.

1-2 Canceling existing bookings:

1-2-1 Function modules UPDATE_SFLIGHT and UPDATE_SBOOK are used to
update the table entries in the DB tables SLFIGHT and SBOOK. Can these
function modules also be used to perform the updates using the update
technique?

1-2-2 Modify your program so that the updates to the DB tables SFLIGHT and
SBOOK are performed using the update technique:

• Call up the corresponding function modules capable of performing updates in the
SAVE_MODIFIED_BOOKING subroutine

• Insert the statement COMMIT WORK in the PAI module USER_COMMAND_0200

• Note that the locks (SCOPE = 2) are inherited by the update program and, therefore, are
not released explicitly in the dialog program.

1-3 Generating a new booking:
To generate a new entry in the DB table SBOOK, use the function module
INSERT_SBOOK, which is capable of performing updates. This function module is
to be called up in the subroutine SAVE_NEW_BOOKING. The subroutine is called
up from the PAI module USER_COMMAND_0300 (screen 300) and is already
created (blank).

1-3-1 Call up the function modules INSERT_SBOOK and UPDATE_SFLIGHT,
which are capable of performing updates, to update the DB tables SBOOK
and SFLIGHT using the update technique.

1-3-2 Insert the statement COMMIT WORK in the PAI module
USER_COMMAND_0200.

1-3-3 Lock the flight and the booking by calling up the corresponding lock
modules. Call up subroutine ENQ_SFLIGHT and ENQ_SBOOK in the
appropriate places. If a user action calls up screen 100, release the locks.

The booking data is held in structure WA_SBOOK.

Unit: Organizing Database Updates

Model Solution SAPBC414S_BOOKINGS_03

PAI Modules
--

***INCLUDE BC414S_BOOKINGS_03I01 .

--

&---

*& Module EXIT INPUT
&---

MODULE exit INPUT.
 CASE ok_code.

 WHEN 'CANCEL'.

 CASE sy-dynnr.
 WHEN '0100'.

 LEAVE PROGRAM.
 WHEN '0200'.

 PERFORM deq_all.

 LEAVE TO SCREEN '0100'.
 WHEN '0300'.
* remove all database locks
 PERFORM deq_all.

 LEAVE TO SCREEN '0100'.

 WHEN OTHERS.
 ENDCASE.

 WHEN 'EXIT'.

 LEAVE PROGRAM.
 WHEN OTHERS.

 ENDCASE.
ENDMODULE. " EXIT INPUT

&---

*& Module USER_COMMAND_0100 INPUT

&---
MODULE user_command_0100 INPUT.

 CASE save_ok.
****************************CANCEL BOOKING**************************

 WHEN 'BOOKC'.

 PERFORM enq_sflight_sbook.
 PERFORM read_sflight USING wa_sflight sysubrc.

 PERFORM process_sysubrc_bookc.
 PERFORM read_spfli USING wa_spfli.

 PERFORM read_sbook USING itab_book itab_cd.

 REFRESH CONTROL 'TC_SBOOK' FROM SCREEN '0200'.
****************************CREATE BOOKING**************************

 WHEN 'BOOKN'.
* lock flight in Table SFLIGHT, which will be modified when new
* booking is saved

 PERFORM enq_sflight.

 PERFORM read_sflight USING wa_sflight sysubrc.

 PERFORM process_sysubrc_bookn.

 PERFORM read_spfli USING wa_spfli.
 PERFORM initialize_sbook USING wa_sbook.

 WHEN 'BACK'.
 SET SCREEN 0.

 WHEN OTHERS.

 SET SCREEN '0100'.
 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

&---
*& Module USER_COMMAND_0200 INPUT

&---

MODULE user_command_0200 INPUT.
 CASE save_ok.

 WHEN 'SAVE'.
 PERFORM collect_modified_data USING itab_sbook_modify.

 PERFORM save_modified_booking.
* start asynchronous update and new SAP-LUW
 COMMIT WORK.

* database locks are removed by update program

 SET SCREEN '0100'.

 WHEN 'BACK'.
 PERFORM deq_all.

 SET SCREEN '0100'.
 WHEN OTHERS.

 SET SCREEN '0200'.

 ENDCASE.
ENDMODULE. " USER_COMMAND_0200 INPUT

&---

*& Module USER_COMMAND_0300 INPUT

&---
MODULE user_command_0300 INPUT.

 PERFORM tabstrip_set.
 CASE save_ok.

 WHEN 'NEW_CUSTOM'.

 PERFORM create_new_customer.
 SET SCREEN '0300'.

 WHEN 'SAVE'.
 PERFORM save_new_booking.
* start asynchronous update and new SAP-LUW

 COMMIT WORK.
* database locks are removed by update program

 SET SCREEN '0100'.

 WHEN 'BACK'.
* remove all database locks

 PERFORM deq_all.

 SET SCREEN '0100'.

 WHEN OTHERS.

 SET SCREEN '0300'.
 ENDCASE.

ENDMODULE. " USER_COMMAND_0300 INPUT

FORM Routines
F01

--

***INCLUDE BC414S_BOOKINGS_03F01 .
--

&---
*& Form PROCESS_SYSUBRC_BOOKN

&---
FORM process_sysubrc_bookn.

 CASE sysubrc.

 SET SCREEN '0300'.

 WHEN OTHERS.
* remove all database locks
 PERFORM deq_all.

 MESSAGE e023 WITH sdyn_conn-carrid sdyn_conn-connid
 sdyn_conn-fldate.

 ENDCASE.

ENDFORM. " PROCESS_SYSUBRC_BOOKN

F04
--

* INCLUDE BC414S_BOOKINGS_03F04
--

&---

*& Form SAVE_MODIFIED_BOOKING

&---
FORM save_modified_booking.
 CALL FUNCTION 'UPDATE_SBOOK' IN UPDATE TASK
 EXPORTING

 itab_sbook = itab_sbook_modify.

* no exception handling when using asynchronous update technique
 PERFORM update_sflight.

ENDFORM. " SAVE_MODIFIED_BOOKING

&---
*& Form UPDATE_SFLIGHT

&---

FORM update_sflight.
 CALL FUNCTION 'UPDATE_SFLIGHT' IN UPDATE TASK

 EXPORTING
 carrier = wa_sflight-carrid

 connection = wa_sflight-connid

 date = wa_sflight-fldate.
* no exception handling when using asynchronous update technique

ENDFORM. " UPDATE_SFLIGHT

&---
*& Form SAVE_NEW_BOOKING

&---

FORM save_new_booking.
 PERFORM convert_to_loc_currency USING wa_sbook.
* lock booking on DB table sbook to be created
 PERFORM enq_sbook.

 CALL FUNCTION 'INSERT_SBOOK' IN UPDATE TASK

 EXPORTING

 wa_sbook = wa_sbook.

* no exception handling when using asynchronous update technique

 PERFORM update_sflight.

ENDFORM. " SAVE_NEW_BOOKING

 SAP AG 1999

l Call techniques for programs

l The logical memory level model

l Data transfer between programs

l Complex LUWs

l Lock behavior for complex LUWs

Contents:

Complex LUW Processing

 SAP AG 1999

Course Overview Diagram - Complex LUW
Processing

6

Complex LUW ProcessingComplex LUW Processing

Complex
LUW Processing

 SAP AG 1999

Overview Complex LUW Processing:
Call Techniques for Programs

Locks for program callsLocks for program calls

LUW processing for program callsLUW processing for program calls

Data transfer between programsData transfer between programs

The logical memory level modelThe logical memory level model

Call techniques for programsCall techniques for programs

 SAP AG 1999

Synchronous Calls

B

A

Main
memory

A

Main
memory

A

New program Insert program

End insertionA

B

Program 1

Program 2

1

Time

New program
• SUBMIT <program>.
• LEAVE TO

TRANSACTION
<t_code>.

New program
• SUBMIT <program>.
• LEAVE TO

TRANSACTION
<t_code>.

• SUBMIT <program> AND RETURN.
• CALL TRANSACTION <t_code>.
• CALL FUNCTION <function>...

• SUBMIT <program> AND RETURN.
• CALL TRANSACTION <t_code>.
• CALL FUNCTION <function>...

Insert program

B

n In an ABAP program, there are two ways of executing another program synchronously:

­ Terminate the current program and start the other program (SUBMIT <program>, LEAVE
TO TRANSACTION <t_code>)

­ Call the other program without terminating the other program. The calling program is
interrupted, and the system returns to it when the program that it has called is finished (CALL
TRANSACTION, SUBMIT <program> AND RETURN, CALL FUNCTION).

n You can only use SUBMIT <program> and SUBMIT <program> AND RETURN to start
executable programs (program type 'Executable program', formerly program type '1').

n You use LEAVE TO TRANSACTION <t_code> and CALL TRANSACTION <t_code> to
start programs that have a transaction code.

n You use CALL FUNCTION <function> to execute a function module.

n The executed commands differ with regard to the visibility of program data in the calling program
and the called program, and in their behavior with regard to LUW processing.

 SAP AG 1999

Calling an Executable Program

Program 1

...
SUBMIT sapbc400...
...

...
SUBMIT sapbc400...
 AND RETURN.
...

...
SUBMIT sapbc400...
 VIA SELECTION-SCREEN
 AND RETURN.
...

List

SAPBC400...
PROGRAM ...
...

List

SAPBC400...
PROGRAM ...
...

List

SAPBC400...
PROGRAM ...
...

Selection screen

Program 2: Report SAPBC400...

F3

F3

F3F3

n With the SUBMIT statement, you start programs that are directly executable programs.

n The addition VIA SELECTION-SCREEN is used to send the selection screen of the program (if the
program has a standard selection screen).

n To return to the calling program after the program has finished, use the addition AND RETURN.

n Calling an executable program allows you to use a logical database to read data.

n For further information, see the keyword documentation in the ABAP Editor for SUBMIT.

 SAP AG 1999

Calling a Transaction

SAPMTCGB

MODULE ... INPUT.
 ...
LEAVE PROGRAM.
 ...
ENDMODULE.

Program 1

MODULE ... INPUT.
 ...
CALL TRANSACTION 'TCGB'.
* AND SKIP FIRST SCREEN.
 ...
ENDMODULE.

Program 2: Transaction

* AND SKIP FIRST SCREEN.* AND SKIP FIRST SCREEN.
CALL TRANSACTION 'TCGB'.CALL TRANSACTION 'TCGB'.

LEAVE PROGRAM.LEAVE PROGRAM.

TCGBTCGB

1. Screen

2. Screen

F15

n You can execute ABAP programs with a transaction code <t_code> using the statement CALL
TRANSACTION <t_code>. When the program that you called has terminated, the system
continues processing the calling program.

n If the transaction that you call in the CALL TRANSACTION <t_code> statement uses update
techniques, you can determine which technique it should use (synchronous or asynchronous) using
the FUNCTION parameter in the call.

n To exit an ABAP program, use the LEAVE PROGRAM statement. If you use this statement in a
program that you have called using CALL TRANSACTION <t_code> or SUBMIT <program>
AND RETURN, the system returns to the calling program. Otherwise, the system returns to the
application menu from which you started the program.

n To initiate a transaction with the transaction code <t_code>, use the LEAVE TO TRANSACTION
<t_code> statement. This does not allow you to return to where the transaction was called from.
This statement has the same effect as entering /n<t_code> in the command field.

n For further information, see the keyword documentation in the ABAP Editor for CALL and LEAVE.

 SAP AG 1999

Encapsulating Dialogs in Function Modules

Function group: FLIG
Program: SAPLFLIG

Program B

FUNCTION DISP_FLIGHTDISP_FLIGHT.
 ...
 CALL SCREEN 100.
 ...
ENDFUNCTION.

Program A
MODULE module1 INPUT.
CALL FUNCTION CALL FUNCTION
 'DISP_FLIGHT''DISP_FLIGHT'
 EXPORTING ...
ENDMODULE.

MODULE MI_0100 INPUT.
 ...
ENDMODULE.

MODULE MO_0100 OUTPUT.
 ...
ENDMODULE.MODULE module2 INPUT.

CALL FUNCTION CALL FUNCTION
 'DISP_FLIGHT''DISP_FLIGHT'
 EXPORTING ...
ENDMODULE.

CALL FUNCTION CALL FUNCTION
 'DISP_FLIGHT''DISP_FLIGHT'

CALL FUNCTION CALL FUNCTION
 'DISP_FLIGHT''DISP_FLIGHT'

DISP_FLIGHTDISP_FLIGHT

CALL SCREEN 100.CALL SCREEN 100.
Screen
SAPLFLIG
0100

n You can encapsulate dialogs in reusable function modules.

n If you call up a screen within a function module, this screen belongs to the program of function
group SAPL<f_group> of the function module.

 SAP AG 1999

Overview of Complex LUW Processing:
Logical Memory Level Model

Locks for program callsLocks for program calls

LUW processing for program callsLUW processing for program calls

Data transfer between programsData transfer between programs

The logical memory level modelThe logical memory level model

Call techniques for programsCall techniques for programs

 SAP AG 1999

The Logical Memory Level Model

External session (window) 1
A

B
A

P
 m

em
o

ry

Internal session 1

Program 1

External session (window) 2

A
B

A
P

 m
em

o
ry

Internal session 1

Program 1'

SAP memory (SET/GET parameters)

User session (logon)

Internal session 2

Program 2

n A logical memory model illustrates how the main memory is distributed from the view of executable
programs. A distinction is made here between external sessions and internal sessions .

n An external session is usually linked to an R/3 window. You can create an external session by
choosing System/Create session, or by entering /o<t_code> in the command field. An external
session is broken down further into internal sessions. Program data is only visible within an internal
session. Each external session can include up to 20 internal sessions (stacks).

n Every program you start runs in an internal session.

n All "squares" with rounded "corners" displayed in the status diagram represent a set of data objects
in the main memory.

n The data in the main memory is only visible to the program concerned.

n CALL TRANSACTION <tcode> and SUBMIT <program> AND RETURN open a new
internal session that forms a new program context. The internal sessions in an external session form a
memory stack. The new session is added to the top of the stack.

n When a program has finished running, the top internal session in the stack is removed, and the
calling program resumes processing.

n The same occurs when the system processes a LEAVE PROGRAM statement.

n LEAVE TO TRANSACTION removes all internal sessions from the stack and opens a new one
containing the program context of the calling program.

n The ABAP memory is initialized after the program is called. In other words, you cannot transfer any
data to a program called with LEAVE TO TRANSACTION <tcode> via the ABAP memory.

n SUBMIT <program> replaces the internal session of the program performing the call with the
internal session of the program that has been called. The new internal session contains the program
context of the called program with which it is performed.

n When a function module is called, the following steps are executed:

� A check is made to establish whether your program has called a function module of the same
function group previously.

� If this is not the case, the system loads the associated function group to the internal session of the
calling program as an additional program group. This initializes its global data.

� If your program used a function module of the same function group before the current call, the
function module that you have called up at present can access the global data of the function
group. The function group is not reloaded.

n Within the internal session, all of the function modules that you call from the same group access the
global data of that group.

n If, in a new internal session, you call a function module from the same function group as in internal
session 1, a new set of global data is initialized for the second internal session. This means that the
data accessed by function modules called in session 2 may be different from that accessed by the
function modules in session 1.

n You can call function modules asynchronously as well as synchronously. To do so, you must extend
the function module call using the addition STARTING NEW TASK '<name>'. Here,
'<name>' is a symbolic name in the calling program that identifies the external session, in which
the called program is executed.

n Function modules that you call using the addition STARTING NEW TASK '<name>' are
executed independently of the calling program. The calling program is not interrupted.

n To make function modules available for local asynchronous calls, you must identify them as
executable remotely (processing type: Remote-enabled module).

n For further information, see the keyword documentation in the ABAP Editor for CALL FUNCTION.

n There are various ways of transferring data between programs that are running in different program
contexts (internal sessions). You can use:

(1) The interface of the called program (standard selection screen, or interface of a
 subroutine, function module, or dialog module)

(2) ABAP memory

(3) SAP memory

(4) Database tables

(5) Local files on your presentation server.

n For further information about transferring data using database tables and the shared buffer, refer to
the keyword documentation in the ABAP Editor for the terms EXPORT and IMPORT.

n For further information about transferring data between an ABAP program and your presentation
server, refer to the documentation for the function modules WS_UPLOAD and WS_DOWNLOAD.

n Function modules have an interface, which you can use to pass data between the calling program and
the function module itself (there is also a comparable mechanism for ABAP subroutines). If a
function module supports RFC, certain restrictions apply to its interface.

n If you are calling an ABAP program that has a standard selection screen, you can pass values to the
input fields. There are two options here:

­ By using a variant of the standard selection screen in the program call

­ By passing actual values for the input fields in the program call

n If you want to call a report program without displaying its selection screen (default setting), but still
want to pass values to its input fields, there is a variety of techniques that you can use.

n The WITH addition allows you to assign values to the parameters and select-options fields on the
standard selection screen.

n If the selection screen is to be displayed when the program is called, use the addition: VIA
SELECTION-SCREEN.

n Use the pattern button in the ABAP Editor to insert a program call via SUBMIT. The structure shows
you the names of data objects that you can complete with the standard selection screen.

n For further information on working with variants and further syntax variants for the WITH addition,
see the key word documentation in the ABAP Editor for SUBMIT.

n You can use SAP memory and ABAP memory to pass data between different programs.

n The SAP memory is a user-specific memory area for storing field values. It is available in all of the
open sessions in a user's terminal session, and is reset when the terminal session ends. You can use
its contents as default values for screen fields. All external sessions can access SAP memory. This
means that it is only of limited use for passing data between internal sessions.

n The ABAP memory is also user-specific, and is local to each external session. You can use it to pass
any ABAP variables (fields, structures, internal tables, complex objects) between the internal
sessions of a single external session.

n Each external session has its own ABAP memory. When you end an external session (/i in the
command field), the corresponding ABAP memory is released automatically.

n To copy a set of ABAP variables and their current values (data cluster) to the ABAP memory, use
the EXPORT TO MEMORY ID <id> statement. The <id> (up to 32 characters) is used to identify
the different data clusters.

n If you repeat an EXPORT TO MEMORY ID <id> statement to an existing data cluster, the new
data overwrites the old.

n To copy data from ABAP memory to the corresponding fields of an ABAP program, use the
IMPORT FROM MEMORY ID <id> statement.

n The fields, structures, internal tables, and complex objects in a data cluster in ABAP memory must
be declared identically in both the program from which you exported the data and the program into
which you import it.

n To release a data cluster, use the FREE MEMORY ID <id> statement.

n You can import just parts of a data cluster with IMPORT, since the objects are named in the cluster.

n In the SAP memory, you can define memory areas (SET/GET parameters, or parameter IDs), which
you can then address by a name of up to 20 characters.

n You can fill these memory areas either using the contents of input/output fields on screens, or using
the ABAP statement:
 SET PARAMETER ID '<parameter_id>' FIELD <value>.
The memory area with the name <parameter_id> now has the value <value>.

n You can use the contents of a memory area to display a default value in an input field on a screen.

n You can also read the memory areas from the SAP memory using the ABAP statement GET
PARAMETER ID <parameter_id> FIELD <field>. The field <field> then contains the
value from parameter <parameter_id>.

n The link between an input/output field and a memory area in SAP memory is inherited from the data
element on which the field is based. You can enable the set parameter or get parameter attributes in
the input/output field attributes.

n Once you have set the Set parameter attribute for an input/output field, you can fill it with default
values from SAP memory. This is particularly useful for transactions that you call from another
program without displaying the initial screen. For this purpose, you must activate the Set parameter
functionality for the input fields of the first screen of the transaction.

n You can:

(1) Copy the data that is to be used for the first screen of the transaction to be called to the
parameter ID in the SAP memory. To do so, use the statement SET PARAMETER immediately
before calling the transaction.

(2) Start the transaction using CALL TRANSACTION <t_code> or LEAVE TO
TRANSACTION <t_code>. If you do not want to display the initial screen, use the AND
SKIP FIRST SCREEN addition.

(3) The system program that starts the transaction fills the input fields that do not already have
default values and for which the Get parameter attribute has been set with values from SAP
memory.

n The Technical information for the input fields in the transaction you want to call contains the names
of the parameter IDs that you need to use.

n Parameter IDs should be entered in table TPARA. This happens automatically if you create them via
the Object navigator.

n Programs that you call using the statements SUBMIT <program>, LEAVE TO TRANSACTION
<t_code>, SUBMIT <program> AND RETURN, or CALL TRANSACTION <t_code> run
in their own SAP LUW, and update requests receive their own update key.

n When you use SUBMIT <program> and LEAVE TO TRANSACTION <t_code>, the SAP
LUW of the calling program ends. If no COMMIT WORK statement occurred before the program call,
the update requests in the log table remain incomplete and cannot be processed. They can no longer
be executed. The same applies to inline changes that you make using PERFORM … ON COMMIT.
Data that you have written to the database using inline changes is committed the next time a new
screen is displayed.

n If you use SUBMIT <program> AND RETURN or CALL TRANSACTION <t_code> to insert
a program and then return to the calling program, the SAP LUW of the calling program is resumed
when the called program ends. The LUW processing of calling and called programs is independent.
In other words, inline changes are committed the next time a new screen is displayed. Update
requests and calls using PERFORM ... ON COMMIT require an independent COMMIT WORK
statement in the SAP LUW in which they are running.

n Function modules run in the same SAP LUW as the program that calls them.

n If you call transactions with nested calls, each transaction needs its own COMMIT WORK, since each
transaction maps its own SAP LUW.

n The same applies to calling executable programs, which are called using SUBMIT <program>
AND RETURN.

n The statement CALL TRANSACTION allows you to

� Shorten the user dialog when calling using CALL TRANSACTION <tcode> USING
<itab>.

� Determine the type of update (asynchronous, local, or synchronous) for the transaction called. For
this purpose, use the addition CALL TRANSACTION <tcode> USING <itab> UPDATE
'update_mode', where update_mode can have the values A (asynchronous), L (local), or S
(synchronous).

n Combining the two options enables you to call several transactions in sequence (logical chain), to
reduce their screen sequence, and to postpone processing of the SAP LUW 2 until processing of the
SAP LUW 1 has been completed.

n When you call a function module asynchronously using the CALL FUNCTION <function>
STARTING NEW TASK ' ' statement, it runs in its own SAP LUW.

n Programs that are executed with a SUBMIT <program> AND RETURN or CALL
TRANSACTION <t_code> statement start their own LUW processing. You can use these to
perform nested (complex) LUW processing.

n You can use function modules as modularization units within an SAP LUW.

n Function modules that are called asynchronously are suitable for programs that allow parallel
processing of some of their components.

n All techniques are suitable for including programs with purely display functions.

n Note that a function module called with CALL FUNCTION <f> STARTING NEW TASK is
executed as a new logon. It, therefore, sees a separate SAP memory area. You can use the interface
of the function module for data transfers.
Example: In your program, you want to call a display transaction that is displayed in a separate
window (amodal). To do so, you encapsulate the transaction call in a function module, which you set
as to Remote-enabled module . You use the function module interface to accept values that you write
to the SAP memory. You then call up the transaction in the function module using CALL
TRANSACTION <tcode> AND SKIP FIRST SCREEN. You call the function module itself
asynchronously.

n Type ‘E' locks for nested program calls may be requested more than once from the same object. This
behavior can be described as follows:

­ Lock entries from function modules called synchronously increment the cumulative counter,
and are therefore successful.

­ Lock entries from programs called with CALL TRANSACTION or SUBMIT <p> AND
RETURN are refused. The object to be locked by the called program is displayed as already
locked by another user.

n Programs that you call using SUBMIT <program> or LEAVE TO TRANSACTION <t_code>
cannot come into conflict with lock entries from the calling program, since the old program ends
when the call is made. When a program ends, the system deletes all of the lock entries that it had set.

n Lock requests belonging to the same user from different R/3 windows or logons are treated as lock
requests from other users.

Unit: Complex LUW Processing

At the conclusion of these exercises, you will be able to:

• Use the CALL TRANSACTION <tcode> technique for
modularization at program level

• Use the SAP memory to transfer data

New bookings can be entered in program SAPMZ##_BOOKINGS3 (see
last exercise). One requirement, however, is that the posting customer is
already maintained in the system.

Clicking the Create new customer icon (function code NEW_CUSTOM) on
screen 300 will enable a customer to be created from the posting
program. For this reason, program SAPMZ##_CUSTOMER2 (transaction
code: Z##_CUSTOMER2) will be called up using the CALL
TRANSACTION <tcode> technique. You have created this program
in exercise 1 for the Database Updates with Open SQL unit and enhanced
it in the optional part of exercise 1 for the SAP Lock Concept unit.

Program: SAPMZ##_BOOKINGS4

Transaction code: Z##_BOOKINGS4

Template: SAPBC414T_BOOKINGS_04 /

 SAPBC414T_CREATE_CUSTOMER_03

Model solution: SAPBC414S_BOOKINGS_04 /

 SAPBC414S_CREATE_CUSTOMER

1-1 Copy your solution SAPMZ##_BOOKINGS3 or the program template
SAPBC414T_BOOKINGS_04 with all sub-objects to SAPMZ##_BOOKINGS4
(## is the group number). Assign transaction code Z##_BOOKINGS4 to the
program.

1-2 Copy the program template SAPBC414T_CREATE_CUSTOMER_03 with all sub-
objects to SAPMZ##_CUSTOMER3 (## is the group number) and assign
transaction code Z##_CUSTOMER3 to the program.

1-3 The transaction call for creating a new customer is to be encapsulated in the
CREATE_NEW_CUSTOMER subroutine. The subroutine is called up from the PAI
module USER_COMMAND_0300 (screen 300) and is already created (blank).

1-3-1 Implement the transaction call. Call your transaction Z##_CUSTOMER3.

1-4 The customer number is determined in the SAPMZ##_CUSTOMER3 program using
an internal number assignment, in other words it is assigned by the application
itself. The SAP memory is to be used to transfer the customer number to the calling
program.

1-4-1 Change the SAPMZ##_CUSTOMER3 program so that the customer number
is written to the SAP memory after a customer has been created
successfully. To which SET/GET parameter must the customer number be
assigned?

1-4-2 Change the calling program SAPMZ##_BOOKINGS4 so that the customer
number appears in the appropriate field of the subscreen 301 after a
customer has been created successfully.

You can display the name of the SET/GET parameter that is assigned to
this field via the F1 Help for a screen field.

SAPMZ##_CUSTOMER3: The customer number is in the data object
SCUSTOM-ID

Unit: Complex LUW Processing

Model Solution SAPBC414S_BOOKINGS_04

FORM Routines
F01

--

***INCLUDE BC414S_BOOKINGS_04F01 .
--

&---

*& Form CREATE_NEW_CUSTOMER

&---
FORM create_new_customer.
 CALL TRANSACTION 'BC414S_CREATE_CUST'.

* Called Transaction set the SET/GET Parameter CSM??
 GET PARAMETER ID 'CSM' field scust_id.

* scust_id <> initial -> customer created -> clear customid to get
* customer number via SET/GET Parameters

 check not scust_id is initial.

 clear: wa_sbook-customid.

ENDFORM. " CREATE_NEW_CUSTOMER

Musterlösung SAPBC414S_CREATE_CUSTOMER

FORM Routines
F01

--
***INCLUDE BC414S_CREATE_CUSTOMERF01 .

--

&---

*& Form SAVE_SCUSTOM

&---
FORM save_scustom.

 INSERT INTO scustom VALUES scustom.
 IF sy-subrc <> 0.

* initialize SCUSTOM-ID in SAP-MEMORY

 SET PARAMETER ID 'CSM' FIELD space.
* insertion of dataset in DB-table not possible

 MESSAGE a048.
 ELSE.

* write SCUSTOM-ID back to SAP-MEMORY

 SET PARAMETER ID 'CSM' FIELD scustom-id.
* insertion successfull

 MESSAGE s015 WITH scustom-id.

 ENDIF.

ENDFORM. " SAVE_SCUSTOM

 SAP AG 1999

l Complete model solution for program:
Creating customer data

l Complete model solution for program:
Canceling/creating bookings

l Slide index

Content:

Appendix

Solutions

Program: Generating Customer Data Records

 Complete Transaction

Model Solution SAPBC414S_CREATE_CUSTOMER

Module Pool
&---
*& Modulpool SAPBC414S_CREATE_CUSTOMER *

&---
INCLUDE BC414S_CREATE_CUSTOMERTOP.

INCLUDE BC414S_CREATE_CUSTOMERO01.

INCLUDE BC414S_CREATE_CUSTOMERI01.
INCLUDE BC414S_CREATE_CUSTOMERF01.

SCREEN 100
PROCESS BEFORE OUTPUT.
 MODULE status_0100.

PROCESS AFTER INPUT.
 MODULE exit AT EXIT-COMMAND.

 MODULE save_ok_code.
 FIELD: scustom-name MODULE mark_changed ON REQUEST.

 MODULE user_command_0100.

TOP Include
&---

*& Include BC414S_CREATE_CUSTOMERTOP *

&---
PROGRAM sapbc414s_create_customer MESSAGE-ID bc414.

DATA: answer, flag.

DATA: ok_code LIKE sy-ucomm, save_ok LIKE ok_code.

TABLES: scustom.

PBO Modules
--

***INCLUDE BC414S_CREATE_CUSTOMERO01 .
--

&---

*& Module STATUS_0100 OUTPUT

&---
MODULE STATUS_0100 OUTPUT.

 SET PF-STATUS 'DYN_0100'.
 SET TITLEBAR 'DYN_0100'.

ENDMODULE. " STATUS_0100 OUTPUT

PAI Modules
--
***INCLUDE BC414S_CREATE_CUSTOMERI01 .

--

&---

*& Module EXIT INPUT
&---

MODULE exit INPUT.
 CASE ok_code.

 WHEN 'EXIT'.

 IF sy-datar IS INITIAL AND flag IS INITIAL.
* no changes on screen 100

 LEAVE PROGRAM.

 ELSE.
 PERFORM ask_save USING answer.

 CASE answer.
 WHEN 'J'.

 ok_code = 'SAVE&EXIT'.

 WHEN 'N'.
 LEAVE PROGRAM.

 WHEN 'A'.
 CLEAR ok_code.

 SET SCREEN 100.

 ENDIF.

 WHEN 'CANCEL'.

 IF sy-datar IS INITIAL AND flag IS INITIAL.
* no changes on screen 100

 LEAVE TO SCREEN 0.
 ELSE.

 PERFORM ask_loss USING answer.

 CASE answer.
 WHEN 'J'.

 LEAVE TO SCREEN 0.
 WHEN 'N'.

 CLEAR ok_code.

 SET SCREEN 100.
 ENDCASE.

 ENDIF.

 ENDCASE.
ENDMODULE. " EXIT INPUT

&---

*& Module SAVE_OK_CODE INPUT

&---
MODULE save_ok_code INPUT.

 save_ok = ok_code.
 CLEAR ok_code.

ENDMODULE. " SAVE_OK_CODE INPUT

&---
*& Module USER_COMMAND_0100 INPUT

&---

MODULE user_command_0100 INPUT.
 CASE save_ok.

 WHEN 'SAVE&EXIT'.

 PERFORM save.
 LEAVE PROGRAM.

 WHEN 'SAVE'.
 IF flag IS INITIAL.

 SET SCREEN 100.

 ELSE.
 PERFORM save.

 SET SCREEN 0.
 ENDIF.

 WHEN 'BACK'.

 IF flag IS INITIAL.
 SET SCREEN 0.

 ELSE.

 PERFORM ask_save USING answer.
 CASE answer.

 WHEN 'J'.
 PERFORM save.

 SET SCREEN 0.

 WHEN 'N'.
 SET SCREEN 0.

 WHEN 'A'.
 SET SCREEN 100.

 ENDCASE.

 ENDIF.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

&---
*& Module MARK_CHANGED INPUT

&---

MODULE mark_changed INPUT.
* set flag to mark changes were made on screen 100

 flag = 'X'.
ENDMODULE. " MARK_CHANGED INPUT

FORM Routines
--

***INCLUDE BC414S_CREATE_CUSTOMERF01 .
--

&---

*& Form NUMBER_GET_NEXT

&---
* -->P_WA_SCUSTOM text

--
FORM number_get_next USING p_scustom LIKE scustom.

 DATA: return TYPE inri-returncode.

* get next free number in the number range '01'
* of number range object'SBUSPID'

 CALL FUNCTION 'NUMBER_GET_NEXT'

 EXPORTING
 nr_range_nr = '01'

 object = 'SBUSPID'
 IMPORTING

 number = p_scustom-id

 returncode = return
 EXCEPTIONS

 OTHERS = 1.
 CASE sy-subrc.

 WHEN 0.

 CASE return.
 WHEN 1.

* number of remaining numbers critical

 MESSAGE s070.
 WHEN 2.

* last number
 MESSAGE s071.

 WHEN 3.

* no free number left over
 MESSAGE a072.

 ENDCASE.
 WHEN 1.

* internal error

 MESSAGE a073 WITH sy-subrc.

 ENDCASE.

ENDFORM. " NUMBER_GET_NEXT

&---
*& Form ASK_SAVE

&---

* -->P_ANSWER text
--

FORM ask_save USING p_answer.
 CALL FUNCTION 'POPUP_TO_CONFIRM_STEP'

 EXPORTING

 textline1 = 'Data has been changed.'(001)
 textline2 = 'Save before leaving transaction?'(002)

 titel = 'Create Customer'(003)

 IMPORTING
 answer = p_answer.

ENDFORM. " ASK_SAVE
&---

*& Form ASK_LOSS

&---
* -->P_ANSWER text

--
FORM ask_loss USING p_answer.

 CALL FUNCTION 'POPUP_TO_CONFIRM_LOSS_OF_DATA'

 EXPORTING
 textline1 = 'Continue?'(004)

 titel = 'Create Customer'(003)

 IMPORTING
 answer = p_answer.

ENDFORM. " ASK_LOSS

&---
*& Form ENQ_SCUSTOM

&---
FORM enq_scustom.

 CALL FUNCTION 'ENQUEUE_ESCUSTOM'

 EXPORTING
 id = scustom-id

 EXCEPTIONS

 foreign_lock = 1

 system_failure = 2
 OTHERS = 3.

 CASE sy-subrc.
 WHEN 1.

* dataset allready locked

 MESSAGE e060.
 WHEN 2 OR 3.

* locking of dataset not possible for other reasons
 MESSAGE e063 WITH sy-subrc.

 ENDCASE.

ENDFORM. " ENQ_SCUSTOM

&---
*& Form DEQ_ALL

&---
FORM deq_all.

 CALL FUNCTION 'DEQUEUE_ALL'.

ENDFORM. " DEQ_ALL

&---

*& Form SAVE_SCUSTOM

&---
FORM save_scustom.

 INSERT INTO scustom VALUES scustom.

 IF sy-subrc <> 0.
* initialize SCUSTOM-ID in SAP-MEMORY

 SET PARAMETER ID 'CSM' FIELD space.
* insertion of dataset in DB-table not possible

 MESSAGE a048.

 ELSE.
* write SCUSTOM-ID back to SAP-MEMORY

 SET PARAMETER ID 'CSM' FIELD scustom-id.
* insertion successfull

 MESSAGE s015 WITH scustom-id.

 ENDIF.
ENDFORM. " SAVE_SCUSTOM

&---

*& Form SAVE
&---

FORM save.
* lock dataset

 PERFORM enq_scustom.

* get SCUSTOM-ID from number range object BC_SCUSTOM
 PERFORM number_get_next USING scustom.

* save new customer
 PERFORM save_scustom.

* unlock dataset

 PERFORM deq_all.
ENDFORM. " SAVE

Solutions

Program: Canceling/Creating Bookings

 Complete Transaction

Model Solution SAPBC414S_BOOKINGS

Module Pool
&---

*& Modulpool SAPBC414S_BOOKINGS *
&---

INCLUDE bc414s_bookingstop.
INCLUDE bc414s_bookingso01.

INCLUDE bc414s_bookingsi01.

INCLUDE bc414s_bookingsf01.
INCLUDE bc414s_bookingsf02.

INCLUDE bc414s_bookingsf03.
INCLUDE bc414s_bookingsf04.

INCLUDE bc414s_bookingsf05.

INCLUDE bc414s_bookingsf06.
INCLUDE fbc414_cdocscdc.

SCREEN 100
PROCESS BEFORE OUTPUT.

 MODULE STATUS_0100.
*

PROCESS AFTER INPUT.

 MODULE EXIT AT EXIT-COMMAND.
 MODULE SAVE_OK_CODE.

 CHAIN.
* cancel booking: check if flight exists or flight can be created

 FIELD: SDYN_CONN-CARRID, SDYN_CONN-CONNID, SDYN_CONN-FLDATE.

 MODULE USER_COMMAND_0100.
 ENDCHAIN.

SCREEN 200
PROCESS BEFORE OUTPUT.

 MODULE STATUS_0200.
 MODULE TRANS_DETAILS.

 CALL SUBSCREEN SUB1 INCLUDING SY-CPROG '0201'.
 LOOP AT ITAB_BOOK INTO WA_BOOK WITH CONTROL TC_SBOOK.

 MODULE TRANS_TO_TC.

* allow only modification of bookings, that are not allready
* cancelled

 MODULE MODIFY_SCREEN.
 ENDLOOP.

*

PROCESS AFTER INPUT.
 LOOP AT ITAB_BOOK.

* mark changed bookings in internal table itab_book

 FIELD SDYN_BOOK-CANCELLED MODULE MODIFY_ITAB ON REQUEST.
 ENDLOOP.

 MODULE EXIT AT EXIT-COMMAND.
 MODULE SAVE_OK_CODE.

 MODULE USER_COMMAND_0200.

SCREEN 201
PROCESS BEFORE OUTPUT.

PROCESS AFTER INPUT.

SCREEN 300
PROCESS BEFORE OUTPUT.
 MODULE STATUS_0300.

 MODULE TABSTRIP_INIT.
 MODULE TRANS_DETAILS.

 CALL SUBSCREEN TAB_SUB INCLUDING SY-CPROG SCREEN_NO.

*
PROCESS AFTER INPUT.

 CALL SUBSCREEN TAB_SUB.

 MODULE EXIT AT EXIT-COMMAND.
 MODULE SAVE_OK_CODE.

 MODULE TRANS_FROM_0300.

 MODULE USER_COMMAND_0300.

SCREEN 301
PROCESS BEFORE OUTPUT.
 MODULE HIDE_BOOKID.

PROCESS AFTER INPUT.

SCREEN 302
PROCESS BEFORE OUTPUT.

PROCESS AFTER INPUT.

SCREEN 303
PROCESS BEFORE OUTPUT.

PROCESS AFTER INPUT.

TOP Include
&---

*& Include BC414S_BOOKINGSTOP *
&---

PROGRAM sapbc414s_bookings MESSAGE-ID bc414.

* change documents: data definitions for use of function modules

INCLUDE fbc414_cdocscdt.

* line type of internal table itab_book, used to display bookings in
* table control

TYPES: BEGIN OF wa_book_type.

INCLUDE: STRUCTURE sbook.
TYPES: name TYPE scustom-name,

 mark,

 END OF wa_book_type.

* work area and internal table used to display bookings in table
* control

DATA: wa_book TYPE wa_book_type,

 itab_book TYPE TABLE OF wa_book_type.

* bookings to be modified on database table
DATA: itab_sbook_modify TYPE TABLE OF sbook.

* change documents: bookings before changes are performed
DATA: itab_cd TYPE TABLE OF sbook WITH NON-UNIQUE KEY

 carrid connid fldate bookid customid.

* work areas for database tables spfli, sflight, sbook.

DATA: wa_sbook TYPE sbook, wa_sflight TYPE sflight, wa_spfli TYPE
spfli.

* complex transactions: number of the customer created in the called
* transaction

data: scust_id(20).

* transport function codes from screens

DATA: ok_code TYPE sy-ucomm, save_ok LIKE ok_code.
* define subscreen screen number on tabstrip, screen 300

DATA: screen_no TYPE sy-dynnr.

* used to handle sy-subrc, which is determined in form

DATA sysubrc LIKE sy-subrc.

* transporting fields to/from screen
TABLES: sdyn_conn, sdyn_book.

* table control declaration (display bookings),

* tabstrip declaration (create booking)
CONTROLS: tc_sbook TYPE TABLEVIEW USING SCREEN '0200',

 tab TYPE TABSTRIP.

PBO Modules
--

***INCLUDE BC414S_BOOKINGSO01 .
--

&---

*& Module STATUS_0100 OUTPUT

&---
MODULE status_0100 OUTPUT.

 SET PF-STATUS 'DYN_100'.
 SET TITLEBAR 'DYN_100'.

ENDMODULE. " STATUS_0100 OUTPUT

&---

*& Module STATUS_0200 OUTPUT
&---

MODULE status_0200 OUTPUT.
 SET PF-STATUS 'DYN_200'.

 SET TITLEBAR 'DYN_200' WITH sdyn_conn-carrid sdyn_conn-connid

 sdyn_conn-fldate.
ENDMODULE. " STATUS_0200 OUTPUT

&---

*& Module STATUS_0300 OUTPUT
&---

MODULE status_0300 OUTPUT.

 SET PF-STATUS 'DYN_300'.
 SET TITLEBAR 'DYN_300' WITH sdyn_conn-carrid sdyn_conn-connid

 sdyn_conn-fldate.
ENDMODULE. " STATUS_0300 OUTPUT

&---

*& Module TRANS_DETAILS OUTPUT
&---

MODULE trans_details OUTPUT.

 MOVE-CORRESPONDING: wa_spfli TO sdyn_conn,

 wa_sflight TO sdyn_conn,

 wa_sbook TO sdyn_book.

ENDMODULE. " TRANS_DETAILS OUTPUT

&---

*& Module TRANS_TO_TC OUTPUT

&---
MODULE trans_to_tc OUTPUT.

 MOVE-CORRESPONDING wa_book TO sdyn_book.
ENDMODULE. " TRANS_TO_TC OUTPUT

&---

*& Module MODIFY_SCREEN OUTPUT

&---
MODULE modify_screen OUTPUT.

 LOOP AT SCREEN.
 CHECK screen-name = 'SDYN_BOOK-CANCELLED'.

 CHECK (NOT sdyn_book-cancelled IS INITIAL) AND

 (sdyn_book-mark IS INITIAL).
 screen-input = 0.

 MODIFY SCREEN.
 ENDLOOP.

ENDMODULE. " MODIFY_SCREEN OUTPUT

&---

*& Module TABSTRIP_INIT OUTPUT
&---

MODULE tabstrip_init OUTPUT.
 CHECK tab-activetab IS INITIAL.

 tab-activetab = 'BOOK'.

 screen_no = '0301'.
ENDMODULE. " TABSTRIP_INIT OUTPUT

&---

*& Module HIDE_BOOKID OUTPUT
&---

MODULE hide_bookid OUTPUT.

* hide field displaying customer number when working with number
range

* object BS_SCUSTOM
 LOOP AT SCREEN.

 CHECK screen-name = 'SDYN_BOOK-BOOKID'.

 screen-active = 0.
 MODIFY SCREEN.

 ENDLOOP.
ENDMODULE. " HIDE_BOOKID OUTPUT

PAI Modules
--

***INCLUDE BC414S_BOOKINGSI01 .
--

&---

*& Module EXIT INPUT

&---
MODULE exit INPUT.

 CASE ok_code.
 WHEN 'CANCEL'.

 CASE sy-dynnr.

 WHEN '0100'.
 LEAVE PROGRAM.

 WHEN '0200'.

 PERFORM deq_all.
 LEAVE TO SCREEN '0100'.

 WHEN '0300'.
 PERFORM deq_all.

 LEAVE TO SCREEN '0100'.

 WHEN OTHERS.
 ENDCASE.

 WHEN 'EXIT'.
 LEAVE PROGRAM.

 WHEN OTHERS.

 ENDCASE.
ENDMODULE. " EXIT INPUT

&---
*& Module SAVE_OK_CODE INPUT

&---
MODULE save_ok_code INPUT.

 save_ok = ok_code.

 CLEAR ok_code.
ENDMODULE. " SAVE_OK_CODE INPUT

&---

*& Module USER_COMMAND_0100 INPUT

&---

MODULE user_command_0100 INPUT.

 CASE save_ok.
****************************CANCEL BOOKING**************************

 WHEN 'BOOKC'.
 PERFORM enq_sflight_sbook.

 PERFORM read_sflight USING wa_sflight sysubrc.

* process returncode - if flight does not exist: e-message
 PERFORM process_sysubrc_bookc.

 PERFORM read_spfli USING wa_spfli.
 PERFORM read_sbook USING itab_book itab_cd.

 REFRESH CONTROL 'TC_SBOOK' FROM SCREEN '0200'.

****************************CREATE BOOKING**************************
 WHEN 'BOOKN'.

 PERFORM enq_sflight.

 PERFORM read_sflight USING wa_sflight sysubrc.
* process returncode - if flight does not exist: e-message

 PERFORM process_sysubrc_bookn.
 PERFORM read_spfli USING wa_spfli.

 PERFORM initialize_sbook USING wa_sbook.

 WHEN 'BACK'.
 SET SCREEN 0.

 WHEN OTHERS.
 SET SCREEN '0100'.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

&---
*& Module USER_COMMAND_0200 INPUT

&---
MODULE user_command_0200 INPUT.

 CASE save_ok.

 WHEN 'SAVE'.
* collect marked (changed) data sets in seperate internal table

 PERFORM collect_modified_data USING itab_sbook_modify.
* perform database changes

 PERFORM save_modified_booking.

* create change documents
 PERFORM create_change_documents.

 COMMIT WORK.

* Unlocking data sets is executed by the update program !!

 SET SCREEN '0100'.
 WHEN 'BACK'.

 PERFORM deq_all.
 SET SCREEN '0100'.

 WHEN OTHERS.

 SET SCREEN '0200'.
 ENDCASE.

ENDMODULE. " USER_COMMAND_0200 INPUT

&---
*& Module MODIFY_ITAB INPUT

&---

MODULE modify_itab INPUT.
 wa_book-cancelled = sdyn_book-cancelled.

 wa_book-mark = 'X'.
 MODIFY itab_book FROM wa_book INDEX tc_sbook-current_line.

ENDMODULE. " MODIFY_ITAB INPUT

&---

*& Module USER_COMMAND_0300 INPUT

&---
MODULE user_command_0300 INPUT.

 PERFORM tabstrip_set.
 CASE save_ok.

 WHEN 'NEW_CUSTOM'.

 PERFORM create_new_customer.
 SET SCREEN '0300'.

 WHEN 'SAVE'.
 PERFORM save_new_booking.

 COMMIT WORK.

* Unlocking data sets is executed by the update program !!
 SET SCREEN '0100'.

 WHEN 'BACK'.

 PERFORM deq_all.
 SET SCREEN '0100'.

 WHEN OTHERS.
 SET SCREEN '0300'.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0300 INPUT

&---

*& Module TRANS_FROM_0300 INPUT

&---
MODULE trans_from_0300 INPUT.

 MOVE-CORRESPONDING sdyn_book TO wa_sbook.

ENDMODULE. " TRANS_FROM_0300 INPUT

FORM Routines
F01

--
***INCLUDE BC414S_BOOKINGSF01 .

--

&---

*& Form COLLECT_MODIFIED_DATA
&---

* -->P_ITAB_SBOOK_MODIFY text
--

FORM collect_modified_data USING p_itab_sbook_modify

 LIKE itab_sbook_modify.
 DATA: wa_book LIKE LINE OF itab_book,

 wa_sbook_modify LIKE LINE OF p_itab_sbook_modify.

 CLEAR: p_itab_sbook_modify.
* Only bookings are collected, that

* 1) have been changed (mark = 'X')
* 2) shall be cancelled (cancelled = 'X')

 LOOP AT itab_book INTO wa_book

 WHERE mark = 'X'
 AND cancelled = 'X'.

 MOVE-CORRESPONDING wa_book TO wa_sbook_modify.
 APPEND wa_sbook_modify TO p_itab_sbook_modify.

 ENDLOOP.

ENDFORM. " COLLECT_MODIFIED_DATA

&---
*& Form INITIALIZE_SBOOK

&---
* -->P_WA_SBOOK text

--

FORM initialize_sbook USING p_wa_sbook TYPE sbook.
 CLEAR p_wa_sbook.

 MOVE-CORRESPONDING wa_sflight TO p_wa_sbook.
 MOVE: wa_sflight-price TO p_wa_sbook-forcurram,

 wa_sflight-currency TO p_wa_sbook-forcurkey,

ENDFORM. " INITIALIZE_SBOOK

&---

*& Form PROCESS_SYSUBRC_BOOKC
&---

FORM process_sysubrc_bookc.

 CASE sysubrc.
 WHEN 0.

 SET SCREEN '0200'.
 WHEN OTHERS.

 PERFORM deq_all.

 MESSAGE e023 WITH sdyn_conn-carrid sdyn_conn-connid
 sdyn_conn-fldate.

 ENDCASE.

ENDFORM. " PROCESS_SYSUBRC_BOOKC

&---

*& Form PROCESS_SYSUBRC_BOOKN

&---
FORM process_sysubrc_bookn.

 CASE sysubrc.
 WHEN 0.

 SET SCREEN '0300'.

 WHEN OTHERS.
 PERFORM deq_all.

 MESSAGE e023 WITH sdyn_conn-carrid sdyn_conn-connid
 sdyn_conn-fldate.

 ENDCASE.

ENDFORM. " PROCESS_SYSUBRC_BOOKN

&---
*& Form TABSTRIP_SET

&---
FORM tabstrip_set.

 IF save_ok = 'BOOK' OR save_ok = 'DETCON' OR save_ok = 'DETFLT'.

 tab-activetab = save_ok.
 ENDIF.

 CASE save_ok.
 WHEN 'BOOK'.

 screen_no = '0301'.

 WHEN 'DETCON'.
 screen_no = '0302'.

 WHEN 'DETFLT'.

 screen_no = '0303'.
 ENDCASE.

ENDFORM. " TABSTRIP_SET

&---
*& Form NUMBER_GET_NEXT

&---
* -->P_WA_SBOOK text

--

FORM number_get_next USING p_wa_sbook LIKE sbook.

 DATA: return TYPE inri-returncode.

* get next free number in the number range '01' of number range

* object 'SBOOKID'
 CALL FUNCTION 'NUMBER_GET_NEXT'

 EXPORTING
 nr_range_nr = '01'

 object = 'SBOOKID'

 subobject = p_wa_sbook-carrid
 IMPORTING

 number = p_wa_sbook-bookid
 returncode = return

 EXCEPTIONS

 OTHERS = 1.
 CASE sy-subrc.

 WHEN 0.

 CASE return.
 WHEN 1.

* number of remaining numbers critical
 MESSAGE s070.

 WHEN 2.

* last number
 MESSAGE s071.

 WHEN 3.
* no free number left over

 MESSAGE a072.

 ENDCASE.
 WHEN 1.

* internal error

 MESSAGE a073 WITH sy-subrc.
 ENDCASE.

ENDFORM. " NUMBER_GET_NEXT

&---
*& Form CREATE_NEW_CUSTOMER

&---
FORM create_new_customer.

 CALL TRANSACTION 'BC414S_CREATE_CUST'.

* Called Transaction set the SET/GET Parameter CSM??
 GET PARAMETER ID 'CSM' FIELD scust_id.

* scust_id <> initial -> customer created -> clear scustomid to get

* customer number via SET/GET Parameters

 CHECK NOT scust_id IS INITIAL.
 CLEAR: wa_sbook-customid.

ENDFORM. " CREATE_NEW_CUSTOMER

F02
--
* INCLUDE BC414S_BOOKINGSF02

--

&---

*& Form ENQ_SFLIGHT

&---
FORM enq_sflight.

 CALL FUNCTION 'ENQUEUE_ESFLIGHT'
 EXPORTING

 carrid = sdyn_conn-carrid

 connid = sdyn_conn-connid
 fldate = sdyn_conn-fldate

 EXCEPTIONS
 foreign_lock = 1

 system_failure = 2

 OTHERS = 3.
 CASE sy-subrc.

 WHEN 0.

 WHEN 1.
 MESSAGE e060.

 WHEN OTHERS.
 MESSAGE e063 WITH sy-subrc.

 ENDCASE.

ENDFORM. " ENQ_SFLIGHT
&---

*& Form ENQ_SFLIGHT_SBOOK
&---

FORM enq_sflight_sbook.

 CALL FUNCTION 'ENQUEUE_ESFLIGHT_SBOOK'

 EXPORTING

 carrid = sdyn_conn-carrid

 connid = sdyn_conn-connid
 fldate = sdyn_conn-fldate

 EXCEPTIONS
 foreign_lock = 1

 system_failure = 2

 OTHERS = 3.
 CASE sy-subrc.

 WHEN 0.
 WHEN 1.

 MESSAGE e062.

 WHEN OTHERS.
 MESSAGE e063 WITH sy-subrc.

 ENDCASE.

ENDFORM. " ENQ_SFLIGHT_SBOOK

&---

*& Form ENQ_SBOOK

&---
FORM enq_sbook.

 CALL FUNCTION 'ENQUEUE_ESBOOK'
 EXPORTING

 carrid = sdyn_book-carrid

 connid = sdyn_book-connid
 fldate = sdyn_book-fldate

 bookid = sdyn_book-bookid

 customid = sdyn_book-customid
 EXCEPTIONS

 foreign_lock = 1
 system_failure = 2

 OTHERS = 3.

 CASE sy-subrc.
 WHEN 0.

 WHEN 1.
 MESSAGE e061.

 WHEN OTHERS.

 MESSAGE e063 WITH sy-subrc.
 ENDCASE.

ENDFORM. " ENQ_SBOOK

&---

*& Form DEQ_ALL
&---

FORM deq_all.

 CALL FUNCTION 'DEQUEUE_ALL'.
ENDFORM. " DEQ_ALL

F03
--

* INCLUDE BC414S_BOOKINGSF03

--

&---
*& Form READ_SFLIGHT

&---

* -->P_WA_SFLIGHT text
* -->P_SYSUBRC text

--
FORM read_sflight USING p_wa_sflight TYPE sflight

 p_sysubrc LIKE sy-subrc.

 SELECT SINGLE * FROM sflight INTO p_wa_sflight
 WHERE carrid = sdyn_conn-carrid

 AND connid = sdyn_conn-connid

 AND fldate = sdyn_conn-fldate.
 p_sysubrc = sy-subrc.

ENDFORM. " READ_SFLIGHT

&---
*& Form READ_SBOOK

&---
* -->P_ITAB_BOOK text

* -->P_ITAB_CD text

--

FORM read_sbook USING p_itab_book LIKE itab_book

 p_itab_cd LIKE itab_cd.

 TYPES: BEGIN OF wa_custom_type,
 id TYPE scustom-id,

 name TYPE scustom-name,
 END OF wa_custom_type.

 DATA: wa_custom TYPE wa_custom_type,

 itab_custom TYPE STANDARD TABLE OF wa_custom_type
 WITH NON-UNIQUE KEY id,

 wa_book LIKE LINE OF p_itab_book,
 wa_cd LIKE LINE OF p_itab_cd.

 CLEAR: p_itab_book, p_itab_cd.

* Select customer names in buffer table (array fetch)
 SELECT id name FROM scustom INTO CORRESPONDING FIELDS

 OF TABLE itab_custom.

* Select all bookings on selected flight (array fetch)
 SELECT * FROM sbook INTO CORRESPONDING FIELDS OF TABLE p_itab_book

 WHERE carrid = sdyn_conn-carrid
 AND connid = sdyn_conn-connid

 AND fldate = sdyn_conn-fldate.

* read customer names corresponding to customer number from buffer
* table

 LOOP AT p_itab_book INTO wa_book.
 READ TABLE itab_custom INTO wa_custom WITH TABLE KEY

 id = wa_book-customid.

 wa_book-name = wa_custom-name.
 MODIFY p_itab_book FROM wa_book.

 MOVE-CORRESPONDING wa_book TO wa_cd.

 APPEND wa_cd TO p_itab_cd.
 ENDLOOP.

 SORT p_itab_book BY bookid customid.
ENDFORM. " READ_SBOOK

&---

*& Form READ_SPFLI
&---

* -->P_WA_SPFLI text

--
FORM read_spfli USING p_wa_spfli TYPE spfli.

 SELECT SINGLE * FROM spfli INTO p_wa_spfli

 WHERE carrid = sdyn_conn-carrid

 AND connid = sdyn_conn-connid.
 IF sy-subrc <> 0.

 PERFORM deq_all.
 MESSAGE e022 WITH sdyn_conn-carrid sdyn_conn-connid.

 ENDIF.

ENDFORM. " READ_SPFLI

F04
--

* INCLUDE BC414S_BOOKINGSF04
--

&---
*& Form SAVE_MODIFIED_BOOKING

&---
FORM save_modified_booking.

* Modify data on database tables sbook and sflight

 CALL FUNCTION 'UPDATE_SBOOK' IN UPDATE TASK
 EXPORTING

 itab_sbook = itab_sbook_modify.
 PERFORM update_sflight.

ENDFORM. " SAVE_MODIFIED_BOOKING

&---

*& Form UPDATE_SFLIGHT
&---

FORM update_sflight.
 CALL FUNCTION 'UPDATE_SFLIGHT' IN UPDATE TASK

 EXPORTING

 carrier = wa_sflight-carrid
 connection = wa_sflight-connid

 date = wa_sflight-fldate.
ENDFORM. " UPDATE_SFLIGHT

&---

*& Form SAVE_NEW_BOOKING

&---
FORM save_new_booking.

* transform amount from foreign currency to local currency (of
carrier)

 PERFORM convert_to_loc_currency USING wa_sbook.

* number ranges: Get next number (internal)
 PERFORM number_get_next USING wa_sbook.

* lock booking to be created
 PERFORM enq_sbook.

 CALL FUNCTION 'INSERT_SBOOK' IN UPDATE TASK

 EXPORTING
 wa_sbook = wa_sbook.

 PERFORM update_sflight.

ENDFORM. " SAVE_NEW_BOOKING

F05
--
* INCLUDE BC414S_BOOKINGSF05

--

&---

*& Form CONVERT_TO_LOC_CURRENCY
&---

* -->P_WA_SBOOK text

--
FORM convert_to_loc_currency USING p_wa_sbook TYPE sbook.

 SELECT SINGLE currcode FROM scarr INTO p_wa_sbook-loccurkey
 WHERE carrid = p_wa_sbook-carrid.

 CALL FUNCTION 'CONVERT_TO_LOCAL_CURRENCY_N'

 EXPORTING
 client = sy-mandt

 date = sy-datum
 foreign_amount = p_wa_sbook-forcuram

 foreign_currency = p_wa_sbook-forcurkey

 local_currency = p_wa_sbook-loccurkey

 IMPORTING

 local_amount = p_wa_sbook-loccuram

 EXCEPTIONS
 no_rate_found = 1

 overflow = 2
 no_factors_found = 3

 no_spread_found = 4

 derived_2_times = 5
 OTHERS = 6.

 IF sy-subrc <> 0.
 MESSAGE e080 WITH sy-subrc.

 ENDIF.

ENDFORM. " CONVERT_TO_LOC_CURRENCY

F06
--

* INCLUDE BC414S_BOOKINGSF06
--

&---

*& Form CREATE_CHANGE_DOCUMENTS

&---
FORM create_change_documents.

 LOOP AT itab_sbook_modify INTO sbook.
* read unchanged data from buffer table into *-work area

 READ TABLE itab_cd FROM sbook INTO *sbook.

* define objectid from key fields of sbook
 CONCATENATE sbook-mandt sbook-carrid sbook-connid

 sbook-fldate sbook-bookid sbook-customid

 INTO objectid SEPARATED BY space.
* fill interface parameters of function, which itself is encapsulated

* in form CD_CALL_BC_BOOK
 MOVE: sy-tcode TO tcode,

 sy-uzeit TO utime,

 sy-datum TO udate,
 sy-uname TO username,

 'U' TO upd_sbook.
* perform calls the neccessary function to create change document

* 'in update task'

 PERFORM cd_call_bc_book.
 ENDLOOP.

ENDFORM. " CREATE_CHANGE_DOCUMENTS

 SAP AG 1999

l Authorization objects

l Authorizations

l Authorization checks

Contents:

Authorization Checks

n You can check authorizations using the SAP authorization concept.

n The authorization concept uses authorization objects and authorizations .

n Authorization objects are repository objects and are maintained in the ABAP Dictionary. They
consist of a name and up to ten logically-related fields that are used in the authorization check.
Authorization objects define a logical grouping of fields whose values will be used in the
authorization check. The above example uses the authorization object S_CARRID, which combines
airline (CARRID) and activity (ACTVT, with the four possible values create, change, display, and
delete).

n An authorization for an authorization object is a concrete set of values for the fields of an
authorization object.

n Authorizations are grouped by profiles (business activities), which are assigned to users in their user
master records.

n For further information, see the ABAP Editor keyword documentation for the term Authorization
concept.

n In an authorization check, you specify the object and values that the user needs in an authorization
in his or her user master record.

n In our example, we want to check whether the user has authorization for the object S_CARRID in
which the field CARRID (airline) has the value 'LH' and the field ACTVT (activity) has the value
'03' for 'display'. The activity codes are listed in tables TACT and TACTZ and are also documented
in the relevant authorization objects.

n In the AUTHORITY CHECK, you must specify all fields of the object, otherwise, the return code
will be unequal to zero. If you do not want to perform a check for one field, enter DUMMY in the
field.

n The most important return codes for the AUTHORITY-CHECK statement are:

­ 0: The user has an authorization with the correct values.

­ 4: The user does not have the required authorization.

­ 8: You did not list all of the fields in the authorization object, so the check was unsuccessful.

n For a full list of all return codes, see the keyword documentation in the ABAP Editor for
AUTHORITY-CHECK.

n You can only enter single fields after the FIELD addition, not selection tables. However, there are
function modules that can perform an AUTHORITY-CHECK for all values in a selection table.

n Use the model for the AUTHORITY-CHECK in the ABAP Editor. This model inserts all names of
the authorization object fields.

n The R/3 System contains tools that help you to administer authorizations and assign them to user
master records.

n Authorizations are always assigned to a user using authorization profiles.

n Authorization profiles consist of a set of authorizations and are used to administer authorizations that
are required for a particular activity (work center description).

n When you call a transaction using its transaction code, a system program starts to perform automatic
authorization checks.

n Firstly, a system program checks whether the transaction is listed in the table TSTC and whether it is
locked. Using the entries in the TSTC table, the system program determines the name of the ABAP
program and the number of the first screen.

n Next, the system program uses the authorization object S_TCODE to see whether the user is
authorized to use the transaction.

n After that, it checks whether a particular field of an authorization object is assigned to the
transaction. The user calling the transaction must have an authorization for the authorization object
listed in table TSTCA in his or her user master record, that also contains the values specified in table
TSTCA.

n If the user has this authorization, the system starts the transaction. If not, the transaction is not
started, and the system displays an error message.

n After this, the authorization checks in the ABAP program (AUTHORITY-CHECK) are processed.

 SAP AG 1999

Section: Enhancements and Modifications

 SAP AG 1999

Unit Business Transaction
Events

Unit Business Add-Ins

Unit Modifications

Unit Summary

Unit Course Overview

Unit Changing the SAP Standard

Unit Personalization

Unit Enhancements to
Dictionary Elements

Unit Enhancements using
Customer Exits

Content: Enhancements and Modifications

 SAP AG 1999

l Course goal

l Course objectives

l Course contents

l Course overview diagram

l Main business scenario

l Introduction

Introduction: Contents

 SAP AG 1999

l Overview of the Change Levels

l Decision diagram

l Change techniques

Contents:

Changing the SAP Standard

n You can adjust the R/3 System to meet your needs in the following ways:

­ Customizing: This means setting up specific business processes and functions for your system
according to an implementation guide. The need for these changes has already been foreseen by
SAP and an implementation procedure has been developed.

­ Personalization: This means making changes to certain fields' global display attributes (setting
default values or fading fields out altogether), as well as creating user-specific menu sequences.

­ Modifications : These are changes to SAP Repository objects made at the customer site. If SAP
delivers a changed version of the object, the customer's system must be adjusted to reflect these
changes. Prior to Release 4.0B these adjustments had to be made manually using upgrade
utilities. From Release 4.5A, this procedure has been automated with the Modification
Assistant.

­ Enhancements : This means creating Repository objects for individual customers that refer to
objects that already exist in the SAP Repository.

­ Customer Developments: This means creating Repository objects unique to individual
customers in a specific namespace reserved for new customer objects.

n Customizing and most personalization is done using tools found in AcceleratedSAP; customer
developments, enhancements, and modifications are all made using the tools available in the ABAP
Workbench.

n If your requirements cannot be met by Customizing or personalization, you may either start a
development project or try using a CSP solution (= Complementary Software Product).

n A development project falls into the customer development category if the SAP standard does not
already contain functions similar to the one you are trying to develop. If, however, a similar SAP
function exists, try to assimilate it into your development project by either enhancing or modifying it,
by using a user exit, or simply by making a copy the appropriate SAP program.

n Modifications can create problems, as new versions of SAP objects must be adjusted after an
upgrade to coincide with modified versions of SAP objects you have created. Prior to Release 4.0B
these adjustments had to be made manually using upgrade utilities. From Release 4.5A, this
procedure has been automated with the Modification Assistant.

n Thus, you should only make modifications if:

� Customizing or personalizing cannot satisfy your requirements

� Enhancements or user exits are not planned

� It would not make sense to copy the SAP object to the customer namespace.

n The Business Engineer is made up of all SAP implementation tools. These include:

� The R/3 Reference Model
contains all of the models used to describe R/3 (the process model, the data model, the
organization model)

� The Implementation Guide (IMG)

� A complete list of all Customizing changes

n Personalization accelerates and simplifies how business cases are processed by the R/3 System.
During personalization, individual application transactions are adjusted to meet the business needs of
your company as a whole or even to the needs of specific user groups within your company. All
unnecessary information and functions found in the transaction are switched off.

n Global display attributes allow you to define default values for specific screen fields. You can also
suppress individual fields or table control columns in a particular transaction, or even a whole screen.

n Role-based menus, favorites, and shortcuts allow you to adjust menu sequences to reflect the needs
of different user groups within your company.

n Modifications are changes to SAP objects in customer systems. They are:

� executed with the help of user exits (these are subroutines reserved for customers that have been
inserted in objects in the SAP namespace)

� 'hard-coded' at various points within SAP Repository objects.

n Customer developments are programs developed by customers that can call SAP Repository objects.
Example: A customer creates a program that calls an SAP function module.

n The enhancement concepts embody the reverse of this principle: SAP programs call Repository
objects that you, as a customer, created or changed. Example: You use a function module exit called
by an SAP program. You can enhance your system at the following levels:

� in ABAP programs (function module exit)

� on GUI interfaces (menu exit)

� on screens by inserting a subscreen in an area specified by SAP (screen exit)

� on screens by processing customer code that refers to a specific field on the screen (field exit)

� in ABAP Dictionary tables or structures (table enhancement)

n SAP provides two ways to enhance tables and structures with fields.

� Structures

� Customizing includes ("CI includes")

n Both techniques allow you to attach fields to a table without actually having to modify the table
itself.

n Append structures may only be assigned to a single table. A table may, however, have several
append structures attached to it. During activation, the system searches for all active append
structures for that table and attaches them to the table.

n Append structures differ from include structures in how they refer to their tables. In order to include
fields from an include structure in a table, you must add an '.INCLUDE...' line to the table. In this
case, the table refers to the substructure. Append structures, on the other hand, refer to their tables. In
this case, the tables themselves are not altered in any way by the reference.

n Append structures allow you to attach fields to a table without actually having to modify the table
itself. Table enhancements using append structures therefore do not have to be planned by SAP
developers. An append structure can only belong to exactly one table.

n In contrast, CI_includes allow you to use the same structure in multiple tables. The include statement
must already exist in the SAP table or structure. Table enhancements using CI_includes do, however,
have to be planned by SAP developers.

n Field exits need not be prepared by the SAP application developer. You can create a field exit for
any screen input field that has a Dictionary reference. The reference object is the data element.

n The unit "Enhancements to Dictionary Elements" discusses how the field exits work.

n The purpose of a program enhancement is always to call an object in the customer namespace. You
can use the following techniques here:

� A special exit function module is called by the SAP application program. The function module is
part of a function group that is handled in a special manner by the system.

� Business transaction events
The SAP application program dynamically calls a function module in the customer namespace.

� Business add-ins
The application program calls a method of a class or instance of a class. This class lies in the
customer namespace.

n Program enhancements permit you to execute additional program logic in SAP application programs.
SAP currently provides the techniques outlined above.

n The advantages and restrictions of the particular enhancement techniques will be discussed in detail
in later units.

n Menu enhancements permit you to add additional menu entries to an SAP standard menu. The
system provides two options here:

� Customer exits

� Business add-ins

n The additional menu entries are merged into the GUI interface.

n When the function code is implemented, you can change the text of the menu entry, and - provided
the SAP developer specified this option - change the icons.

n Screen exits belong to the customer exits. They allow you to display additional objects in an SAP
application program screen. The SAP developer must:

� Define the subscreen areas

� Specify the corresponding calls in the flow logic

� Provide the framework for the data transport

� Include the screen exit in an enhancement

� Maintain the documentation

n You can implement screen exits by creating subscreens, possibly with flow logic. You also have to
implement the data transport.

n How you implement screen exits will be discussed in the "Enhancements using Customer Exits" unit.

n Any change that you make your system to an object that has been delivered by SAP is known as a
modification.

n Modifications can lead to complications at upgrade. When SAP delivers a new version of the object,
you must decide whether the new object should be used, or whether you want to continue using your
old object.

n Prior to Release 4.0B, modifications were only recorded at Repository object level (for example, an
include program).

n Since Release 4.5A, the granularity for recording modifications has been finer. This has been made
possible by the Modification Assistant, as we will see in the "Modifications" unit.

n The modification adjustment process has also been overhauled. How modifications are adjusted is
also part of the "Modifications" unit.

Key to icons in the exercises and solutions

Exercises

Solutions

Objectives

Business scenarios

Hints and tips

 Warning or caution

Data used in exercises

Type of data Data in training system
Tables SFLIGHT00 .. SFLIGHT18

Data elements S_CARRID00 .. S_CARRID18

Programs SAPBC425_EXIT_00 ..
SAPBC425_EXIT_18

Transaction codes BC425_00 .. BC425_18

Programs SAPBC425_BOOKING_00 ..
SAPBC425_BOOKING_00

 SAP AG 1999

l Personalizing the workplace

l Personalizing transactions

Contents:

Personalization

n The SAP System adjusts itself to the user's style of working: When the system is started, the users
are only offered functions that are typical in their daily work. There is no unnecessary navigating
through functions that are not used. In the past, user menus could be called in the Session Manager
or in the dynamic menu in R/3. With Release 4.6A, the role -based menu is output in the form of a
tree for each user.

n When you select a function, it is started in the same session. This function replaces the role -based
menu. The role-based menu appears again automatically when you leave a transaction or when you
start a new session.

n In the maintenance screen for activity groups (Transaction PFCG), the administrator can combine the
menu structure for an activity group consisting of transactions, reports, and Internet/Intranet links to
a user menu. You can choose any structure and description for the functions contained.

n The enterprise menu is no longer available with Release 4.6A.

n Typical questions at a work center are:

� What function should be performed at this work center?

� Which menus are needed?

� What authorizations do the users need?

� Which users are involved here?

n The goal of personalization is to answer these questions in the R/3 System.

n The tools provided by R/3 for this purpose are area menus and activity groups.

n We will now see how these tools can be used to adapt the work center to the user's needs as
effectively as possible.

n Area menus were also included prior to this release. They can contain:

� Transactions

� References to other area menus

� Executable programs (new)

� Lists created by programs (new)

n From this release onwards, you can include programs in area menus that create lists directly.

n You can assign users an area menu as their start menu. These users no longer see the complete SAP
menu when they log onto R/3, but only the menu items that they require. By integrating the report
trees, users obtains a complete view of their work environment.

n Area menus can also be linked to activity groups.

n In contrast to previous releases, area menus are displayed in tree form starting with Release 4.6. This
gives the user a clearer overview of the available options.

n The objects that can be included in the area menu are listed in the right part of the graphic.

n Use Transaction SE43 to create an area menu. You can call this transaction with the given path.

n Assign a name in the corresponding customer namespace and create the area menu.

n You can include the area menus in your list of favorites in the GUI for faster editing at a later time.

n You build area menus by creating entries in the tree structure. Position the cursor and choose the
corresponding icon for insertion at the same level or one level down. In the popup window that now
appears, choose a description and the corresponding transaction code.

n You can also insert reports (objects that create lists, such as ABAP programs, querie s, and so on)

n You can no longer store lists in report trees as of Release 4.6A. Report trees have been integrated in
the new area menus.

n With List--> Save --> Report tree you can store lists for the program. Since the lists are stored
program-specifically , you can display them in the corresponding area menus.

n During an upgrade, existing area menus are automatically migrated to the new structure. You can
make further entries in these new area menus.

n With Release 4.6, SAP has implemented user-oriented R/3 operations. When the R/3 application is
started, a tree structure appears in the initial screen containing the entries the user needs for his daily
work.

n These role -based menus go beyond the scope of the area menus. Only the menu structure can be
defined for area menus. You can define them as you like for role -based menus. They also use the
functions of the Profile Generator.

n By using specific role -based menus you can set the following individually:

� Menu structure

� Profiles

� User assignments

n The term "activity group" is synonymous in R/3 with "role -based menu." You can edit activity
groups using the Profile Generator.

n Before you create your own activity groups, you should evaluate the predefined workplace examples
that SAP delivers in Release 4.6A. You can use these workplace examples just as they are delivered
in the SAP System.

n Delivered activity groups should not be changed. You can combine several activity groups to form a
composite activity group. which may also include activity groups delivered by SAP.

n To create an activity group, choose the appropriate button on the initial R/3 screen.

n Assign a name for the activity group in the customer namespace and press Create. The system
displays the maintenance screen for activity groups.

n The activity group naming conventions are defined as follows:

� SAP* delivered by SAP

� Rest customer namespace

n There are several ways to build the menu for your activity group. You can copy sub-trees and menu
entries from

� the SAP menu

� another activity group

� an area menu

n You can also maintain single entries. These can be

� a transaction code

� a report in which a transaction code is automatically generated

� a hyperlink (e.g. web address or a path on the local machine)

n You cannot maintain single entries if it is a composite activity group.

n The system determines the authorization objects used in the given transactions. The assignment of
single authorization objects for a transaction using Transaction SU22 provides the basis for this
determination.

n Transaction SU22 also specifies for the particular authorizations whether or not:

� there must be a check

� there are default values

n Using these default values makes maintaining authorizations much simpler. You only have to
maintain authorizations marked with the yellow icon. If you do not do so, full authorization is
automatically given.

n In the last step, a profile is generated from your entries. The system proposes a name T-<number>,
which you can change here, but not later on. Enter a meaningful name.

n Next assign the relevant users to the activity group.

n Once you have assigned the users, you must adjust the user master profiles accordingly. The profile
that was created is automatically assigned to the given users.

n A user can be assigned to more than one activity group. Each time you change an activity group, you
must also adjust the user masters again.

n SAP delivers more than one hundred preconfigured activity groups. Choose the one most suitable for
the particular work center and assign the users. Adjust the user master records.

n You can change activity groups delivered by SAP. However, these changes are lost during an
upgrade. We therefore recommend that you copy the delivered activity groups and adjust the copy.

n In the last section we introduced the user-specific appearance of the interface, which is implemented
using activity groups. In addition, there are ways to set single transactions to the needs of your
enterprise or of individual user groups. In this section we will see how a transaction can be
simplified without being modified.

n In this example you see two screens of an SAP transaction that should be redesigned using a
transaction variant.

n Screen 100 is changed as follows: Fields are hidden; field attributes are changed; buttons are hidden.

n Screen 200 shows the following changes: buttons moved and screen inserted (with GuiXT). We will
be discussing the use of GuiXT in more detail later.

n A transaction variant is a reference to a set of screen variants.

n You can create any number of screen variants for a screen. The transaction variant consists of these
screen variants.

n You can create different kinds of transaction variants for an SAP transaction:

� a standard variant

� any number of "normal" transaction variants

n The standard variant is executed at runtime instead of the SAP delivered transaction. No new
transaction code is required.

n A normal transaction variant will be called with its own transaction code of type "variant
transaction".

n To create transaction variants, choose the component Personalization from the entry AcceleratedSAP
in the SAP menu and then Transaction variant. You go to the transaction for maintaining transaction
variants.

n Enter the name of the transaction from which you want to create a variant. The name of the variant
must be unique in the system and be in the customer namespace.

n With the menu option Goto, choose whether you want to create a client-specific or a cross-client
transaction variant.

n To create the variant, choose the appropriate button in the application toolbar.

n Pressing "Screen entries" starts the transaction in CALL mode.

n Triggering a dialog also triggers PAI of the current screen. The system sends another screen in which
you can evaluate the fields of the screen.

n Also read the online documentation about transaction variants.

n The screen that was evaluated is stored as a screen variant when you continue. This will be discussed
next.

n A screen variant is an independent Repository object, which has a unique name in the system. The
name is constructed as follows:

� Variant name

� Client (only for client-specific transaction variants)

� Screen number

n Here you specify whether or not field contents should be copied to the screen variant. You can set
various attributes for the individual fields: You can undo or hide the input status of a field. You can
find a detailed list of options in the online documentation about transaction variants.

n The GuiXT tool permits you to design the individual screens in a more flexible manner. GuiXT uses
a script language to

� Position objects on the screen,

� Set attributes,

� Include new objects.

n If you press "GuiXT", an editor window appears where you can enter the script. You can also choose
GuiXT files stored on your local machine.

n You can also import scripts created on the local machine and export them there.

n You can change the layout of a screen with the script language used by GuiXT. You can

� Move objects

� Insert screens

� Insert pushbuttons

� Insert value helps

� Change the input attributes of fields

� Delete screen elements

n You are provided with a complete documentation of GuiXT with the installation. You can find more
information on the homepage of the GuiXT vendor (http://www.synactive.com).

n You have the following options for starting a transaction variant:

� Test environment

� Transaction code of type "variant transaction"

� User menu

n You can test the transaction flow in the test environment of the transaction variant maintenance
routine. This is intended primarily for developers creating transaction variants.

n To insert a variant transaction in a user menu or activity group, you must create a transaction code of
type "variant transaction".

n To start a transaction variant from a menu, you must create a transaction code of type "variant
transaction". You can navigate there directly from the maintenance screen for the transaction
variants. Alternatively you can start the corresponding transaction from the ABAP Workbench.

n You can insert the transaction in a menu by choosing one of the following two options: maintenance
of

� Activity group or

� Area menu.

n The user can immediately see the changes made in this way.

Unit: Personalization

Topic: Creating a development class

For correct development you need a development class.

1-1 Create a development class.

1-1-1 The development class should be named ZBC425_##. (## = group number).

1-1-2 Assign the development class to a change request.

Exercises

Unit: Personalization

Topic: Create and enhance area menus, create user
roles

At the conclusion of this exercise, you will be able to:

Create an area menu that you will use as initial screen for the rest
of the training course. This area menu will contain all the entries
you need for working efficiently during the course. This includes
both the transactions specific to this course and all the
transactions of the ABAP Workbench.

Only some R/3 functions will be actively used at a work center.
The user should therefore only see a small selection of the
transactions of the complete R/3 menu.

1-1 How do I create an area menu?

1-1-1 Which transaction / menu path can be used to create area menus? Include
the transaction in your list of favorites.

1-1-2 Create an area menu called ZBC425_##. Adhere to the naming convention
(## = group number).

1-2 Create a folder "Application programs" in the structure you created.

1-2-1 Create entries for the following topics that you will use during the training
course:
Transaction BC425_##.

1-2-2 Create another folder named "Development" and include the following
transactions: SHD0, SPRO, PFCG.

1-2-3 Insert a reference to area menu S001 (ABAP Workbench) in your structure.

1-2-4 Enter the area menu you created as the start menu in your user fixed values.
What does your start menu look like when you start a new session?

1-2-5 Check your results.

2-1 Create a user role.

2-1-1 Which transaction can be used to create a user role? How can you get there
quickly?

2-1-2 Create a user role named ZBC425_## (## = group number).

2-1-3 Include the area menu you created in the user role.

2-1-4 Create a new folder. Insert the program SAPBC425_BOOKING_## here.

It is not the aim of this training course to fully explain the
SAP authorization concept. In this exercise we will simply
create a menu that can be used as a user-specific menu,
without maintaining the profile.

2-1-5 Maintain the authorization data: Assign full authorization for the displayed
sub-trees.

Assign full authorization by selecting the corresponding
traffic light icon for the relevant sub-tree.

2-1-6 Insert authorization object S_CARRID in the authorizations manually.
Assign the following authorization here:

Actions All

Airline Everything except
for U*

2-1-7 Assign your user BC425-## this user role. Adjust the user master records.

2-1-8 Check your results. What options do you now have to start transactions?

The changes take effect immediately. Create a new session
to see the changes in the initial menu. Check your user in the
user maintenance screen (SU01).

Exercises

Unit: Personalization

Topic: Transaction variants

At the conclusion of this exercise, you will be able to:

• Significantly simplify use of a transaction with screen variants
and transaction variants.

Your users complain that Transaction BC425_TAVAR is much
too difficult to use (despite the Enjoy initiative). Actually you
only have to fill in a few fields. A number of other fields,
however, are superfluous. Help your users by simplifying use of
the transaction.

1-1 Create a transaction variant for Transaction BC425_TAVAR.

1-1-1 How do you get to the maintenance screen for transaction variants? Include
the corresponding transaction in your list of favorites.

1-1-2 Give the variant a name: ZBC425## (## = group number).

1-2 Go through the transaction screen by screen and create a screen variant for each of
the screens. You should make the following changes:

1-2-1 Initial screen: Initialize the first two fields with "DE", "Frankfurt" and
cancel the ready for input status.

1-2-2 Second screen: Set column "APT" of the table control to not visible.
Deactivate menu function "BACK".

1-2-3 Third screen: Deactivate menu function "BACK".

1-3 Create a transaction code for the variant. Transaction name: ZBC425##.

1-4 Include the variant in the area menu you created.

1-5 Test your results.

Unit: Personalization

Topic: Creating area menus

1-1 You can create an area menu by choosing the following menu path in the SAP
menu:

Tools → ABAP Workbench → Development → Other tools → Area menus

1-1-1 Alternatively you can choose Transaction SE43

1-1-2 Choose the menu path System → User profile → Expand favorites to
include the transaction in your list of favorites.

1-2 Create the folder using the corresponding pushbutton or menu entry.

1-2-1 Enter the transaction code in the right column: After you confirm your
entry, the short text for the transaction is displayed. Complete the entries.

1-2-2 Create another folder as described above. Insert transactions SHD0, SPRO,
PFCG in the list.

1-2-3 Position the cursor on the root node and choose Insert. Enter transaction
code S001 and set attribute "Reference". Complete the entry.

1-2-4 Choose the menu path System → User profile → Own data to define the
area menu as start menu. You can no longer go to the SAP menu.

1-2-5 Create a new session. If you choose "SAP Menu", the menu you defined as
start menu is displayed.

2-1 Creating a role (activity group).

2-1-1 Choose the corresponding pushbutton "Create menu" in the initial screen or
the entry in the area menu you created or choose transaction code PFCG.

2-1-2 Create an activity group named ZBC425_## an (## = group number). Give
it a short description and maintain the description of the activity group.

2-1-3 Include the area menu you created in the activity group.

2-1-4 Create a new folder. Insert the program SAPBC425_BOOKING_## by
choosing the pushbutton "+Report".

2-1-5 Maintain the authorization data: Choose the appropriate tab title. Choose
"Change authorization data". A list with a tree- like structure appears. The
individual sub-trees have a yellow traffic light. Give full authorization for
the displayed sub-trees by selecting the traffic light and confirming the next
modal dialog box.

2-1-6 Insert authorization object S_CARRID by choosing pushbutton "+Manual".
The object appears in an appropriate sub-tree which now has the attribute
"manual". Expand the sub-tree and maintain the field values:

Field name or data class Values

Action *

Airline A to T*

V to Z*

 Save the authorizations. Copy the profile name. Generate the profile.

2-1-7 Choose tab title "User". Enter your user BC425-##. Save your entry. Adjust
the user master records by selecting the right pushbutton.

2-1-8 Create a new session. You can now toggle between the user menu and the
SAP menu.

Solutions

Unit: Personalization

Topic: Transaction variants

1-1 Create a transaction variant for Transaction BC425_TAVAR:

1-1-1 You can go to the maintenance screen for transaction variants in different
ways, for example with
SAP Menu à Tools à AcceleratedSAP à Personalizing à Transaction
variants.
Transaction SHD0 is started. Choose
System à User profile à Expand favorites to include the transaction in
your list of favorites.

1-1-2 Enter the name of the transaction from which you want to create a variant in
field "Transaction". Enter the name of the variant in field "Variant":
ZBC425## (## = group number).

1-2 Execute the transaction screen by screen. Enter the corresponding values in the
input fields. Leave the screen with the appropriate pushbutton and create a screen
variant for each of the screens.

1-2-1 Initial screen: Assign the first two fields the values "DE" and "Frankfurt".
Leave the screen by pressing the appropriate pushbutton. In the next popup
window mark the checkbox "Copy field values" and the corresponding
checkboxes for the screen objects. Give the screen variant a short
description: Save the screen variant.

1-2-2 Second screen: Leave the screen by pressing the appropriate pushbutton.
Mark "Copy values" again in the next dialog box. Mark column "FLH" of
the table control as not visible. Choose the pushbutton for menu functions
and deselect function code "BACK". Save the screen variant.

1-2-3 Third screen: Leave the screen with the "Save" function. Deactivate menu
function "BACK" analogously to 1-2-2. Save the screen variant.

1-2-4 A list with a summary of all the screen variants that were created appears.
You can now check your entries again. Save them to finally create the
transaction variant.

1-3 To create a transaction code for the variant you can call the transaction code
maintenance routine. Alternatively you can select the menu path Goto à
Create transaction code from transaction SHD0. Give it the name ZBC425##.

1-4 Go to the area menu maintenance routine (Transaction SE43). Include the
transaction variant in your area menu ZBC425_##. Proceed as described in the
exercise on maintaining area menus.

 SAP AG 1999

Enhancements to Dictionary Elements

l Table enhancements

l Field exits

Contents:

n Tables and structures can be expanded in one of two different ways:

n Append structures allow you to enhance tables by adding fields to them that are not part of the
standard. With append structures, customers can add their own fields to any table or structure they
want.

n Append structures are created for use with a specific table. However, a table can have multiple
append structures assigned to it.

n If it is known in advance that one of the tables or structures delivered by SAP needs to have
customer-specific fields added to it, the SAP application developer includes these fields in the table
using a Customizing include statement.

n The same Customizing include can be used in multiple tables or structures. This ensures consistency
in these tables and structures whenever the include is extended.

n Nonexistent Customizing includes do not lead to errors.

n Append structures allow you to attach fields to a table without actually having to modify the table
itself.

n Append structures may only be assigned to a single table. A table may, however, have several
append structures attached to it. Whenever a table is activated, the system searches for all active
append structures for that table and attaches them to the table. If an append structure is created or
changed and then activated, the table it is assigned to is also activated, and all of the changes made to
the append structure take effect in the table as well.

n You can use the fields in append structures in ABAP programs just as you would any other field in
the table.

n Note: If you copy a table that has an append structure attached to it, the fields in the append structure
become normal fields in the target table.

n You create append structures in the customer namespace. This protects them from being overwritten
at upgrade or during release upgrade. New versions of standard tables are loaded during upgrades.
The fields contained in active append structures are then appended to the new standard tables when
these new standard tables are activated for the first time.

n From Release 3.0, the field sequence in the ABAP Dictionary can differ from the field sequence in
the database. Therefore, no conversion of the database table is necessary when adding an append
structure or inserting fields into an existing one. All necessary structure adjustment is taken care of
automatically when you adjust the database catalog (ALTER TABLE). The table's definition is
changed when it is activated in the ABAP Dictionary and the new field is appended to the database
table.

n Pay attention to the following points when using append structures:

­ You cannot create append structures for pool and cluster tables.

­ If a table contains a long field (either of data type LCHR or LRAW), then it is not possible to
expand the table with an append structure. This is because long fields of this kind must always
be the last field in their respective tables. No fields from an append structure may be added
after them.

­ If you use an append structure to expand an SAP table, the field names in your append structure
must be in the customer namespace, that is, they must begin with either YY or ZZ. This
prevents naming conflicts from occuring with any new fields that SAP may insert in the future.

n Some of the tables and structures delivered with the R/3 standard contain special include statements:
Customizing includes. These are often inserted in those standard tables that need to have customer-
specific fields added to them.

n In contrast to append structures, Customizing includes can be inserted into more than one table. This
provides for data consistency throughout the tables and structures affected whenever the include is
altered.

n Customizing include programs are part of the customer namespace: all of their names begin with
'CI_'. This naming convention guarantees that nonexistent Customizing includes do not lead to
errors. No code for Customizing includes is delivered with the R/3 standard.

n You create Customizing includes using special Customizing transactions. Some are already part of
SAP enhancements and can be created by using project management (see the unit on 'Enhancements
using Customer Exits').

n The Customizing include field names must lie in the customer namespace just like field names in
append structures. These names must all begin with either 'YY' or 'ZZ'.

n When adding the fields of a Customizing include to your database, adhere to same rules you would
with append structures.

n Every time they define a data element, the SAP application programmers define keywords in
different lengths and a short description for each data element.

n You create field exits in Project management. Field exits are processed when the user leaves a screen
that contains a field which refers to a data element containing a field exit.

n SAP lets you create a field exit for every input-ready screen field that has been created with
reference to the ABAP Dictionary. The additional program logic is stored in a function module and
is executed at a specific point in the PAI logic.

n The slide shows the order in which processing takes place. Before the PAI logic of the screen is
executed, the system performs the following checks: First the system checks if all the required fields
have been filled in. If a required field is empty, the screen is shown again.

n The system then checks that data has been entered in the correct format.

n Any defined field exits are executed next. For example, by sending an error message you can have
the screen sent again.

n Once all the field exits have been checked, the screen is processed as normal.

� Field transport

� Foreign key check

� Processing the PAI module

n Field exits take you from a screen field with a data element reference to a function module. Field
exits can be either global or local:

n Global field exits are not limited to a particular screen: If a global exit's data element is used on
several screens, the system goes to the function module for all these screens after activating the field
exit. Here you can, for example, edit the contents, force a new entry to be made by outputting an
error message, or prohibit certain users from proceeding further.

n Local field exits are valid for one screen only. If you assign a screen from a specific program to a
field exit, then the system will go to the appropriate function module from this screen once the exit
has been activated.

n You can either create a global field exit or up to 36 local field exits for a data element, but not both.

n Each exit number refers to a different function module. Field exit function modules adhere to the
following naming convention:

� Prefix: FIELD_EXIT_

� Name: <Data element>

� Suffix (for local field exit): _0 to _9, _A to _Z

n To create field exits, choose Utilities in the ABAP Workbench. Choose Enhancements and then
Project management to edit field exits and to implement customer exits. Do not create field exits
directly from the Function Builder.

n Choose Goto -> Global enhancements -> Field exits to start the transaction for maintaining field
exits. To create a new enhancement, use the menu path Text Enhancements -> Create.

n Enter the name of the data element to which your screen field refers in the modal dialog box. The
Function Builder is started with a special naming convention and interface options. The system
specifies the name of the field exit. Do not change this name. Create the function module in a
customer function group.

n The function module must be assigned to an existing customer function group.

n The function module interface is fixed and cannot be changed. The function module has an import
parameter INPUT and export parameter OUTPUT. The contents of the screen field are stored in
parameter INPUT. The contents of OUTPUT are returned in the screen field when you leave the
function module.

n Field exits are not transported automatically. Therefore, you must assign the value of INPUT to
OUTPUT in your source code. Otherwise the screen field would be blank after executing the field
exit.

n The following ABAP statements are not allowed in field exit function modules:

­ CALL SCREEN, CALL DIALOG, CALL TRANSACTION, SUBMIT

­ COMMIT WORK, ROLLBACK WORK

­ COMMUNICATION RECEIVE

­ EXIT FROM STEP-LOOP

­ MESSAGE I, MESSAGE W

­ STOP, REJECT

n When you debug a screen that is referenced by a field exit, the field exit code is ignored by the
debugger. As with any normal function module, you can, however, debug the field exit code in the
Function Builder's test environment.

n You can create local field exits that relate to a specific screen. A global field exit must already exist.
Edit the local field exit based on the global field exit.

n You can create up to 36 local field exits, each of which carries a unique suffix. The system proposes
a name for the function module; you should use this name.

n Defining local field exits means that the function module of the global field exits initially created is
no longer used. However, you must not delete it, for technical reasons. The field exits in the system
would be deleted if you deleted the global function module of the field exit from the list.

n You must activate the field exit as well as the function module. Also note that field exits are only
taken into account during screen execution if the R/3 profile parameter abap/fieldexit = YES has
been set for all application servers. (This profile parameter is set to 'NO' by default).

n If you declare field exits for multiple screen fields, you have no control over the order in which they
are procesesd. Iin particular, you cannot access the contents of other screen fields in a field exit.

n Also Read Note 29377 about field exits.

Unit: Enhancements to Dictionary Objects

Topic: Table enhancements

At the conclusion of this exercise, you will be able to:

• Enhance tables with append structures.

You work as a computer specialist for a large travel agency. Your
company uses R/3. One of the transactions in your R/3 System
has been specially tailored to process air travel data. Your fellow
employees use transaction BC425_## to display flight
information when helping customers. They would like more
information about a flight, for example the pilot's name or the
main meal.

Your flight data is stored in table SFLIGHT##. You need to add
two columns to this table without modifying it.

1-1 How can you add these two fields to table SFLIGHT## without modifying it?

1-1-1 How do you go about enhancing table SFLIGHT##?

1-1-2 Enhance table SFLIGHT## with a technique that does not require
modifications.

1-2 Create an append structure for table SFLIGHT##.

1-2-1 Include two fields in the structure:
One should contain the pilot's name (character string of length 25)
and one should contain the meal (character string of length 20).

1-2-2 Define the types of the fields. Choose the type that strikes you as most
suitable.

You will use these fields later on in a screen. Doing a little
more work now will save you work later on.

Exercises

Unit: Enhancements to Dictionary Elements

Topic: Field exits

At the conclusion of this exercise, you will be able to:

• Implement a field exit that can be used to make supplementary
checks of a screen field.

The transaction that your co-workers use to display flight
information (BC425_##) allows you to access data for all airline
carriers. The customer service personnel, however, should only
be able to access the airlines for which it has explicit
authorization.

1-1 What is the name of the program for the above transaction?

1-1-1 What is the name of the data element referenced by the input field for the
airline?

1-1-2 Are the requirements met for linking a field exit to this screen field?

1-2 How can you create a field exit?

1-2-1 Create a field exit for the screen field found under 1-1. Reference the
corresponding data element.

1-2-2 The Function Builder is started. Can you change the interface of the
Function Builder? If you need a function group, create one named
ZBC425_##.

1-2-3 What do you have to code in the source text? Program an authorization
check. You can you perform an authorization check?

1-2-4 If the check is negative, send a message to this effect. You can create it
yourself (message class ZBC425_##) or use message 010 in message class
BC425.

1-2-5 Activate the function module and the field exit.

1-3 Check your results.

1-3-1 For which airline(s) do you not have authorization?

1-4 Create a local field exit for screen 0100 of Transaction BC425_## based on the
global field exit.

Use a second session.

Unit: Enhancements to Dictionary Objects

Topic: Table enhancements

1-1 An append structure is the only way to enhance a transparent table (FLIGHT## is
such a table) without modifying it.

1-1-1 How do you go about enhancing table SFLIGHT##? You can work with
append structures just like with "normal" structure definitions. They are
created from a table (or structure). Call the ABAP Dictionary (Transaction
SE11 or the Object Navigator Single objects à Edit Dictionary objects).
Enter table name SFLIGHT## and choose Display.

1-1-2 Enhance table SFLIGHT## with the append technique. The detailed
procedure is described below:

1-2 Create your append structure using either the menu option Goto à Append
structures… or its corresponding pushbutton; accept the name that the system
suggests. Give the append structure a short description and save it under the
development class you created.

1-2-1 Include two fields in the structure: The field names must begin with YY or
ZZ. For example YYPILOT and YYMEAL.
One should contain the pilot's name (character string of length 25)
and one should contain the meal (character string of length 20).

1-2-2 Create one data element each to define the field type. Ideally you should use
forward navigation. Enter the name Z_PILNAME## and double-click on the
field. Give the data element a short description and an adequate field label.
Create a data element called Z_MEAL## for the meal. Don't forget to
activate the data element.

1-3 Activate the append structure. If an error occurs, you can find details in the
activation log.

Solutions

Unit: Modifications to Dictionary Elements

Topic: Field exits

1-1 The name of the program for transaction BC425_## is SAPBC425_FLIGHT##.
You can get this information with the menu path System à Status.

1-1-1 The name of the data element to which the input field for the airline refers is
S_CARRID##. You get it by placing the cursor on the "Airline" field in the
corresponding screen. Choose F1 there and Technical info in the next
dialog box.

1-1-2 To check that the requirements are satisfied, go to the Screen-Painter for
screen 0100. You can see there that attribute "Dictionary" is set in the
general attributes of the element list.

1-2 You can create a field exit for transaction CMOD (menu path in the ABAP
Workbench: Utilities à Enhancements à Project management). In the menu,
choose Goto à Text enhancements à Field exits. You are now in program
RSMODPRF, which creates field exits.

1-2-1 In the menu, choose Field exit à Create. In the next dialog box enter
S_CARRID as data element name and choose "Continue".

1-2-2 The Function Builder is started. The name of the function module is already
defined in the input field. If you choose "Create", the function module is
created.

You have to assign the function module to a function group.
Create function group ZBC425_## in a second session.

 Can you change the interface of the Function Builder?

1-2-3 Use the statement pattern to add the source text for the AUTHORITY-CHECK.
The source text should be as follows:

 output = input.
 AUTHORITY-CHECK OBJECT 'S_CARRID'
 ID 'CARRID' FIELD input
 ID 'ACTVT' FIELD '03'.

 IF sy-subrc <> 0.
 MESSAGE e010(bc425).
 ENDIF.

1-3 Activate the function module. Go back. The list of field exits appears again.
Activate the field exit with Field exit à Activate.

 SAP AG 1999

l Introduction

l Enhancement management

l Function module exits

l Menu exits

l Screen exits

Contents:

Enhancements Using Customer Exits

n Application enhancements allow customers to enhance their application functions. Customer exits
are preplanned by SAP and generally consist of several components.

n Application enhancements are inactive when delivered and can be completed and activated by
customers as they are needed.

n Application enhancement characteristics:

n Each enhancement provides you with a set of preplanned, precisely defined functions.

n Each interface between SAP and customer functions is clearly defined.

n As a customer, you do not need in-depth knowledge of how to implement SAP applications.

n You do not need to adjust enhancements at upgrade because of new functions that SAP has
developed.

n The SAP application programmer creates SAP enhancements from function module exits, menu exits
and screen exits. A management function is provided for this purpose (transaction code SMOD).

n Customers are given a catalog containing an overview of existing SAP enhancements. They can then
combine the SAP enhancements they want into an enhancement project using transaction CMOD.

n SAP enhancements are made up of component parts. These components include function module
exits, menu exits, and screen exits. A specific component may be used only once in a single SAP
enhancement (this guarantees the uniqueness of SAP enhancements).

n Customer enhancement projects consist of SAP enhancements. Each individual SAP enhancement
may be used only once in a single customer enhancement program (this guarantees the uniqueness of
a customer project).

n The SAP application programmer plans possible application enhancements in an application and
defines the necessary components. These components are combined in SAP enhancements.

n The programmers document their enhancements as best they can, so that customers can implement
the enhancements without having to analyze program source code or screen source code.

n First, create an enhancement project and then choose the SAP enhancements that you want to use.

n Next, edit your individual components using the project management function and document the
entire enhancement project.

n Finally, activate the enhancement project. This activates all of the project's component parts.

n Transaction CMOD starts the project management function. You must give your enhancement
project a name. SAP recommends that you think up a naming convention for all of your projects.
You can, for example, include the project's transaction or module pool in its name. All enhancement
project names must be unique.

n Next, go to the project's attributes and enter a short text describing the enhancenent project. The
system inserts all of the project's other attributes (such as created by, created on, or status).

n Use the project management function to assign SAP enhancements to customer enhancement
projects. Enter the names of the SAP enhancements you want to use on the appropriate screen.

n The search function gives you a catalog-like overview of existing SAP enhancements. From there
you can select those enhancements that are of interest to you.

n Use the product management function to edit the components of your enhancement project.

n Depending on whether the component you are editing is a function module, a menu entry, or a
subscreen, you branch to either the Function Builder, a dialog box for entering menu entries, or to
the Screen Painter.

n Activation of an enhancement project affects all of its components. After it has been activated
successfully, the project has the status active.

n During activation, all programs, screens, and menus containing components that belong to the
project are regenerated (programs at the time they are executed). After activation, you can see the
effect of the enhancements in your application functions.

n The Deactivate function allows you to reset an active enhancement project's status to inactive.

n When the enhancement project was created, you should have assigned it to a change request. Each of
the component pieces (include programs, subscreens, menu exits, and so on) should be assigned to
the same change request. Using the same change request allows you to transport the entire
enhancement at the same time.

n Function module exits allow customers to implement additional logic in application functions. SAP
application programmers define where function module exits are inserted and what kind of data they
transfer. SAP programmers also create an exit's corresponding function modules complete with short
text, interface, and documentation, as well as describing each function module exit's intended
purpose in the SAP documentation.

n You write the source code for the function modules yourself. If need be, you can also create your
own screens, text elements, and includes for the function group.

n The system processes your ABAP code when the enhancement project (of which your function
module is a component) is activated. Function module exits have no effect prior to enhancement
project activation.

n This graphic shows the flow of a program providing an enhancement in the form of a function
module exit.

n The exit function module is called in the PAI logic of a screen at a position determined by the SAP
application developer. Within the function module, the user can add functions in the customer
namespace using an include.

n SAP application programmers use the ABAP statement CALL CUSTOMER-FUNCTION 'nnn' to
call function modules, where nnn is a three-digit number. (where 'nnn' is a three-digit number). The
application programmer must also create the function module he wants to call and its related function
group.

n These function modules belong to function groups whose names begin with X (X function groups).

n The following naming convention applies to these function modules:

­ Prefix: EXIT

­ Name: name of the program that calls the function module

­ Suffix: three-digit number

­ The three parts of the name are separated by two underscores.

n The CALL CUSTOMER-FUNCTION statement is only executed if the enhancement project has been
activated. Multiple calls of the same function module are all activated at the same time.

n The most frequently asked question concerning enhancements is: how can you see if an application
program offers a function module exit? There are a number of ways to find the answer to this
question.

n To see quickly if an application program offers a function module exit, you can follow the path on
the left-hand side of the graphic: (The menu path System à Status always displays the name of the
current application program). In our example a suitable character string would be "CALL
CUSTOMER". Use the Find icon and search globally in the program. If your search does not
provide any results, you can define a larger search area. Determine the environment for the
corresponding program and look for the specific character string in the program environment.

n The right side of the graphic shows you how to find the name of the required enhancement using
search tools. You can restrict the search in the R/3 Repository Information System using different
criteria: These are:

� Development class (also try generic entries)

� Technical name of the enhancement

n Use the project management (transaction: CMOD) function to edit function modules for function
module exits.

n Use the button for editing components to go directly to the function module editor (display mode).

n DO NOT change the function module itself. It is especially important that you do not alter the
interface in any way. The function module, however, contains an INCLUDE statement for an include
program that you have to create in the customer namespace.

n Double-click on the include name beginning with ZX. This automatically takes you to the editor of
the include program, where you can enter your code.

n To understand how an X function group works, you need to understand how a normal function group
works:

� A function group consists of includes. The system assigns unique names to the includes for
different objects. Some of the include names are simply proposals and some cannot be changed.

� Global data is stored in the TOP include. This include is generated automatically when a function
group is created.

� Function modules are stored in includes with sequential numbering, and they in turn are all stored
in an include ending with UXX.

� You can freely choose the names of the includes for all other objects (subroutines, modules,
events, etc.). However, we advie you to accept the proposed names.

n Exit function groups created by SAP application programmers for enhancment exits contain include
programs that begin with either 'LX' or 'ZX'. You can only edit includes beginning with a 'Z', since
they are stored in the customer namespace.

n No further function modules may be added to the function group.

n The include program ZxaaaUnn contains the source code for the function modules of a function
module exit.

n SAP application programmers can declare global data in include program LXaaaTAP.

n You can declare your global data in include ZXaaaTOP.

n Include program LXaaaTOP also contains the FUNCTION-POOL statement, which may not be
changed. Therefore, you must always include the message class in parentheses when outputting
messages - for example, MESSAGE E500 (EU).

n The INCLUDE statement for program ZXaaaUnn is in a FUNCTION - ENDFUNCTION block.
Because of this, neither events, nor subroutines(FORM), nor modules (MODULE) are allowed here.
They can, however, be created in separate includes, which is explained later. Data declarations made
here with DATA are valid locally in this function module.

n The SAP application programmer can also make a proposal for the source text. In this case, an
INCLUDE LXaaFnn is created (where nn is the internal number for the function module in the
include LXaaaUXX). Documentation is also provided within the SAP enhancement. You can copy
the source code from this include into your own customer include program ZXaaaUnn using the
project management transaction.

n You can create your own text elements for the function group.

n SAP application programmers can supply you with default subroutines in include LXaaaF01.

n There could be further includes containing specific sub-objects.

� LX...F01 contains subroutines delivered by SAP.

� LX...E01 contains the events belonging to the X function group.

� LX...O01 contains PBO modules for screens to be delivered.

� LX...I01 contains the corresponding PAI modules.

n Subroutines, modules, and interactive events (AT…) are created as include programs and included
enhancements using include program ZXaaaZZZ.

n Additional includes must adhere to the following naming convention:

� ZXaaaFnn for subroutines,

� ZXaaaOnn for PBO modules,

� ZXaaaInn for PAI modules,

� ZXaaaEnn for events.

n You can use CALL SCREEN to call your own screens. Create the related include programs for the
PBO and PAI modules in include program ZXaaaZZZ.

n Use forward navigation (select an object and then double -click on it) to create your own screens and
modules.

n Screens created in this manner are automatically given the name of the function module's main
program (SAPLXaaa). The PBO modules for these screens can be found in include
ZXaaaO01, the PAI modules in include ZXaaaI01.

n You can enhance SAP applications by adding your own processing logic at predefined points.

n Such enhancements can include your own screens with their corresponding processing logic and
graphical user interface, as well as text elements created by customers.

n Menu exits allow you to attach your own functions to menu options in SAP menus. SAP application
programmers reserve certain menu entries in your GUI interface for this. This allows you to define a
text for the reserved menu entry and add your own logic, often in the form of a related function
module exit. Once you activate menu exits, they become visible in the SAP menu. Whenever this
menu option is chosen, the system processes either a function provided by SAP application
programmers or your own function that you have implemented in a function module exit.

n In order for you to be able to implement menu exits, SAP application programmers must equip the
GUI interface with function codes that begin with a plus sign ('+').

n These function codes are inactive at first and do not appear in the GUI until you have activated them.
They do not appear on the screen.

n Menu exits are edited with the project management transaction (CMOD).

n The pushbutton for editing components calls a dialog box where you can enter short descriptions and
choose a language for each additional menu entry.

n You may not make any changes to the GUI interface.

n SAP application programmers determine where a program reads additional function codes and how it
reacts--- either with a function module exit or with a predefined function.

n You can implement menu exits based on reserved function codes. The SAP application programmer
defines the relevant function codes, assigns them to menus, and often provides a function module
exit.

n Menu exits and function module exits are both part of the same SAP enhancement.

n No pushbuttons may be assigned to additional function codes.

n You can, however, make changes to the various menu entries and activate their function codes.

n Screen exits allow you to make use of reserved sections of a main screen (subscreen areas). You can
either display additional information in these areas or input data. You define the necessary input and
output fields on a customer screen (subscreen).

n Subscreens are rectangular areas on your screen that are reserved for displaying additional screens at
runtime. Each subscreen area can be filled with a different screen (of type subscreen) at runtime.

n The R/3 System determines which screen will be displayed in a subscreen area at PBO. The general
syntax is as follows:
CALL SUBSCREEN <subscreen_area> INCLUDING <prg> <screen_no>.

n For each subscreen, PAI and PBO events are processed just as if the subscreen were a normal screen.

n The sequence of "CALL SUBSCREEN" statements in your main screen's flow logic directly
determines in what order the flow logic of individual subscreens is processed.

n Caution:

­ Function codes are only processed in the main screen's flow logic

­ You are not allowed enter a name for a subscreen's command field

­ You are not allowed to define GUI statuses for subscreens

­ No value for next screen may be entered in a subscreen's flow control

n The SAP application programmer can reserve multiple subscreen areas for a screen.

n The subscreen is called during flow control of the main screen with the CALL CUSTOMER-
SUBSCREEN statement. The name of the subscreen area must be defined without apostrophes. The
function group to which the subscreen belongs is defined statically in apostrophes, but the screen
number can be kept variable by using fields; it must always have four places.

n Screen exit calls are inactive at first, and are skipped when a screen is processed.

n Only after a corresponding subscreen has been created in an enhancement project, and this project
has been activated, will the system process the screen exit.

n You create subscreens in X function groups. Normally, these function groups also contain function
module exits.

n Whenever the statement CALL CUSTOMER-SUBSCREEN <area> INCLUDING <X-
function-pool> <screen_number> occurs at PBO in the flow control of a screen, a
subscreen is included in the subscreen area defined by SAP application programmers. At this point,
all modules called during the PBO event of the subscreen are also processed.

n The PAI event of a subscreen is processed when the calling screen calls the subscreen during its PAI
event using the statement CALL CUSTOMER-SUBSCREEN <area>.

n The global data of the calling program is not known to the X function group that contains your
subscreen; SAP application programmers use function module exits to explicitly provide this data to
subscreens.

n In order to facilitate data transport, modules are called in the flow control of the calling program that
contain function module exits for transferring data via interface parameters.

n Function modules belonging to these kinds of function module exits can be found in the same
function groups as their corresponding subscreens.

n Data must be transported in the other direction as well, since global data from the X function group
that contains your subscreen is not known to the calling program either. For this reason, SAP
application programmers use function module exits to return any data to the calling program that was
changed in the subscreen.

n This is done by calling a module during the main screen's PAI event that contains a function module
exit for returning customer data via interface parameters.

n Subscreens are edited with the project management transaction (CMOD).

n The technical names of screen exits consist of the name of the calling program, a four-digit screen
number, and the name of the subscreen area, followed by the name of the X function group's
program and the number of the subscreen.

n You must create the subscreen as well as the corresponding PBO and PAI modules. The SAP
development environment supports creation with forward navigation.

n Make sure that your subscreens are of screen type subscreen the first time you create them.

n You are not allowed to change any of the interfaces in the X function group that the subscreen and
the function module exits belong to, nor are you allowed to add any of your own function modules.

n See also the restrictions listed on the slide entitled 'Calling Subscreens'.

n Screen exits allow you to determine the layout of certain portions of a screen yourself. You can use
these areas to display additional information, or to collect and process data.

n Screen exits must be predefined (planned) by an SAP application programmer. Use the statement
CALL CUSTOMER-SUBSCREEN to integrate these preplanned subscreen areas into the flow
control of the calling screen at PBO and PAI events.

n As soon as you activate an enhancement project that contains a subscreen as a component, the calling
screen is regenerated and the subscreen is displayed the next time the application function is called.

Unit: Customer exits

Topic: Function module exit

At the conclusion of this exercise, you will be able to:

• Implement an enhancement with a function module exit.

Your co-workers have asked you to alter Transaction BC425_##
so that every time they try to display the details of a flight in the
past, a warning message is displayed.

Adjust the program so that there is a warning when a flight in the
past is selected. Try to avoid modifying the program.

1-1 Check if it is possible to enhance the transaction.

1-1-1 Did the SAP developer implement a customer exit for the given transaction
that you can use to add the required functionality?

1-1-2 What is the name of the corresponding enhancement? Choose the
enhancement that you can use to implement a supplementary check when
you leave the first screen of the transaction.

1-2 Implement the enhancement.

1-2-1 Name the enhancement project TG##CUS1.

1-2-2 Program the following check:
Check that the date that was entered is prior to today's date (that is,. lies in
the past). If this is the case, display a warning containing an appropriate
text.

1-2-3 Create a suitable message in message class ZBC425_## or use message
011 in message class BC425.

1-2-5 Check your results.

Exercises

Unit: Customer exits

Topic: Menu exit

At the conclusion of this exercise, you will be able to:

• Implement an enhancement with a menu exit in combination
with a function module exit.

Your co-workers are thrilled with the new functions that you have
built into the system. The new warning messages in transaction
BC425_## help them to avoid selecting flights from the past.
However, they want more...

They want you to allow them to display a list of bookings for
their current flight from within the flight display transaction.
They already use a program that generates this kind of list, but up
until now they have always had to call the program separately. It
is called SAPBC425_BOOKING_##.

1-1 Examine transaction BC425_##. Are there any points in the transaction where you
could call another program (or perhaps even a menu option that could allow you to
call another program)?

1-1-1 Did the SAP developer implement a customer exit for the given transaction
that you can use to add the required functionality?

1-1-2 What is the name of the corresponding enhancement? Choose the
enhancement with which you can implement a menu enhancement.

1-2 Implement the enhancement.

1-2-1 Name the enhancement project TG##CUS2.
1-2-2 Edit the components of the enhancement. Start the specified program by

choosing the supplementary menu entry. Return to Transaction BC425_##
again when you leave the list.

1-2-3 Pass the relevant parameters to Program SAPBC425_BOOKING_##. Note
the data provided in the function module exit.

1-3 Check your results.

Exercises

Unit: Customer exits

Topic: Screen exit

At the conclusion of this exercise, you will be able to:

• Display further fields in the screen of an SAP transaction and
fill them.

"It would be really great if the details lists of Transaction
BC425_## for displaying flights would also display further
data…".

You accept this new challenge from your co-workers and try to
solve the problem without having to modify the transaction.
Specifically, you start looking for a way to add a couple of new
fields to the second screen of this transaction (screen number
200).

1-1 What kind of possibilities are there to place additional fields on a screen? Take a
closer look at screen 200 in Transaction BC425_## and see if this is possible.

1-1-1 Is there a screen exit for enhancing the screen?

1-1-2 If this is the case, what is the name of the corresponding enhancement?

1-2 Implement the enhancement for doing the following (project name: TG##CUS3):

1-2-1 Enhance the screen with three fields. The following should appear:

• Pilot's name

• Meal

• Number of seats still free on this flight.

1-2-2 Ensure that the data is correctly transported to the subscreen.

1-3 Check your results.

Consult the ABAP Help for the SUBMIT statement.

Unit: Customer exits

Topic: Function module exit

1-1 You can check if the transaction offers customer exits as follows:

1-1-1 System → Status gives you the name of the corresponding program
(SAPBC425_FLIGHT##)

1-1-2 You now have several ways to look for customer exits: You can either
search for the character string CALL CUSTOMER-FUNCTION globally in
the program or you can use the R/3 Repository Information System to
search for enhancements containing the program name in the technical name
of the component (restrict the search with *SAPBC425_FLIGHT##* in
the component name).
The enhancement you were looking for has the name SBC##E01. The
documentation for the enhancement shows that it is intended for
supplementary checks of the first screen of the transaction.

1-2 Choose transaction CMOD to implement the enhancement.

1-2-1 You can go to transaction CMOD with the menu path Tools →
ABAP Workbench → Utilities → Enhancements → Project management.
Create a project named TG##CUS1 here and save it.

1-2-2 Include enhancement SBC##E01 that you found in your project.

1-2-3 Edit the components. The source text of the exit function module appears in
the Function Builder. Create the include by double-clicking. Your source
text could be as follows:

 IF flight-fldate < sy-datum.
 MESSAGE w011(bc425) WITH sy-datum.
 ENDIF.

1-2-4 Activate your include. Go back to project management and activate your
enhancement project.

Solutions

Unit: Customer exits

Topic: Menu exit

1-1 Examine the transaction as in the last exercise. It is advisable to search with the R/3
Repository Information System.

1-1-1 Ideally you can use the R/3 Repository Information System to search for a
suitable enhancement containing the program name in the technical name of
the component (restrict the search with *SAPBC425_FLIGHT##* in the
component name).

1-1-2 The enhancement you were looking for has the name SBC##E02.

1-2 Choose transaction CMOD to implement the enhancement.

1-2-1 You can go to transaction CMOD with the menu path Tools →
ABAP Workbench → Utilities → Enhancements → Project management.
Create a project named TG##CUS2 here and save it.

1-2-2 Include enhancement SBC##E02 that you found in your project. Edit the
enhancement's components. Assign a menu text. Edit the function module
exit by double-clicking. Create the customer include using forward
navigation.

1-2-3 The source text of the include should be as follows for group:

 SUBMIT sapbc425_booking_00
 WITH so_car = flight-carrid
 WITH so_con = flight-connid
 WITH so_fld = flight-fldate
 AND RETURN.

 Activate the include program. Activate the enhancement project.

Solutions

Unit: Customer exits

Topic: Screen exits

1-1 Look at the transaction screens in the Screen Painter. You will see that screen 200
of transaction BC425_## offers a screen exit.

1-1-1 Examine the flow logic of the screens for character string CALL
CUSTOMER-SUBSCREEN. You will see that screen 200 of transaction
BC425_## offers a screen exit.

1-1-2 You can get the name of the enhancement for example by searching in the
R/3 Repository Information System (see previous exercises). The name of
the enhancement is SBC##E03.

1-2 Implement the enhancement in the same way as described in the previous exercises.
Create a project called TG##CUS3 in transaction CMOD. Include enhancement
SBC##E03 in your project. Edit the enhancement's components.

1-2-1 Use the screen exit to enhance the screen. You can create screen 0500 by
double-clicking on the enhancement component. Make sure that you choose
screen type "Subscreen". Copy the fields from the corresponding structure
SFLIGHT## of the Dictionary. You have two options for placing a field on
the screen for the free places:
 You can declare a variable in the TOP include of the X function group,
generate the program. You can then place this program field on the screen.
Generate the screen. (or: You can enhance your append structure. You
should not do this in the exercise since the trainer fills the fields of the
append structure with a program. Enhancing the append structure could
result in errors in this program.).

1-2-2 Use the function module exit for a correct data transport. Create the
customer include and enter the following source text (example for group
00):

 MOVE-CORRESPONDING flight TO sflight00.
 seatsfree =
 flight-seatsmax – flight-seatsocc.

 TOP include:

 TABLES: sflight00.
 DATA: seatsfree type s_seatsocc.

 Activate the programs. Activate the enhancement project.

1-3 Execute transaction BC425_## and check your results.

 SAP AG 1999

l What are business transaction events (BTE)?

l Different kinds of interfaces

l Using business transaction events

l Finding business transaction events

l Differences between customer exits and business
transaction events

Contents:

Business Transaction Events

n Compared with earlier releases, the software delivery process now looks quite different. Previously,
only two parties were involved in the delivery: SAP produced the software, and delivered it to its
end-customers. Customers could enhance this standard using customer exits.

n However, now that the software is more component-oriented, more parties have become involved in
the process: SAP provides the R/3 standard to each SAP Industry Solution, which uses it as a basis to
add on its own encapsulated functions. The next link in the chain might be a partner firm, which
builds its own Complementary Software Program (CSP) solution based on R/3. The last link in the
chain is the customer, as before.

n All of the parties involved in this process are potential users and providers of enhancements. This
requirement cannot be satisfied by customer exits, which can only be used once. Consequently, SAP
developed a new enhancement technique in Release 4.0, which allows enhancements to be reused.

n Business Transaction Events (BTE) allow you to attach additional components, in the form of a
function module, for example, to the R/3 system.

n Business Transaction Events use one of the following types of interfaces:

n Publish & Subscribe interfaces
These interfaces inform external software that certain events have taken place in an SAP standard
application and provide them with the data produced. The external software cannot return any data to
the R/3 System.

n Process interfaces
These interfaces are used to control a business process differently than the way in which it is handled
in the standard R/3 System. They intervene in the standard process, and return data to the SAP
application.

n You can attach various external developments to the R/3 System. You can create additional
developments using the ABAP Workbench.

n The example above pertains to Publish & Subscribe interfaces. In this case, data only flows in one
direction - from the SAP application to the additional component.

n SAP application developers make interfaces available to you at certain callup points in a transaction.
You can deposit addit ional logic at these points.

n In a very basic scenario, SAP partners and customers can use the interfaces themselves. In this case
business transaction events function in much the same manner as customer exits (see the unit on
"Enhancements using Customer Exits").

n The above scenario also pertains solely to Publish & Subscribe interfaces.

n In contrast to customer exits, business transaction events allow you to use an interface for multiple
types of additional logic.

n If this is the case, you must decide which bit of logic you want to execute at what time.

n Both of your enhancements exist side by side with out impeding each other; however, at runtime
only one of the enhancements can be processed.

n Publish & Subscribe interfaces:

� Allow you to start one or more (multiple) additional operations when a particular event is
triggered. They do not influence the standard R/3 program in any way.

� Multiple operations do not interfere with each other.

� Add-on components can only import data.

� Possible uses: Additional checks (authorizations, existing duplicates, and so on)

n Process interfaces:

� In contrast to Publish & Subscribe interfaces, data exchange takes place in both directions with
process interfaces. This influences the number of additions that can be attached to the interface.

� When an event is triggered, a process in the standard program can only be replaced by a single
external process using the process interface.

� If you are using an add on from an SAP partner that uses a process interface, this enhancement is
processed at runtime. If you choose to use this same process interface for one of your own
developments, the partner enhancement is dismissed and your own enhancement is processed at
runtime instead.

n The graphic shows the flow of an SAP program. The program contains an enhancement in the form
of a Business Transaction Event. The program calls a service function module, which determines and
processes the active implementation of the enhancement. The naming convention for these function
modules is OPEN_FI_PERFORM_<n>_E (or OPEN_FI_PERFORM_<n>_P).

n This function module determines the active implementations for each enhancement and stores them
in an internal table. The implementing function modules are processed in the sequence defined by
the internal table. At this point the system also considers the conditions under which the function
module will be processed in the customer namespace - for example, the country or application. These
conditions are also shown as filter values.

n This graphic shows the syntax used to call a program enhancement using a business transaction
event.

n In the SAP application program, a function module is called with the name
"OPEN_FI_PERFORM_<no>_E" (or, for process interfaces, "OPEN_FI_PERFORM_<no>_P").
The application program passes data to the service function module using the interface. SAP
developers have already designed the interface.

n The service function module searches for active implementations and places them in an internal
table. They are then processed in a loop.

n Business transaction events allow you to implement additional logic in a task function, similar to
function module exits. SAP application programmers determine where to place business transaction
events in a task function and what data should be transferred at each point. They also create sample
function modules complete with short texts, an interface, and documentation, and describe the
functions possible with the enhancement in the accompanying SAP documentation.

n First, SAP application programmers assign a business transaction event an eight digit number by
which it can be identified. These numbers should observe a particular convention. For example, the
fifth and sixth digits should be identical with events in the same program.

n The SAP developer registers the event and creates a template function module,
sample_interface_<n> , which establishes the interface for the user.

n To find out directly whether an application transaction offers business transaction events, you can
use the procedure described on the left-hand side of the graphic. In the program source text, search
for the character string "OPEN_FI_PERFORM". The number that completes the name of the
function module is also the name of the event.

n In the SAP Customizing Implementation Guide (IMG), you will find the entry "Use business
transaction events " under the "Financial Accounting Global Settings" node of the Financial
Accounting area. Choosing this entry calls a transaction (FIBF) where you can execute all of the
actions necessary for using Business Transaction Events.

n Under Environment, you will find search functions that you can use to identify appropriate business
transaction events. You can view the documentation for the event from the list.

n The "Environment "menu of the service transaction FIBF contains two programs that you can use to
search for BTEs. You can restrict the search by using various parameters.

n The BTEs that the system finds are displayed in a list. You can then:

� Display the model function module (start the Function Builder and copy it, for example)

� Display the interface

� Display the documentation

n The documentation provides a clear explanation of how to use the enhancment and any restrictions
that apply to it.

n Use service transaction FIBF to create a product. A product groups together a collection of
enhancements.

n You can create products for various layers in the delivery chain. They define a sequence for
processing the implementations of a business transaction event.

n You can only switch each product on or off as a whole entity. This allows the user to control which
enhancements should be processed and which should not. It also ensures the integrity of the whole
enhancement.

n You can use the transaction FIBF (called when you selected "Use business transaction events" from
the financial accounting hierarchy) to carry out all necessary activities prior to using a business
transaction event.

n First, you must choose an interface to attach your function module to. The Interface button displays
the parameter structure for the interface you have selected. You can also use the documentation to
determine what functions each interface allows you to perform.

n Use the ABAP Workbench to copy the sample function module sample_interface_<n> to the
customer namespace (z_*) of a customer function group. You must not change the interface. You
can fill the module with any source text except COMMIT WORK. Don't forget to activate the
function module.

n Create a product in transaction FIBF.

n Assign a number to your function module and product.

n In contrast to customer exits, business transaction events are client-specific. This means that the
same event can be used in different clients for different purposes.

n Business transaction events may also be used more than once.

n With Publish & Subscribe interfaces, you can choose which enhancement you want to use.

n With process interfaces, the system executes a single component in the hierarchical sequence SAP
application, add on, customer.

 SAP AG 1999

l Interfaces in ABAP Objects

l Implementing business add-ins

l Defining business add-ins

Contents:

Business Add-Ins:

n A class is an abstract description of an object. Each object only exists while the program is running.
In this unit, when we talk about objects, we may actually mean the abstract description (the class),
depending on the context.

n An object is described by its class and consists of two layers - an inner and an outer layer.

­ Public components: The public components are those components of the class (for example,
attributes and methods) that are visible externally. All users of the class can use the public
components directly. The public components of an object form its interface.

­ Private components: These components are only visible within an object. Like the public
components, the private components can be attributes and methods.

n The aim of object orientation is to ensure that a class can guarantee its own consistency.
Consequently, the data of an object is normally "internal", that is, represented using private
attributes. The internal (private) attributes of a class can only be changed by methods of the class.
As a rule, the public components of a class are methods. The methods work with the data in the class
and ensure that it is always consistent.

n Objects also have an identity to differentiate it from other objects with the same attributes and
methods.

n Until Release 4.0, the nearest thing to objects were function groups and function modules.

n When you call a function module, an instance of its function group - with all of its data definitions -
is loaded into the memory area of the internal session. An instance is a real software object. An
ABAP program can therefore load instances of different function groups by calling function
modules, but only one instance of each function group can exist at a time.

n The principle difference between real object orientation and function modules is that a program can
work with instances of different function groups, but not with several instances of a single function
group. For example, suppose a program wanted to manage several independent counters, or several
orders at the same time. If we did this using a function group, we would have to program an instance
management to differentiate between the instances (using numbers, for example).

n In practice, it is very cumbersome to implement instance management within a function group.
Consequently, the data is usually in the calling program, and the function modules work with this
data. This causes various problems. For example, all of the users have to work with the same data
structures as the function group. If you want to change the internal data structure of a function group,
you will affect a lot of users, and the implications of the changes are often hard to predict.

n Another problem is that all users have copies of the data, and it is difficult to keep them consistent
when changes are made.

n Working with global data in function groups is dangerous, because it is almost impossible in a
complex transaction to control when each function group is loaded.

n These problems have been solved with the introduction of classes. Data and functions are defined in
classes instead of function groups. An ABAP program can then work with any number of runtime
instances that are based on the same template. Instead of loading a single runtime instance of a
function group implicitly when you call a function module, ABAP programs can create runtime
instances of classes explicitly. The individual runtime instances are uniquely identifiable objects,
and are addressed using object references.

n Interfaces are defined independently of classes.

n They can contain declarations for elements such as attributes and methods.

n Interfaces are implemented by classes

n The classes then have a uniform external point of contact. They must provide all of the functions of
the interface by implementing its methods.

n In a program, you can create reference variables with reference to interfaces. However, you cannot
instantiate an interface.

n Interface references can, however, point to objects of different classes.

n Business add-ins, unlike customer exits, take into account the changes to the software delivery
process. The top part of the graphic illustrates the typical delivery process: It no longer merely
consists of software provider and end user. Instead, it can now contain a whole chain of intermediate
software providers like SAP Industry Solutions (IS) and partners.

n Below this is a diagram explaining how business add-ins work. Enhancements are made possible by
SAP application programs. This requires at least one interface and an adapter class that implements
it. The interface is implemented by the user.

n The main advantage of this concept is the capacity for reuse. Once implemented, a business add-in
can be reimplemented by other links in the software chain (as shown on the right in the graphic).

n Furthermore, an implementation can also offer business add-ins of its own.

n A business add-in contains the components of an enhancement. Currently, each business add-in can
contain the following components:

� Program enhancements

� Menu enhancements

n In future releases, the other components included in customer exits will also be available as add-in
components.

n Several components are created when you define a business add-in:

� Interface

� Generated class (add-in adapter)

n The generated class performs the following tasks:

� Filtering: If you implement a filter-dependent business add-in, the adapter class ensures that only
the relevant implementations are called

� Control: The adapter class calls the active implementations.

n This graphic shows the process flow of a program that contains a business add-in call. It enables us
to see the possibilities and limitations inherent in business add-ins.

n Not displayed: You must declare a reference variable in the declaration part.

n In the first step, an existing service class, CL_EXITHANDLER, creates an object reference. We
will discuss the precise syntax later on. This completes the preparations for using the program
enhancement.

n When you define a business add-in, the system generates an adapter class, which implements the
interface. In call (2), the interface method of the adapter class is called. The adapter class searches
for all of the implementations of the Business Add-In and calls the implemented methods.

n This graphic contains the syntax with which you call a business add-in. The numbered circles
correspond to the calls from the previous page.

n First, you must define a reference variable with reference to the business add-in interface. The name
of the reference variable does not necessarily have to contain the name of the business add-in.

n In the first step (1), an object reference is created. This creates an instance of the generated adapter
class, restricted to the methods of the interfaces ("narrowing cast").

n You can use this object reference to call the required methods (2).

n There are various ways of searching for business add-ins:

n You can search in a relevant application program for the string "CL_EXITHANDLER". If a business
add-in is called from the program, the "GET_INSTANCE" method of this class must be called.

n You can then reach the definition of the business add-in using forward navigation. The definition
also contains documentation and a guide for implementing the Business Add-In.

n You can also use search tools: Since SAP provided fewer than 50 Business Add-Ins in Release
4.6A, even a list of them all is still manageable.

n However, you can also use the application hierarchy to restrict the components in which you want to
search. Start the Repository Information System, then choose Environment -> EXIT techniques ->
Business Add-Ins" to start the relevant search program.

n Alternatively, you can use the relevant entries in the IMG.

n To implement business add-ins, use transaction SE19 (Tools -> ABAP Workbench -> Utilities ->
Business Add-Ins ->Implementation).

n Enter a name for the implementation and choose Create . A dialog box appears. Enter the name of
the business add-in. The maintenance screen for the business add-in then appears.

n Alternatively, you can use the Business Add-In definition transaction to reach its implementations.
The menu contains an entry "Implementation", which you can use to get an overview of the existing
implementations. You can also create new implementations from here.

n You can assign any name to the implementing class. However, it is a good idea to observe the
proposed naming convention. The suggested name is constructed as follows:

� Namespace prefix, Y, or Z

� CL_ (for class)

� IM_ (for implementation)

� Name of the implementation

n To implement the method, double -click its name. The system starts the Class Builder editor.

n When you have finished, you must activate your objects.

n In the implementing class, you can create your own methods that you then call from the interface
method.

n You cannot create them using forward navigation. Instead, you must define a regular method in the
Class Builder (along with its interface). Specify a visibility for the method, and implement it.

n Use the "Activate" icon to activate the implementation of a Business Add-In. From now on, the
methods of the implementation will be executed when the relevant calling program is executed.

n If you deactivate the implementation, the methods will no longer be called. However, the
corresponding calls in the application program are still processed. The difference is that the instance
of the adapter class will no longer find any active implementations. Unlike the "CALL
CUSTOMER-FUNCTION" call, the "CALL METHOD CL_EXITHANDLER=>GET_INSTANCE"
call is still executed even if there are no implementations. The same applies to the statement calling
the method of the adapter class.

n You can only activate or deactivate an implementation in its original system. Changing it anywhere
else constitutes a modification. The activation or deactivation must be transported into subsequent
systems.

n If a business add-in can only have one implementation, there can still be more than one
implementation in the same system. However, only one can be active at any time.

n As with customer exits, you can use menu enhancements with Business Add-Ins. However, the
following conditions must be met:

� The developer of the program you want to enhance must have planned for the enhancement.

� The menu enhancement must be implemented in a BAdI implementation.

n Function codes of menu enhancements begin with a plus sign '+'.

n The menu entry will only appear if there is an active business add-in implementation containing the
corresponding enhancement.

n You can only create function codes for business add-ins that can only be used once. Moreover, the
business add-in cannot be filter-dependent.

n These restrictions are necessary to ensure that there are no conflicts between two or more
implementations.

n If the user chooses the menu entry in the program to which the function code "+<exit>" is assigned,
the system processes the relevant method call.

n The method call and the menu enhancement belong inseparably to one another. Having the former
without the latter would make no sense. For this reason, it is important that the two enhancement
components are combined in a single enhancement - the business add-in.

n To create a BAdI, use the BAdI Builder (Tools -> ABAP Workbench -> Utilities -> Business Add-
Ins -> Definition).

n A business add-in has two important attributes that you must define:

� Reusable

� Filter-dependent

n If you want the business add-in to support multiple parallel implementations, select Reusable . The
sequence in which the implementations will be processed is not defined. Even if the business add-in
does not support multiple use, you can still have more than one implementation for it. However,
only one implementation can be active at a time.

n If you make a business add-in filter-dependent, you can make calls to it depending on certain
conditions. You must specify the filter type in the form of a data element. The value table of the
domain used by the data element contains the valid values for the implementation.

n When the enhancement method is called, a filter value must be passed to the interface.

n You can include function codes in a Business Add-In definition (similarly to menu exits in customer
exits). To do this, enter the program name and function code, and a short description in the relevant
fields.

n Restrictions:

� It is not currently possible to create BAdIs that consits only of menu enhancements (function
codes).

� If you use menu enhancements, you cannot reuse a BAdI or make it filter-dependent.

n The system proposes a name for the interface and the generated class. You can, in principle, change
the name of the interface to anything you like. However, your BAdI will be easier to understand if
you retain the proposed name.

n The name of the generated class is composed as follows:

� Namespace prefix

� CL_ (to signify a class in general)

� EX_ (stands for "exit")

� Name of Business Add-In

n If you double-click on the interface name, the system switches to the Class Builder, where you can
define the interface methods.

n A BAdI interface can have several interface methods.

n You can use all of the normal functions of the Class Builder. For example, you can:

� Define interface methods

� Define interface parameters for the methods

� Declare the attributes of the interface

n If the business add-in is filter-dependent, you must define an import parameter flt_val for each
method. Otherwise, you define the interface parameters you need for the enhancement.

n Once you have finished working on your interface, you must activate it. This generates the adapter
class for the Business Add-In.

n If you change the interface, the adapter class is automatically regenerated.

n You can also generate the adapter class explicitly at any time by choosing Utilities -> Regenerate
from the initial screen of the Business Add-In maintenance transaction.

n To call a business add-in method in an application program, you must include three statements in the
program:

n Declare a reference variable (1) with reference to the business add-in interface (in our example,
"exit_ref").

n Call the static method GET_INSTANCE of the service class CL_EXITHANDLER (2). This returns
an instance of the required object. This involves an implicit narrow cast, so that only the interface
methods of the object with the reference variable "exit_ref" can be addressed.

n You can now call all of the methods of the business add-in. Make sure you specify the method
interfaces correctly.

n If your Business Add-In is filter-specific, you must pass an appropriate value to the parameter
flt_val.

n Business add-ins are a natural extension of the conventional enhancement technique. They have
taken over the administration layer from customer exits, along with the availability of the various
enhancement components.

n They adopted the idea of reusability from Business Transaction Events, and have been implemented
using a consistent object-oriented approach.

n The object-oriented implementation provides previously unavailable opportunities. For example, it
would be possible to enhance the object "Document". It would be possible to provide a new instance
of the enhancement for each individual document.

n The components in parentheses in the graphic have not yet been implemented:

� Screen enhancements

� Table enhancements

n These enhancement components are planned for later releases. There will then also be a migration
tool for converting previous enhancements into the new form.

Unit: Business Add-Ins

Topic: Using Business Add-Ins

At the conclusion of this exercise, you will be able to:

• Implement an enhancement with business add- ins

The customer service personnel of the agency wants the list of
bookings that you implemented in the exercise on menu exits to
contain more information. The list should contain the name of the
customer in addition to his customer number.

1-1 Check if program SAPBC425_BOOKING_## (## = group number) can be
enhanced.

1-1-1 Check the program for ways in which it can be enhanced.

1-1-2 Check if an enhancement option is suitable for outputting further
information in the list.

1-2 Implement the enhancement you found. Name of the implementation:
ZBC425IM##.

1-2-1 What data is passed to the interfaces of the methods? Are there already
fields here that should be displayed in the list?

1-2-2 Table SCUSTOM contains the information about the customers. Get the
customer's name from his customer number. Output the name.

1-3 Format the list.

1-3-2 How can you move the vertical line so that the additional fields are
displayed within the frame?

1-3-2 Is the CHANGE_VLINE method suitable for changing the position of the
vertical line? If so, use it.

1-4 Check your results.

Exercises

Unit: Business Add-Ins

Topic: Create Business Add-Ins

At the conclusion of this exercise, you will be able to:

• Create a business add- in and offer an enhancement in a
program with business add- in technology

Develop your own supplementary components for the R/3
System. You want to offer an enhancement that can implement
subsequent software layers in a program.

You deliver a program that outputs list of flight connections. You
want to provide your customers with the following enhancement
options using a Business Add In: Double-clicking on a line
should implement further actions. Your customers should be able
to built a details list.

Test your enhancement in the second part of the exercise: This
details list should show all the flights for a connection.

1-1 Create a program that outputs list of flight connections.

1-1-1 To do so, copy program SAPBC425_TEMPLATE to the name
ZBC425_BADI_##.

1-1-2 Assign your program to a development class and a change request.

1-2 Create a business add- in.

1-2-1 The name of the business add- in is ZBC425##.

1-2-2 Create a method. Define the interface.

1-2-3 Which parameter do you have to pass to the interface?

1-3 Edit the program so that a user can double-click on a line to output the details list.

1-3-1 Implement event AT LINE-SELECTION.

1-3-2 Insert the statements that are necessary for calling a business add- in in the
program: Declare a reference variable; instantiate an object of the business
add-in class; implement the call of the business add- in method at the right
place in the program.

1-4 Implement the enhancement (name of the implementation: ZB425##IM).

1-4-1 A details list should be output when you double-click on a line of the list of
the application program. The flight dates of the selected connection should
be output in the details list. Table SFLIGHT## contains the flight dates.

1-4-2 Read the relevant data from table SFLIGHT## to an internal table with
Array-Fetch. Then output selected fields of the internal table.

1-4-3 Which variables (attributes of the implementing class) do you have to
declare? How do you declare an internal table? Where can you declare a
table type?

1-5 Check your results.

Unit: Business Add-Ins

Topic: Using Business Add-Ins

1-1 Check if program SAPBC425_BOOKING_## (## = group number) can be
enhanced as follows:

1-1-1 From the list display: Place the cursor in the list and choose F1 à Technical
info. Double-click on the program name (You can also start directly in the
ABAP Editor.). Look for the character string CL_EXITHANDLER in the
program. Double-click on the transfer parameter exit_book. Double-
click on the interface used to define the type of exit_book. The Class
Builder is started. Make a where-used list for the interface in classes. A
class CL_EX_BADI_BOOK## is displayed. The name of the business add-
in is thus BADI_BOOK##.

1-1-2 Start transaction SE18 (business add-in definition). Read the documentation
about business add- ins.

1-2 Implementing the enhancement From transaction SE18 you go to the transaction
for creating implementations of business add-ins with Implementation à Create.
Name of the implementation: ZBC425IM##.

1-2-1 You can display the interface parameters by double-clicking on the method
in transaction SE18. The transfer structure does not contain the fields that
you want to display in the list. You have to read the corresponding data
separately.

1-2-2 Double-click on the method name to go to the Editor. A proposal for
implementing the methods is given below (group 00):

METHOD if_ex_badi_book00~output.
 DATA:
 name TYPE s_custname.

 SELECT SINGLE name
 FROM scustom
 INTO name
 WHERE id = i_booking-customid.
 WRITE: name.
ENDMETHOD.

1-3 The change_vline method is provided for formatting the list. You can move the
right edge of the list here.

1-3-1 Parameter c_pos defines the position of the right vertical line.

1-3-2 The method can be implemented as follows:

METHOD if_ex_badi_book00~change_vline.
 c_pos = c_pos + 25.
ENDMETHOD.

Solutions

Unit: Business Add-Ins

Topic: Creating Business Add-Ins

1-1 Copy the template program as specified in the exercise.

1-2 To create business add- ins, start transaction SE18 (in the ABAP Workbench:
Utilities à Enhancements à Business add-ins à Definition).

1-2-1 Choose ZBC425## as the name of the business add-in. Enter a short
description and save your entries.

1-2-2 Choose the tab page "Interface". Double-click on the name of the interface.
The Class Builder is started. Enter the name of a method. Give a short
description. Choose "Parameters" to define the interface.

1-2-3 Define two importing parameters whose types are defined with
S_CARR_ID (airline) and S_CONN_ID (connection number). Activate the
interface. The adapter class is also generated.

1-3 Source text of the program with business add- in:

&---
& Report SAPBC425_TEMPLATE

&---

REPORT sapbc425_badi.

DATA:

 wa_spfli TYPE spfli,
 it_spfli TYPE TABLE OF spfli WITH KEY carrid connid.

* Reference Variable for BAdI

DATA:

 exit_ref TYPE REF TO zif_ex_bc42500.

* Selection Screen
SELECTION-SCREEN BEGIN OF BLOCK carrier

 WITH FRAME TITLE text-car.

SELECT-OPTIONS: so_carr FOR wa_spfli-carrid.
SELECTION-SCREEN END OF BLOCK carrier.

&--

*& Event START-OF-SELECTION
&--

START-OF-SELECTION.

 CALL METHOD cl_exithandler=>get_instance

 CHANGING
 instance = exit_ref.

 SELECT *

 FROM spfli

 INTO CORRESPONDING FIELDS OF TABLE it_spfli
 WHERE carrid IN so_carr.

&--

*& Event END-OF-SELECTION
&--

END-OF-SELECTION.

 LOOP AT it_spfli INTO wa_spfli.

 WRITE: / wa_spfli-carrid,

 wa_spfli-connid,
 wa_spfli-countryfr,

 wa_spfli-cityfrom,

 wa_spfli-countryto,
 wa_spfli-cityto,

 wa_spfli-deptime,

 wa_spfli-arrtime.

 HIDE: wa_spfli-carrid,
 wa_spfli-connid.

 ENDLOOP.

 CLEAR wa_spfli.

&--

*& Event AT LINE-SELECTION.
&--

AT LINE-SELECTION..

 CHECK NOT wa_spfli-carrid IS INITIAL.

 CALL METHOD exit_ref->lineselection
 EXPORTING

 i_carrid = wa_spfli-carrid

 i_connid = wa_spfli-connid.
clear wa-spfli.

1-4 Implement the business add- in. From transaction SE18 choose Implementations à
Create. Give the implementation the name ZBC425##_IM. Choose the tab
"Interface" and double-click on the name of the method. The Editor is started. Enter
the source text here:

METHOD zif_ex_bc42500~lineselection.

 DATA:

 it_flights TYPE TABLE OF sflight00,
 wa_flights TYPE sflight00.

 FORMAT COLOR COL_HEADING.
 WRITE: / text-hea, i_carrid, i_connid.

 FORMAT COLOR COL_NORMAL.

 SELECT *

 FROM sflight00
 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE carrid = i_carrid AND
 connid = i_connid.

 LOOP AT it_flights INTO wa_flights.
 WRITE: / wa_flights-fldate,

 wa_flights-planetype,

 wa_flights-price CURRENCY wa_flights-currency,
 wa_flights-currency,

 wa_flights-seatsmax,
 wa_flights-seatsocc.

 ENDLOOP.

ENDMETHOD.

 Activate the implementation.

 SAP AG 1999

l What are modifications

l Making modifications

l Modification Assistant

l Modification Browser

l Non-registered modifications

l User exits

l Modification adjustments

Contents:

Modifications

n An object is original in only one system. In the case of objects delivered by SAP, the original
system is at SAP itself. These objects are only copies in customer systems. This applies to your
development system and all other systems that come after it.

n If you write your own applications, the objects that you create are original in your development
system. You assign your developments to a change request, which has the type
Development/Correction.

n This request ensures that the objects are transported from the development system into the
subsequent systems.

n Changes to an original are called corrections. They are recorded in a change request whose tasks
have the type "Development/correction".

n If, on the other hand, you change a copy (an object outside its own original system), the change is
recorded in a task with the type "Repair". Repairs to SAP objects are called modifications.

n When you repair your own objects (for example, if something goes wrong in your production
system), you can correct the original in your development system straight away. When you change
copies, you must correct the original immediately!

n However, you cannot do this with SAP objects, because they are not original in any of your systems.

n You should only modify the SAP standard if the modifications you want to make are absolutely
necessary for optimizing workflow in your company. Be aware that good background knowledge of
application structure and flow are important prerequisites for deciding what kind of modifications to
make and how these modifications should be designed.

n Whenever you upgrade your system, apply a support package, or import a transport request, conflicts
can occur with modified objects.

n Conflicts occur when you have changed an SAP object and SAP has also delivered a new version of
it. The new object delivered by SAP becomes an active object in the Repository of your system.

n If you want to save your changes, you must perform a modification adjustment for the objects. If
you have a lot of modified SAP objects, your upgrade can be slowed down considerably.

n To ensure consistency between your development system and subsequent systems, you should only
perform modification adjustments in your development system. The objects from the adjustment can
then be transported into other systems.

n A registered developer must register registers changes to SAP objects. Exceptions to this registration
are matchcodes, database indexes, buffer settings, customer objects, patches, and objects whose
changes are based on automatic generation (for example , in Customizing). If the object is changed
again at a later time, no new query is made for the registration key. Once an object is registered, the
related key is stored locally and automatically copied for later changes, regardless of which
registered developer is making the change. For the time being, these keys remain valid even after a
release upgrade.

n How do you benefit from SSCR (SAP Software Change Registration)?

� Quick error resolution and high availability of modified systems
All objects that have been changed are logged by SAP. Based on this information, SAP's First
Level Customer Service can quickly locate and fix problems. This increases the availability of
your R/3 system.

� Dependable operation
Having to register your modifications helps prevent unintended modification. This in turn ensures
that your R/3 software runs more reliably.

� Simplification of upgrades
Upgrades and release upgrades become considerably easier due to the smaller number of
modifications.

n If you want to change an SAP Repository object, you must provide the Workbench Organizer with
the following information:

� SSCR key

� Change Request

n We saw above how you get an SSCR key. If you now continue to change the object, you must
confirm the following warning dialogs: At this point, you can still cancel the action without
repairing the object.

n The Workbench Organizer asks you to enter a change request, as it would for your own objects. The
object is automatically added to a repair task. The change request has the following functions:

� Change lock
After the task has been assigned, only its owner can change the object.

� Import lock
The object cannot be overwritten by an import (upgrade or support package).

� Versions
The system generates a new version of the object (see below).

n After development is finished, the programmer releases the task. At this point, the programmer must
document the changes made. The objects and object locks valid in the task are transferred to the
change request. If the developer confirms the repair, the import lock passes to the change request. If
the developer does not confirm the repair when releasing the task, the import lock remains in place.
Only the developer can release this lock.

n Once the project is completed, you release the change request. This removes all of the change
request's object locks. This applies both to the change locks and the import locks.

n When the change request is released, the objects are copied from the R/3 database and stored in a
directory at operating system level. They can then be imported into subsequent systems by the
system adminstrator.

n After the modifications have been imported into the quality system, the developer must test them and
check the import log of the request.

n When you release a change request, a complete version of all objects contained in the change request
is written to the versions database.

n If you transport the Repository object again later, the current object becomes a complete copy and
the differences between the old and the new object are stored in the versions database as a backwards
delta.

n Whenever you assign a Repository object to a task, the system checks whether the current version
agrees with the complete copy in the versions database. If not, a complete copy is created. This
process is also initiated the first time you change an object, since SAP does not deliver versions of
Repository objects.

n The versions of a Repository object provide the basis for modification adjustment. To support
adjustment, information on whether the version was created by SAP or by the customer is also
stored.

n Encapsulate customer source code in modularization units instead of inserting it directly into SAP
source code (with, for example, customer function module calls in program source code, or customer
subscreen calls for additional screen fields).

n When encapsulating the customer portions of a program, be sure to use narrow interfaces.

n You should define a standard for all of your company's modification documentation (see the
following slides).

n You should also maintain a list of all modifications to your system (a modification log - see the
following slides).

n All requests that contain repairs must be released before an upgrade so that all relevant customer
versions can be written to the versions database (the system compares versions during adjustment) .

n Repairs must also be confirmed prior to upgrade, otherwise the object being repaired is locked and
cannot be imported.

n Any modifications that you make to ABAP Dictionary objects that belong to Basis components are
lost at upgrade--- these objects revert to their earlier form and no adjustment help is offered. This
can lead to the contents of certain tables being lost.

n The aim of the Modification Assistant is to make modification adjustments easier. In the past, the
granularity of modifications was only at include program level. Today, a finer granularity is
available. Now, modifications can be recorded at subroutine or module level.

n This is because (among other reasons) the modifications are registered in a different layer. As well
as providing finer granularity, this means that you can reset modificaitons, since the original version
is not changed.

n If, in the past, you modified an include for which SAP provided a new version in an upgrade, a
modification adjustment was necessary. The modification adjustment had to be performed line by
line. The system provided little support.

n The Modification Assistant has changed this situation considerably. Modifications are now recorded
with finer granularity. For example, if you modify a subroutine, the rest of the include remains
unchanged. If SAP delivers a new version of the include, the system looks to see if there is also a
new version of that subroutine. If this is not the case, your changes can be incorporated into the new
version automatically.

n The original version of each software layer comprises the originals from the previous layer plus
current modifications.

n Above is a list of the tools supported by the Modification Assistant.

n In the ABAP Editor, you can use modification mode to change source code. Only a restricted range
of functions is available in this mode. You can add, replace, or comment out source code, all under
the control of the Modification Assistant.

n Changes to layout and flow logic in the Screen Painter are also recorded.

n The Modification Assistant also records changes in the Menu Painter and to text elements, as well as
the addition of new function modules to an existing function group.

n To avoid conflicts in the upgrade, table appends are also logged by the Modification Assistant.

n If you want to change an SAP object, you must provide the following information:

� SSCR key

� Change request

n The system informs you that the object is under the control of the Modification Assistant. Only
restricted functions are available in the editor.

n You can switch the Modification Assistant on or off for the entire system changing the R/3 profile
parameter eu/controlled_modification. SAP recommends that you always work with the
Modification Assistant.

n You can switch off the Modification Assistant for single Repository Objects. Once you have done
so, the system no longer uses the fine granularity of the Modification Assistant.

n In modification mode, you have access to a subset of the normal editor tools. You can access these
using the appropriate pushbuttons. For example, in the ABAP Editor, you can:

� Insert
The system generates a framework of comment lines between which you can enter your source
code.

� Replace
Position the cursor on a line and choose Replace. The corresponding line is commented out, and
another line appears in which you can enter coding. If you want to replace several lines, mark
them as a block first.

� Delete
Select a line or a block and choose Delete . The lines are commented out.

� Undo modifications
This undoes all of the modifications you have made to this object.

� Display modification overview
Choose this function to display an overview of all modifications belonging to this object.

n The graphic shows the result of changes made with Modification Assistant.

n The Modification Assistant automatically generates a framework of comment lines describing the
action. The comment also contains the number of the change request to which the change is
assigned, and a number used for internal administration.

n The "modification overview" icon provides you with an overview of the modifications you have
made in the current program.

n The display is divided up according to the various modularization units. This corresponds to the
structure used by the Modification Assistant to record the modifications.

n You can reset all of the modifications that you have made to the current object using the
Modification Assistant by choosing this function. The record of the modifications is also deleted.

n Remember that you cannot selectively undo modifications to an object. You can only undo
modifications based on the "all or nothing" principle.

n The Modification Browser provides an overview of all of the modified objects in the system. The
Modification Browser differentiates between modifications made with the Modification Browser and
those made without.

n On the initial screen of the Modification Browser, you can restrict the selection according to various
criteria. This allows you to find modifications in a particular area.

n The Modification Assistant displays the hit list in tree form. Objects are arranged by:

� Modification type (with/without the Assistant)

� Object type (PROG, DOMA, DTEL, TABL, ...)

n SAP recommends that you use Modification Assistant to make changes to R/3 objects. Changes
without the use of the Modification Assistant should be avoided. However, should this be necessary,
you should document your modifications in the source code as follows:

� Preliminary corrections
SAP note, repair number, changed by, changed on, valid until

� Customer functions that have been inserted
subject area, repair number, changed by, changed on, INSERTION

� Customer functions that have replaced SAP functions
subject area, repair number, changed by, changed on, REPLACEMENT The SAP functions that
you do not need should not be deleted, but commented out instead

n Subject areas are specified in the relevant process design blueprint (for example, subject area
SD_001 = pricing).

n SAP recommends that you keep a record of all modifications that have been made to your system
(that is, of any changes you have made to Repository objects in the SAP namespace).

n The following information should be logged for each modification:

� Object type (program, screen, GUI status, ...)

� Object name

� Routine (if applicable)

� Subject area (according to process design blueprint or technical design)

� Repair number

� Changed on

� Changed by

� Preliminary correction? (yes/no)

� OSS note number, valid until Release x.y

� Amount of time necessary to recreate modification during adjustment (measured in hours).

n A module pool is organized as a collection of include programs. This is particularly useful for
making the program easier to understand. The organization is similar to that of function groups. In
particular, the naming convention, by which the last three letters of the name of the include program
identify its contents, is identical.

n The main program, as a rule, contains the include statements for all of the include programs that
belong to the module pool.

n The includes described as "special" includes in the program are themselves only include programs -
technically, they are not different. These programs are only delivered once.

n User exits are a type of system enhancement that were originally developed for the R/3 Sales and
Distribution Module (SD). The original purpose of user exits was to allow the user to avoid
modification adjustment.

n A user exit is considered a modification, since technically objects in the SAP namespace are being
modified.

n The SAP developer creates a special include in a module pool. These includes contain one or more
subroutines routines that satisfy the naming convention userexit_<name>. The calls for these
subroutines have already been implemented in the R/3 program. Usually global variables are used.

n After delivering them, SAP never alters includes created in this manner; if new user exits must be
delivered in a new release, they are placed in a new include program.

n User exits are actually empty subroutines that SAP developers provide for you. You can fill them
with your own source code.

n The purpose behind this type of system is to keep all changes well away from program source code
and store them in include programs instead. To this end, SAP developers create various includes that
fulfill the naming conventions for programs and function groups. The last two letters in the name of
the include refer to the include that the customer should use: "Z" is usually found here.

n Example: Program SAPM45A
 Include M45AFZB

n This naming convention guarantees that SAP developers will not touch this include in the future. For
this reason, includes of this nature are not adjusted during modification upgrade.

n The subroutine call is already implemented in the programt. The interface is already defined.
Normally, subroutines of this type only work with global data.

n If any new user exits are delivered by SAP with a new release, then they are bundled into new
includes that adhere to the same naming convention.

n You can find a list of all user exits in the SAP Reference Implementation Guide.

n There, you will also find documentation explaining why SAP developers have created a particular
user exit.

n Follow the steps described in the Implementation Guide.

n The set of objects for adjustment is derived from the set of new objects delivered by SAP in a new
release. This is compared with the set of objects you have modified on your R/3 system..

n The intersection of these two sets is the set of objects that must be adjusted when you import an
upgrade or support package.

n During modification adjustment, old and new versions of ABAP Repository objects are compared
using transactions SPDD and SPAU.

n You do not have to call transaction SPDD to adjust Dictionary objects if:

­ No changes have been made to SAP standard objects in the Dictionary

­ You have only added customer objects to your system. Only SAP objects that have been
changed must be adjusted using this transaction.

n All other ABAP Repository objects are adjusted using transaction SPAU. Upgrade program R3up
tells you to start the transaction after upgrade has finished. You have 30 days to use transaction
SPAU after an upgrade. After 30 days, you must apply for a SSCR key for each object that you want
to adjust.

n Transaction SPAU first determines which objects have been modified. Then it determines which of
these objects have a new version in the current upgrade. Modification adjustment allows you to
transfer the modifications you have made in your system to your new R/3 Release.

n Use transaction SPDD to adjust the following ABAP Dictionary objects during the modification
adjustment process:

n Domains

n Data elements

n Tables (structures, transparent tables, pool, and cluster table, together with their technical settings)

n These three object types are adjusted directly after the Dictionary object import (before the main
import). At this point in time, no ABAP Dictionary objects have yet been generated. To ensure that
no data is lost, it is important that any customer modifications to domains, data elements, or tables
are undertaken prior their generation.

n Changes to other ABAP Dictionary objects, such as lock objects, matchcodes, or views, cannot result
in loss of data. Therefore, these ABAP Dictionary objects are adjusted using transaction SPAU after
both main import and object generation have been completed. You can use transaction SPAU to
adjust the following object types:

� ABAP programs, interfaces (menus), screns, matchcode objects, views, and lock objects.

n During modification adjustment, you should use two different change requests to implement the
changes you have made: one for SPDD adjustments and another for SPAU adjustments. These
change requests are then transported into other R/3 systems you want to adjust. This guarantees that
all actual adjustment work takes place solely in your development system.

n When upgrading additional R/3 systems, all adjustments exported from the first system upgrade are
displayed during the ADJUSTCHK phase. You decide which adjustments you want to accept into
your additional systems and these are then integrated into the current upgrade. Afterwards, the
system checks to see if all modifications in the current R/3 system are covered by the change
requests created during the first system upgrade. If this is the case, no adjustments are made during
the current upgrade.

n Note: For this process to be effective, it is important that all systems involved have identical system
landscapes. This can be guaranteed by first making modifications in your development system and
then transporting them to later systems before you upgrade the development system. You can also
guarantee that all of your systems have an identical system landscape by creating your development
system before upgrade as a copy of your production system and then refraining from modifying the
production system again until after upgrade.

n Version compare is also used during or after an upgrade for modification adjustment.

n During modification adjustment, version compare determines the number of SAP objects that you a)
changed in the system and that b) were then overwritten by SAP at upgrade.

n Version compare allows you to find where changes were made and transfer them to your new SAP
version if you want.

n The icons in front of the individual objects that need adjustment show how they can be adjusted.
The possible methods are:

� Automatically
The system could not find any conflicts. The changes can be adopted automatically

� Semi-automatically
The individual tools support you in adjusting the objects.

� Manually
You must process your modifications with no special support from the system. In this case, the
modification adjustment does allow you to jump directly into the relevant tool.

n Adjusted objects are identified by a green tick.

n If you want to use the new SAP standard version, use Restore original. If you do this, you will have
no further adjustment work in future.

Unit: Modifications

Topic: Making modifications

At the conclusion of this exercise, you will be able to:

• Implement modifications using the Modification Assistant.

• Implement non-registered modifications

In addition to the robust functions of the R/3 System, you also
want to implement further functions.

Incorrect functions are very occasionally delivered. This requires
inserting corrections before the corresponding support package
can be applied.

The Modification Assistant does not allow some modifications. If
they are implemented nevertheless, you can deactivate the
Modification Assistant.

1-1 Modify R/3 objects. Use the Modification Assistant where possible. The objects to
be changed are specified below:

1-2 Modify program SAPBC425_BOOKING_##.

1-2-1 Enhance the header so that the column with the customer's name also has a
header.

1-2-2 Create a new variable for counting the data records. Output the counter in
the last column of the list.

1-2-3 Also read fields LUGGWEIGHT and WUNIT of table SBOOK and output
them in the list.

1-3 Modify program SAPBC425_FLIGHT##.

1-3-1 Change the layout of screen 0100: Insert a frame around the three input
fields. Create a pushbutton and assign it function code MORE.

1-4 Modify data element S_CARRID##.

1-4-1 Change the field labels to:
short: "Airl"
medium: "Carrier".

1-4-2 Modify the documentation for this data element. Create a meaningful text.
1-5 Check your modifications in the Modification Browser.

Exercises

Unit: Modifications

Topic: Modification Adjustments

At the conclusion of this exercise, you will be able to:

• Adjust modifications

You must adjust the modifications made in the system after
applying a support package or an upgrade.

1-1 Adjust the modifications you made to the objects you imported into the system.

Unit: Modifications

Topic: Making modifications

1-1 Modification of R/3 objects. The Assistant can usually be used if the modification
icons exist.

1-1-1 <Detailed solution>

1-1-2

1-2 Modification of program SAPBC425_BOOKING_##.

1-2-1 You can change the header either directly from the list (System à List à
List header) or in the Editor.

1-2-2 You can create a new variable directly in the R/3 program. Use the insert
function of the Modification Assistant. Ideally you keep the changes locally
in subroutine data_output. Also output the counter.
Alternatively you can implement this functionality in the enhancement,
which would not cause a modification.

1-2-3 Read additional fields LUGGWEIGHT and WUNIT of table SBOOK and
output them in the list.
Enhance the SELECT statement by these two fields. Output the fields in
subroutine data_output.

1-3 Modification of program SAPBC425_FLIGHT##.

1-3-1 Use the Screen Painter to change the layout of screen 0100.

1-4 Modification of data element S_CARRID##.

1-4-1 Start the maintenance transaction for data elements. Place the cursor on the
corresponding object and choose the modification icon. You can enter new
text in the next dialog box.

1-4-2 Choose the "Documentation" pushbutton and enter new text.

1-5 To check the modification choose the Modification Browser (transaction SE95).
Limit the selection with the user name or change request/task.

Solutions

Unit: Modifications

Topic: Modification Adjustments

1-1 Start the Patch Manager (transaction SPAM). Call transaction SPAU with the menu
path Extras à Adjust modifications. You can adjust the modifications here.

 SAP AG 1999

l Summary

l Evaluation of the different enhancement techniques

Contents:

Epilog

n Modifications can be categorized as 'critical' if:

They affect numerous other Repository objects (such as Dictionary objects or function modules)

Modification adjustment is either difficult (as with menus, pushbuttons, and GUI interfaces up
to 4.5A) or not supported by a tool (transaction codes, message classes, logical databases)

n Without the Modification Assistant (prior to Release 4.5A), both modifying GUI statuses and GUI
titles, as well as assigning customer function modules to SAP function groups, should be considered
'critical' activities.

n SAP only changes the following Repository objects in an upwardly compatible manner. They
should therefore be considered 'uncritical' by customers who want to call them:

� Function modules that have been released

� BAPIs

� Includes for user exits

� Screen, program, menu, and field exits

n After an upgrade, you must test customer reports that call SAP objects, as well as all objects
displayed in the upgrade utility SPAU. This is also true for Repository objects that have been
automatically adjusted using the Modifications Assistant (from Release 4.5A).

n You must be familiar with the processing logic of your application in order to be able to adjust
programs properly.

n Modification adjustment is not necessary if you avoid making changes to SAP objects.

n Use program enhancements and appends with SAP tables to enhance SAP objects in such a way that
your changes cannot be overwritten by SAP at upgrade.

n From Release 3.0, you can use Online Correction Services to import and cancel support packages
and patches automatically (instead of having to insert preliminary corrections manually).

n Modification has the advantage that your live Repository objects do not lose their connection to the
SAP standard. Copying, on the other hand, has the advantage that no modification adjustment will be
necessary for your live Repository objects during subsequent upgrades.

n Choose copying instead of modifying if :

� You have to make numerous changes to an SAP program

� Your requirements will not be met by the standard in future R/3 releases

n During copying, pay attention to a Repository object's environment as well. You should only decide
whether to modify or copy after having informed yourself of the consequences for the main program,
as well as for all of the includes attached to the main program. The same holds true for function
groups and function modules.

n ABAP development projects can be evaluated according to the following criteria:

� What will implementation cost, measured in manpower (creating the concept, implementation,
testing)?

� How will the ABAP development project influence:

­ Production operation performance?

­ The amount of adjustment at upgrade?

n By calling SAP objects in your own Repository object, you can drastically reduce the amount of
effort needed to implement your object. However, any changes that SAP makes to the Repository
object you choose to call may make extra adjustment necessary after an upgrade. For example, SAP
could conceivably change the user interface of a screen for which you have written a batch input
program.

n Naming conventions allow you to avoid naming conflicts and give your Repository objects
meaningful names (that can be understood by others).

n The following naming conflicts can occur:

� An SAP Repository object and a customer Repository object conflict
SAP Repository objects and customer Repository objects should be separated from each other by
strict adherence to SAP naming conventions. OSS note 16466 gives you an overview of the
current naming conventions for customer Repository objects (usually names that begin with either
Y or Z).

� Two customer Repository objects conflict
Naming conflicts can also occur between customer Repository objects in decentralized
development scenarios where more than one development system is being used. You can avoid
naming conflicts in this area by reserving a special namespace for development areas within the
customer namespace. The Workbench Organizer checks to make sure that you adhere to these
conventions by making entries in view V_TRESN.

� Complementary software and customer Repository objects conflict
You can avoid naming conflicts when importing complementary software from SAP partners by
reserving special namespaces in SAP OSS. In addition, from Release 4.0 SAP partners can apply
for prefixes in SAP OSS that they can tack on to the beginning of their Repository objects' names
(For additional information, refer to OSS notes 84282 and 91032, or the white paper 'Development
Namespaces in the R/3 System', order number E:50021723 [English] and D:50021751 [German]).

