B TABC42 ABAP Programming Techniques
2/2

TABC42 2/2

R/3 System
Release 46B
30.05.2000

TABC42 ABAP Programming TECANIQUES 2/2..........ccuereeeesessicie et sss s sssssessssssessssssssssesssssssssssnssesesens 01

(0 o)/ o o) 50T 02
SECLION OVEIVIEW ... ser s e s sese s s s s es s E R R8s R b 0-4

Section: Programming Database Updates............coceerererenererennenn.
Content: Programming Database Updates

COUISE OVEIVIBW......vreeteetseeeeesse ettt s e R s8R ARttt
COUISE GOBIS ...ttt AR bbbt 2-2
COUrSE OVEIVIEW DIBOIEIMcvueerieeirieeerie ettt ssss s bbbt 2-3

Database UpdateS With OPEN SOL........ccccriirie et ssss st ssssesssessssssses 31
Course Overview Diagram - OPEN SQL ...t ssse s s ssessssessssessesenns 32
OVErVIiew: DataDase UPUALEScouvieeririierisiseesisesesese st ss s s snsssnsnsnns 33
Open SQL: Portability and BUFfEIING........ccceriieereecerisess st sss st s s s sss s s sesaens 34
Open SQL Property: Target Set ON The Database........ccovvcuciriniceeeresesresssie st sessssssssssssssssesens 35
Open SQL Properties: Client Dependency, Results Confirmations..........coocvevreveeneneeeinesessesssssssssesesssesesnens 36
L= 10 =S T 10 | L= oo (o TR 37
L= (g To = S = o (= oo o (O 38
Changing @ SINGIE RECOIM.........ccueururireeiririisiririseeses st ssese st s st ssesssssssesssnsessssesssesesssssssssesenssnsesens 39
Changing ReCOrd SetS Via CONAIIONS.......coccurieeuiireiieeeiree et 310
Changing Record SetS Via INternal TADIES ..o 311
Modifying SiNgle RECOIAS AN SELS.........ccveirieerieircrieesess e 312
Deleting @ SINGIE RECOIT........ccuieeiiiieiee e et 313
Deleting Record SetS Via CONAILIONS ..ottt s ss s 314
Deleting Record Sets Via InterNal TaDIES ...ttt sa s se st es s sees 315
DB Rollback With Error Messages of Open SQL Change Statements..........ccccceveeeeevevecienenesssesseseeessssesens 316
Database Updates With Open SQL: UNit SUMMAIYccccviircrnineneeenessee s ssessssessssssssessssssssssssssssessssssssess 317
NaVIQatiNg IN the EXEICISEScucuviieteirecerie sttt s s se st s st s e sttt s s s s et s sns et s e nnsee 318
EEXEICISES .. vureveeeieesee ettt es s R bR SRR R R 319
Tipson Model SolUutioNS FOr thiS COUISE........ccvireireecrrecss st ss s snsesens 322
SOIULTONS.....cervereeeeeeeesees e R 323

LUWS and Client/Server ATCHITECIUNEcveuieerirercereei et 4-1
Course OVerview Diagram - LUWS.......c.o et 4-2
SAP Logical Unit of Work (SAP LUW):Preliminary Definitioncoccvennineneeneeeresessesessesesseeeneneens 4-3
DABDASE LUWV ...ttt bbbt e b £ttt et et re bt es 4-4
R/3 Software View: Client/Server ArChItECIUIE. ..ot 4-5
System Architecture: Implicit DB COMMIUL........ccciiiiiriniriiieirieesescssesessse s s sssssssssssssssssssssssssssens 4-6
Target: Bundling The DB Changes Of AN SAP LUW ...ttt st sens 4-7
LUWs and Client/Server Architecture; UNit SUMMEIYccccoceuriieeenenecienesese s sssssssssssssssssssesssssssesssssssens 4-8
EEXEICISES co.vuretee ettt d bR E SRR AR E s 4-9
SOIULTONS......vrerereeeeeees e e s s 4-11

(@S V=TT O VL= A VA T=. 53

WY SEE LOCKS?...ovvvvveeeeseessesesssssssssssssssssessesessssssssssssssssssssssssssssssseesessssssssssssssssssssssssssessssesssssssssssssssssssssssssssseee 54
Database LOCKS A€ NOt ENOUGN.........cc ettt 55
SAP LOCK CONCEPL: LOGICAI LOCKSceoviereriirieriiicieeeiee s ssse s s sssesnssens 56
Overview: Setting and REIEASING LOCKS..........coviriiciieerceeee s 57
Setting and Deleting LOQICal LOCKS ...t snsssssssnsnns 58
CaliNg thE LOCK IMOUUIES.........ccuceeecicte sttt a bttt bbb e s s s s s an b s 59
LOCK TBIIE ..ttt ettt 5-10
L OCK ATQUIMENES ...ttt sas st bt s et s e s e e bt s s st s et et s e nntee 511
LOCK IMOUE..... oo ses s ser s eee s8R 512
UsSiNG the LOCK MOOE: OLNEN USEIS.......ccuciiiirieiricsistsessssis s sesssessssssssssssnssssessssssssnss 513
Using the LOCK MOOE: SAME PrOQgIam........ocveererireeerereseeisesessssesesessssssesssssssssssssssssssesssssssssssssessssssssssssssssessssssssess 514
LOCKS: TIMESCAIEc..euteeatieetieee ettt st 515
OVENVIEW: LOCK ODJECES.....oucurieiereiseisesessees ettt sese s s 516
SAP LOCK ODJECEScoeuieerieereeessessesesseses ettt sese s s b e 517
GeNErating LOCK MOQUIES.........ccuiuiiieictreee sttt s 518

Overview: Using Locks: Time Sequence
Reading Current Data.........cccovenveeeniniseessseesssssesesssssssesssssens

Risk of Inconsistent Data as a Result of Using L ocks Incorrectly

Using aLock CONtaINEYccceveveererenccre s
SAP Lock Concept: Unit SUMMArYccccoeeeeveereneerereresieenenenns
EEXEICISES ..vvereeeeeiesee ettt R bR RS R R
SOIULTONS......cvverereeeeeees e es s e 527
OrganiZing Datalase UPAELES.........cccvurereeeririreeiririsieseeesesssesssesssssessesessssssessssssssesssssessssesssssssssssessssssssesesssssssssssssssesssssnssns 6-1
Course Overview Diagram - Database UPAELES..........ccouveuerrmerrierieerneesneesseisesssesss s ssese s ssess s sssssseseens 6-2
Overview Organizing Database Updates: Direct Changes From the Dial0gcoeveeeuneeernereenersenernenesneeeneneens 6-3
Direct Changes from the Dial0g: TIMESCAIE ..ottt ssaens 6-4
Direct Changes From the Dial0g: Dafa FIOW ... ssssssessssns 6-5
Direct Changes From the Dial0g: LOCKS.......ccveririiresieicitee e sssessssssesssnns 6-6
Overview of Changes From the Dialog: Using Delayed SUDIOULINES.........cccuviriieeirieensseesssssssssssssens 6-7
PERFORM ON COMMIT: TIMESCAIE (1) ..euveueereereriereterenseresseneesaseesssessesssessssessssessssessssessesssnsssssssssssssssssesssssssssaees 6-8
PERFORM ON COMMIT: TIMESCAE (2)...vvveeeeerreeeeeeeeeeeeeeeessessseseeesesssesseesesssssesssssssssssesesssssesessessssessssssssssseseesees 6-9
PERFORM ON COMMIT: DBEA FIOW......c.oiirieerieiricireieeeieeei st bt 6-10
Overview Organizing Database Updates: Update TEChNIQUES.........c.vveevrirereeenererseinesesestessessssssssesssssssssssssseseens 6-11
Summary: Database Updates From the DIalOgcccceceeuririreininesesesesessesessssssessssssssssessssessssssssssssssssssssssssssesenns 6-12
Overview Update TEChNIQUES: PrOCESS........cccvuiureririierieiresessseesesssssssesssssessssessssssssssssssssssssssessssssssesssssssssssssssssesssns 6-13
UPAAEE: PrINCIPIE .ottt s bbb 6-14
ProCeSS: WILING REQUESEScccuieerieeieeeseisiet ettt s s bbb 6-15
Process: COMPIELING REQUESESccuiureerreerreeereeeieeeeieesiesss s sess s ss s s esssasnns 6-16
Process: REAMING REUESESuucuiuiirerreeees et et 6-17
Process: Performing DB UPUELES ..ot sss s ss s 6-18

[oSl o o 1LY A 6-20

Overview Update Techniques: Technical Implementation..........coecncnieneeesee s 6-21
UPABEE MOAUIES.......oeeeeeieecieee ettt bbb 6-22
WITING REGUESEScoreirieeiiieitiee ettt res s bbb e 6-23
COMPIELING REQUESES ..ottt s s bbb 6-24
The Result 0Of ROLLBACK WORK ...ttt bbb bbb 6-25
ROLLBACK WORK and MEMOTY SEALES........coeureeuerreincietsisesieisssesse s ssss e ssssssssesssssssessssssssessssssssssssssssesssssssess 6-26
Rollback in the Update PrOgram............ccciicicineieerescc et ssssssse s ss e sssssesss s s ssssssssesesssssssssssssssessssnssess 6-27
L 0T = L= 100 TR 6-28
Overview Update TEChNIQUES: USE......c.cviicrireccirriseste st isessssessessssss s sssssssssssssssssssssssessssssssessssssssssssssssesesns 6-29
F ST 0] T TU TS U« = = O 6-30
(o o= 0 oo = (T 6-31
SYNCHIONOUS UPTELE........cuvieiieieeeiseisese ettt 6-32
SAP LUW: Comparison Of the TIMESCAIEccuriiririreereereie et sese s 6-33
Overview Update Techniques: V1 and V2 UPUELES.........ccccreuerrieernirnmnernenesreeneesseieessssssssesssssss s sssesssssssesseseens 6-34
V1 aNd V2 UPAAEE MOGUIESouiieeiiciietreecree ettt e 6-35

Generating V1 and V2 Updates
V1 Update
V2 Update
Update and Lock Durations (Scope = 2)
Overview Update Techniques: The Concept of the SAP LUW

The SAP LUW - DeVEIOPEr PEFSPECLIVE......c.cvcieirectrecsee ettt sss sttt sssssssssssssssesnns
PropertieS Of @N SAP LUW ...ttt sttt bt s st s snsee 6-42
Asynchronous Update in Three-Phase MOEL ...t ssssssessssseseens 6-43
Local Update in Three-PhasSe MOGEL.........c.ccciiceesiesr et 6-44
Synchronous Update in Three-PhaSe MOGEL............ciririneeineeesesse e 6-45
Overview Update Techniques: Tipsfor Optimizing Database Changescoueereeernesrneerneeessessesesseeens 6-46
DB LUW and Database LOCKS..........ccuuerrierreinieeicesieesiess sttt s sssessssssssssssens 6-47
PERFORM ON COMMIT iNthe UPALe..........coirerirericieirireeseseseeie ettt sesses 6-48
Organizing Database Updates: UNit SUMMIEIYccoceviiiririirininisiesesesesesesesesssesessens 6-49
B CISES . vteeeteeees ettt ettt es s E SRR 6-50
SOIULTONS.....tateeeeeeeeseesees et s s £ b 6-52
COMPIEX LUW PrOCESSING....cocuiiiuiieieiiiesetsesesssstsssssssssesssssssssssssssessssssssesssssssessssssssesassssssesssssssssssssssssesessssssssessssssesssssssns 7-1
Course Overview Diagram - COmMpPIeX LUW ProCESSING.......ccvureeurerereeiriresssssssssssssssssssssssessssessssssssssssssssssssssssssens 7-2
Overview Complex LUW Processing:Call Techniques for Programsccccveeerneceinnensesesesssssesesessesesnens 7-3
Y1 00T S O 7-4
Calling an EXECULADIE PrOGIaIML........ccuieeeiereiereseineieiseseies et es bbb 7-5
CalliNG B TFANSACLIONovuveacrreeer ettt b bbb 7-6
Encapsulating Dial0gsin FUNCLION MOAUIES.............cviiiiinicitietieeeeee e sss s ssaens 7-7
Overview of Complex LUW Processing:Logical Memory Level MOdEl...........oeneenenneeeeeneenns 7-8

The Logical MemMOry LeVEl MOGEL ..ottt 7-9

Implicit End of a Program or LEAVE PROGRAM ... ssssessssessees 7-11

LEAVE TO TRANSACTION SICOUEScoreeereieerererensieisesesssssesesssssesesssssssessssssssessssssssssssssesssssnssssssssssssssssssssess 7-12
SUBMIT SPIOGIEIMIooieieiieecieereesee s esesesss s sesss s se s s e s s s s s s nrenens 7-13
CALL FUNCTION SFUNCSciiuririrtteeietseneisesiseseasisesessss st sessse s esessssssesessse s ssssessessssssssesssssesssssssssssssnssssssssnssesesns 7-14
Asynchronous Call of 8 FUNCEION MOTUIE ... 7-15
Overview of Complex LUW Processing:Data Transfer Between Programscccoovennenenenenenssesesessseseseseens 7-16
Data Transfer Between Programs. OVEIVIEW..........ccvuecieireiensesssnessessssssssessssssssessssssssessssssssessssssssessssssssessssssssess 7-17
DataTransfer Viathe Program INEEITACE ...ttt ne 7-18
SUBMIT Statement: The WITH AdAitioN. ... sssssssssneons 7-19
ABAP MEMOry and SAP MEMOIYccverirecierisisietseestsesessss s sssessssssssssessssssssssssssesesns 7-20
Data Transfer Viathe ABAP MEMOIYc.ccvcciriieeireresietsssessssssesssssssssssssesssssssssssssssssssssssssessssssssessssssssessssssssess 7-21
Parameter Transfer Viathe SAP MEMOIY ... ssesssssssesssssessssssssssssssssessssesssess 7-22
SAP Memory and CALL TRANSACTIONcocrrrerereseeesesesesesesessestsesessssssssesssssssesssssessssssssessssssssssssssssseseens 7-23
Overview Complex LUW Processing:LUW Processing for Program Calls ... 7-24
SAP LUWSsS With Synchronous Program CallS ... sssse s sssssssssssseens 7-25
SAP LUW fOr CALL TRANSACTION ...ttt ssas sttt 7-26
Combined, Simplified Transaction SEOUENCE..........ccoi et ses s

SAP LUWs For Function Modules Called Asynchronouglycccceveue..
Possible Use of Program CallS ... ssesessesesssnens
Overview Complex LUW Processing:Locks for Program Calls
Locks Entries for Program Callsccoceevvvceveneveeseseseennns

Complex LUW Processing: Unit Summary

EEXEICISES ..vvereeeeeiesee ettt R bR RS R R 7-33
SOIULTONS.....cervereeeeeeeesees e R 7-35

N o] 0= 0o OO TSP OTT PP 81
SOIULIONS ...ttt st b bbb 82
0] 111 (0] SO ST ST PT SO SPTT 812
AULNOTTZBEION CNECKS ... et 836
Authorization Checks: UNit OBJECIVES.........coueieiicreeree et 837
Course Overview Diagram - AUthorization ChECKS ... 838
Authorization Objects and AULNOII ZALIONS..........cccceereriecce et nses 839
Performing A Uthorization ChECKS...........cccuccccc st 840
AdMINIStEriNG AULNOTIZALIONS.......cueveeicirereceteseee e s sttt es s st s s st s s nnsaee 841
Authorization Checks fOr TIaNSBCHIONS.........cu e 842
Authorization Checks: UNit SUMIMEIYccccovriieririseeressssisssessssssssessssssssssssssssssssssssssssssssesssssssssssssssssessssssssess 843
Section: Enhancements and MOifiCALIONS.............uerrrerreeereeeeeeese s sesssssss s sssssssssssssnssnees 91
Content: Enhancements and MOdifiCaLIONS. ..o 9-2
INEFOTUCTION: CONLENESeueueeecteeeteee ettt e 10-1
COUISE ODJECLIVE ...ttt bR 10-2
COUrSE OVEIVIEW DIBGIEIMcvueurirrietresetrierree ettt ses e e bbb s 10-3
MEIN BUSINESS SCENAITOcevurerierieierseses sttt et 10-4

Overview Diagram: Changing the StANCArd.............ccouereeireeneereree e 11-2
CRENGE LEVEIS ...ttt R 11-3
Procedure for Changing @ FUNCLION. ... 11-4
CUSIOMUIZING. 11ttt es e e bRt b b 11-5
PEISONAITZBEION......ooeeeeeiee ettt e
Change Levelsin the ABAP WOrKDENCH.........ooiisereessses sttt
TaADIE ENNAINCEIMENTS......covvieieeeseeree ettt bbb
Table Enhancements: SAP and the CUSIOMES ...t
FHEIO EXITS 1ovuvvuuueeenseesseesesssesse s ssse s ese s s e s e s 888 R
Program Enhancements. HOW thEY WOTK ..ot sessss s ssse s sssssssssssssenees
Program Enhancements: SAP and the Customer
Menu Enhancements: SAP and the CUSIOMEN ...

SCIEEN ENNANCEMENES ...ttt ettt sttt s s b et b e st s besee e s b e st e st see e sbesee Rt s b et sbese e st et et ebe st entebesesse st ennsbaneas

S B0 0= 2= (o) o OO
Personalization: BuSINESS SCENAOcccrvverererereneeirirereeeeeene
Personalizing the Work Center: Unit Objectives
Overview Diagram Personalization...........cccceveveeeereneierernenenns
Personalization Levels
DeSCription Of thE WOIK CENLETc.cuveeecieirircrietrecs sttt ssasssss e st ss s ssssse s s s snssssssssnsesssesssnss
ATEAIMBINUS......eeettt bbb bR bbb R bR R R R bR bR renas
F N = = 0L o] = ox O
CrEaliNg ATEAIMENUS.......c.corieeteeetrete sttt ea s bbbt b bt
Maintaining Area Menus: IMportant FUNCLIONS..........coueriirecineeeeereisses et seaes
AreaMenus: Migration of Earlier TEChNIQUES............cciciricneieneeseeeie e
ROIE-BASEU IMENUS ..ottt b bbb se b r bbb b s et ettt
ACHIVILY GroUPS: WOFK SEEDScvutveerieeiieernere sttt s es et
Creating A CHVITY GIOUDS......couiuiereeererisesesesestsesesesesesssssesssssssessns
ACLIVItY GroUPS. BUITO IMIBNU ..ottt st bbbt a et s s
Activity Groups: Maintain aUthOriZatiONS..........ccccuriieeererece s b e s s s st naes
ACLIVILY GrOUPS: ASSION USEIS....cocuiiiecteiricietetiessssietsssssssssssssss et sssssssssssssssssssssssesasssssssssssssssessssssssesesssssssesssnsssssses
USING DElIVErEd ACLIVITY GIOUDS.....cuiveereeirerierieiresesisisesesssstsssessssssssssssssssesssssesssssssssssssssssessssssssessssssssssessssssesssssnses
Personalizing Transactions: TOPIC ODJECLIVESccvrereeiriierinirireseessessssie e ssssssssssssssssesssssessssssssssssssssssssssenees
TransaCtion Variants: ObJECHIVES.........vucwrrireerresie et s sesssssesesssssse s sessesssssssssssssssssesssssesssnssssssssnssnses

Transaction VariantS: EXAMPIE ..ottt bbb

GUIXT: SCHPL LANGUBJE.cereuteaerreseeseieeseseesisessi s sess s sese s ses st 12-28
Starting TranSACION VaTANES. ..ot ses s eses 12-29
Creating Variant TraNSACIONSccvcuireieriieiri s ses s ses et 12-30
Inserting Variant TransactionSin the MENU...........ccicesesec e 12-31
Personalization: UNIt SUMMIEIYcocceeiieiissisissis et sss et ss st s sssesesesssesesssasesesesssasesssssesesesssasesesass 12-32
PErSONAlT ZBEI ONEXEICISES.vrevereeieteietseetsee et s e bbb eess b sese bbb bbb bbbt b bbb ee bt reaas 12-33
PErsoNaliZati 0N SOIULTONS........c.cutueuiueieirieireei ettt seas bbb bbb b ettt et 12-38
Enhancementsto Dictionary EIEMENES.........ccccrrcrsecce sttt ettt 13-1
Enhancementsto the ABAP Dictionary OVErview Diagram.........cccccvreerenssesnensssessessssssssesssssssssssssssssssssssees 13-2

Enhancementsto Dictionary Elements
Table ENNBNCEMENES. OVEIVIEW ..ot
AAPPENA SEFUCLUIES......ceoveeieeseeeesee st es s bbb e a bbbt
APPEN SEFUCIUIrES 8 UPGIaOE........ ettt et
CUSIOMIZING INCIUTES ...ttt

Enhancementsto Dictionary Elements
GlODEI ENNBNCEIMENLScocvieeiieieiereisese et st s
T Lo OSSP
Global @NA LOCEI FIEIO EXITS......cuiuiereeeeeerieiseeeeses s s st sss st ss s ses st essensessesns
Creating FIElA EXITS....cciiiiceireeeescc ettt bbbt bbb s s bt s st s s s se s s s anaetas
FIeld EXItS: SOUICE COUR........cuereeeeeeeeieeseies ettt
LOCEAl IO EXIT ..ot
ACHVEIE FIEIA EXIT ..vucececeeeeeeceeeresrer s s seeses et ses s en

Enhancements to Dictionary Elements: Unit Summary

Enhancements to Dictionary ODJECIS EXEICISES.........curuiiriiireeineeerreieseisses e ssseseans
Erweiterungen an Objekten des Enhancements to Dictionary Objects SOlULIONS..........cocconeenrieenernenernecrnenns 13-20
Enhancements USiNG CUSIOMEY EXITS.......cvrirciienieeieesieesi s sse st ssssssessssenns 14-1
Enhancements using Customer EXitS OVErVieW DiagraM.........cccvcrerieerrinmnienensenessnessesesssssee s sesessessssesseseens 14-2
CUSLOMES EXITS: OVEIVIEIW ...ttt st ae e b bbb s s e s s e b £t ee b see bt e e 14-3
SAP Application ENNBNCEMENLS ... s nss s 14-4
Customer ENhANCEMENE PrOJECESccvuiiiicieireccteeresse et sss s st s st ss et sessassesssssssesanns 14-5
Enhancements and ENNANCEMENT PrOJECES ..ottt a s naee 14-6
Customer EXits: Enhancement Management............cccceviririeneninseneseseesssesssssessssssssssssssssessssssssessssssssssssssssesenns 14-7
The SAP Enhancement Creation PrOCEAUNEcocuieeirieeireerireireneesese sttt sesss s sssssnnes 14-8
Procedure at the CUSIOME'S PrEMISES ..ottt et

Creating Customer Enhancement Projects

Assigning SAP Enhancements to CUSLOMEr PrOjECES........c.oceeerreeenierieensisesisessi e ses s sesessesees 14-11
EditiNG COMPONENES.vutviecrreeereeerseresses st seses st ts et ses e es bbbt bbb 14-12
ACtiVating ENNBNCEMENT PrOJECES.......cviiiecieeerersetr e ss s ese s sss e 14-13
TrANSPOITING PrOJECES......cveericrrierriee ettt b bbbt 14-14
Customer EXits: FUNCEION MOAUIE EXIt ..ot sesssssses 14-15

FUNCtion MOAUIE EXit: PrOCESS FIOW.......c.cviiiieeirerececiresesee st esesssses e sessssssessssssssessssssssssesssssssssnsssssesenses
Calling and Creating FUNCLION MOUIES............coiiiiiricineeeieiseee et sses
Finding FUNCEION MOTUIE EXITScueverecriecrrieinieeniee st sese st
Editing FUNCEION MOTUIE EXITSovvierecriectrieineee et es st
SErUCLUre Of 8 FUNCLION GIOUD. ... ccvieeiieriieeeieisises s sess st
Structure of an EXit FUNCHION GIOUPcouiuiveriierireriiesesess s sesesssesssesssssssesssssssesssnns
EXit FUNCtiON Group: GlODal DatL........ccceviiiecireiccisesecie st s s s st es st ss s sessnaes
CUSLOMES SOUICE COUEcveueeuteneiseaeeseasese e eesessesess b essbses s b sese s sese s b se s b bbb bbb bbb ettt aes e bes
Exit Function Group: Other SAP ObJECES ...t ssssss st sessssssssssssnes
Exit Function Group: CUStOMEr ObJECES........ccccruirrireresieisiressssesesessssssssesssssessssssssssssssssssssssssssessssssssssesssssesssssnnes
CUSLOIMES SCIEENS.....c.cveveiateeteereesessestssee et s s sae b b E bR s e e R b e e s R R R AR R et E bbb e s ne e anren s
Summary: FUNCLION MOOUIE EXITS......ccviiiriririeersiesie st esessssesesessss e ssssssssessssssssessssssssssessssssssssssssssssnssnses
CUSLOMEr EXITS: MENU EXIT ...ttt sesss s ss sttt st sennsnsnssennsnens
M ENU EXITS OVEIVIEW ...t sesessse s esessssssesessssssssesssssessessssssssesssssessssesssnsssnssssessenssssesassenssnsesssnssnssssenses
MENU EXit REQUITEIMENTS.coieiiieeiireierseet ettt es e res bbbt
EdItiNG MENU EXITS.... ..ttt st
Menu Exits and FUNCLION MOUUIE EXITS ...ttt
SUMMArY: MenU EXItS ...
Customer Exits: Screen Exit......
Screen Exits Overview...............
Subscreens in the R/3 System
Calling aNOIMal SUDSCIEEN.......c.cueeececieiricsiets sttt s s s et s s st s e s s s s nnnsnses
DEfINING SCIEEN EXITScviiiisiecietririsieisieste st sasessse s se sttt s s st se s st et s s ssssssssssnsesssssssesessesssnsasnsnnsesnsnsnnes
Caling CUSLOMEr SUDSCIEENS.......cuvuiureeiririiesieeseessesesesssssessesessssssssesssssssessssssssssssssessssssssssssssssessssssssesssssssssssssssseses
Transporting DAtatO SUDSCIEENSccuieeeierereireie s ses st b bbb eiees
Transporting Data from SUDSCIEENS...........ciiicieie et
Editing SUDSCIEENS (L) ...cuvvueereeeeeeerereeersees e sese s res bbbt
Editing SUDSCIEENS (2)cvueerieeiieeiereeer ettt et
SUMMEIY: SCIEEN EXITS ..euveerieerree ettt ses bbbt
Enhancements using Customer Exits: Unit Summary
CUSIOMES EXITS EXEITISES. ... eucueuetreaeireseeseiseseaseseasessisesstsessbsess b sess s seae e s se bbbt bbb bbbttt aes e bes
CUSLOMEN EXITS SOIULIONS.......cveueecueiriaeisiesereiseseieessisess st sea b sess s seae bbbttt bt es s
BUSINESS TraNSACION EVENES ..ottt s bbb bbbt
OVErVIEeW: TranSACtION EVENLScocrierieerieirtieieieeti et seae s e bbb bbb bbbt
BTE: SOftWare DElIVEIY PrOCESS.......c.ccviieiieririetreisistsesessie s sesssssssesssssssesssssessssssssesssssssssssssssssessssssssssssssssessssssssess
Business Transaction EVENES (BTE) ... sesssesesessssesessss s ssessssssssessssssssessssssssssssssssssssssessssssssess
BTE: POSSIDIE SCENAITOS (1) ..uevuvueeereeeiersererseerseesseseestssssseess st bbb
BTE: POSSIDIE SCENAITOS (2) ...vuuvuevrieeierseersietseeisees et 15-6

Publish & Subscribe Interfaces; ProCESS INTEITACES.......c.cov ettt s s se e be e nnes 15-7

BTE FUNCLIONS. PrOCESS FIOWcviiiiiiecti ettt st et st b e st b e s b st se b e e bs b e e sbe b snsbansanin 15-8
BTE: CalliNG PrOgraM.......cctueieerieereeeiessesessesessesssesesstsssstsessssessss st sss s ssss s ssessssssssssssssssssssssssssassessssesssssssessssesns 15-9

Finding @ BuSINESS TranSaCtion EVENL...........cocceietiees s ses ettt sssssneans 15-11

BTE: DOCUMENTALI ON.....covreeeeeeeeeeiereeesseses s sesesseses s sss s sess s sese s bbbt 15-12
BTE: TNE PrOAUCE FUNCLION......coiviiteietrectriei sttt 15-13
IMPIEMENTING ABTE......co et s bbb 15-14
Customer EXits and BTE: DIffErENCES.........ccooeiriiiriceeeicrese et sssssssssees 15-15
Business Transaction EVENts: UNIt SUMMEIY ...ttt sssssssesssssssesssssssesssssssesssssesesesnes 15-16
BUSINESS A UG- NS ...ttt ettt es s bbb bbb bbbt 16-1
BusiNess Add-INS: BUSINESS SCENAITOc.eueeieiuierieeeieiseeseessessesssssssssssssesse st sss s essessesssssssssssssssssssssnees 16-2
Add-INS. OVEIVIEW DIAgIaM.....c.cueueeeeeeerice st se s ss st ss st s s st essas s et s s sssesasssansssesssssesessnnss 16-3
BUSINESS AQA-INS: MOTIVALTON.c.ceveeeeeereeree e e ses s es s es s 16-4
SOftWAIrE DElIVENY PIOCESS.......ccveeereirieiririssis sttt ssse s ss st s et s st s s e st et sn st ns s anses e e snsesnns
Business Add-Ins: Interfacesin ABAP ODJECES.......ccvieirirrrresessesssssesessssssssessssssssesssssssssssssssssssssssssssssssess
OB ECLS.... vttt R AR R bR
Instances of FUNCLION GrouPS @S ODJECES ..o e
Classes Generalize FUNCLION GIOUDS ... ueerieerieeetieessisessssese s ssesss s sessssesesssssssssssssssssssssssssssessssessssssssssssesns
INIEEITACES.v ettt R R
Business Add-Ins: Implementing DUSINESS 800-INS..........curirreerneeerieeeeersses e seens
Business Add-Ins: ArchiteCtureccoveveerneneneeseneeneeeneenne
Business Add-Ins; COMPONENLS..........cocererrerereernereeesseseseesenns
Business Add-INns: Process FIOW..........ceenrnernernerneeneeneeneenenn.
Business Add-Ins: Calling Program...........c.cceeeevereveerrereseennnns
Business Add-In Definition: Naming Conventions (1)
FiNdiNg @ BUSINESS AQU-IN......coouiirirsccte sttt s s st s sttt na s s st e e nes
Implementing Busingss Add-INS. TNItial SCrEENcccvvceerrirrreree e sss e sesseseenes
Business Add-In Implementation: Naming CONVENLIONS..........ccuuerreeerrienmrernenerneesseessesessssessssssssssssssssssssesseans 16-19
Implementing Busingss Add-INS: MENOUS.............cciriiireee e 16-20
Implementing Business Add-INS: Private MEthOUS..........c.crnicee e essssens 16-21
Implementing Busingss Add-INS. ACHIVELION..........ccecriicrrieirieesesee e enssseees 16-22
BAdI: FUNCLION COUES - OVEIVIEW......ocveecriacrrieeireiessieeetis s ssss s ses st s et st esss s ssssesnnans 16-23
Business Add-In: FUNCtion COOES- Prer@qUISITES........ccourrieiririeininieisie et sesssessssssssesesssssesssssssessssssseseses 16-24
Business Add-Ins: FUNCLION COAES - RESLIICHIONS......c.cevieeeueeeereirerrerei et 16-25
Business Add-Ins: Function Code Processing in the Program.............cccenncnencsesessseesssessssessssssessssennes 16-26
Business Add-Ins: Defining bUuSINESS @00-INS.........cccvvecicriiiccereee st es 16-27
BAdI DEfiNition: INitial SCIEEN......cociv et e 16-28
Business Add-in Definition: AHHDULES ... e 16-29
BAdI Definition: FUNCEION COUES..........cuerrerrerrerernerneineeneeseseee e sse s 16-30
BAdI Definition: INterface MEtNOGS..........c.oocuicrierereeee et 16-31
Business Add-in Definition: Method Interface Parameters ... 16-32
BAdI Definition: Activating the INLEITACE ..ot 16-33
Business Add-in Definition: Call iN PrOgraM.........coeeieiriereereeeesessessessssessssessssesessssesssssssssssssssssessssesseens 16-34
Calling aFilter-Dependent BAL........cc e nsses 16-35

BUSINESS Add-INS. UNIT SUMIMEIYoevieriecirieireieereieessisesi e sese s ssss s sss st essssesassessessnans 16-37

BUSINESS AQU-1NS EXEICISES......vuivrireeerreerseessesesseseeseiessti s sess s sese s bbbttt 16-38
BUSINESS AQU-1NS SOIULIONS......coutverireeerricrreer et es s bbb 16-41
IMOITICBLIONS......cevieeieresceres ettt bbb bR 17-1
ModifiCations: OVEIVIEW DIGgIaIM.........cvcuerrierricirieeitiessiessi ettt ss s s 17-2
Modifications: What are MOdifiCaliONS............ccerrieeiiiemiesree s 17-3
L@ Yo T ATz KX aTo IO u] o] 1= TR 17-4
COrreCtioNS AN REPAITSc.cvveeeerriicie ettt bbb s At b s s b s e s s b b se s b e b s s st et ee e anbetnas 17-5
MOdifiCationS @NA UPGIaOES........ccccueuveeerieiirisieisesseietsessss e sessssssssssssssssssssstessssssssessssssssessssssssessssssssesesssssesssssssess 17-6
MOGifiCaLIONS: PrOCEAUIEcouevieeeeeceseeeeree e ses st sese s es s es s 17-7
Registering ModifiCatioNS TN SSCRccciiieireeeresese st ses s ssa st sssssssssssssssssessssssssnss
Carrying Out a Registered MOQifiCaliONcvuccerirerrecier st sssssessssesens
When the Modification iS FINISNEU..........coiicc e
VBT SIONS ...ceteeteeteee bbb R AR R Rt
CritiCal SUCCESS FCIONS (L) .uvuvurreaerreeerrieeereieesisessi s sess s sese s ses bbb
CritiCal SUCCESS FBCIONS (2) ..uvuvurreerrieerrieeeriieeeisisisess s ses e ses s ses st s e
CritiCal SUCCESS FACIONS (3) ..uvueurearreierriieeniieesisessises s ses s ses e ses ettt
Modifications: Modification ASSiStant.............eveerereenereereennne
Modification Assistant: ObjeCtiVESccccvvevevereccererecienn,
Modification Adjustments Then and NOw...........cccccceuvevencennne.
Modification Assistant: Software Layers........cccoveeeevereveennnn.
Modification Assistant: TOOIS SUPPOITEX.........ccvurieerurererieiririssesesesesssssss st ssesssssssssssssssssssssssessssssssssesssssesssssnses
Modification ASSIStaNt: Prer@QUISITEScoiireeiririceiresesieisisessesssesesssssssessssss s sssssssssssssssssssssssessssssssssessssssssssssnnes
MOdifiCation ASSISTANE ICONS.......couuiereereeeerrere et
EXAMPIE ABAP EQITONcoceieciiecieteet ettt
M OGITICBLION OVEIVIEWeveeiieeiete ettt s bbb
RESLONNG thE OFTGINGLottt
Modifications: MOGifiCaliON BIOWSEY. ...t ssess s sss s seses st ssssssssens
Modification Browser: INitial SCrEEN........c.occicrierertetes et

Modifications. Non-registered modifications,
Documenting ModifiCationS iN PrOgramScocecceriecicniensssiesssee e sessss s sssssesssssssessssssssessssssssssesssssesssssnses
MOdifiCation LOGS: EXAMPIEcuviceeeeecte sttt ettt s e s sttt en st s e
MOGITICALTONS, USEN EXITSvuivireeeereieeieiseees et e
User Exit: Structure of aMOAUIE POOL...........cocrriiniceceresee e ssesenas
USED EXITS..coucrireeeeiieeseees et e
LS ol 2o = T
USING USEN EXITS ...vuiuiierisrireseiseietseseses ettt s bbb e
Modifications: ModifiCation AGJUSIMENTS ...t
ODJECES TOI AQJUSIMENT.... ..ottt
Modification Adjustment: SPDD aNd SPAU.........ccvieee e sseens
Modification AdjUSIMENT: ODJECESccuecriecrrieirieirirerti e es et

Modification AdjustmMent: TNItial SCIEENcvcriceriertieer e 17-40

MOdifiCaLION ASSISLANT ICONS.......cocvireierreetieei et 17-41
MOdifiCatioNS: UNIT SUIMIMEIYc.coiriireeriecrreesneiessteee s sess s sess st s et ssssesnnans 17-42
M OQifiCBEIONS EXEITISEScuvueeirteereresersees sttt ses bbbt 17-43
M OifiCAEIONS SOIULIONScvuieiieeiereiereer st es bbbt 17-45
0] oo TSP 18-1
Modifications: Critical REPOSITOrY OBJECLS ...t nane 18-2
The Amount of Work Necessary at Upgrade INCIEASES..........cccvirerrereerenesesie et ssssssessssssssssssssesenns 18-3
AVOIAING AGJUSLMENTS.......coetiiiiieieisecestsee ettt ss sttt s s st es s as bt s e st e s s anaeses s antesesnas 18-4
MOIfYiNG VEISUS COPYING w..cuvverereeeriresesieisesssieesessssssssessssssssssessssssssessssssssssssssessssssssessssssssesssssssesssssssesssssssessssssssess 18-5
Evaluation of ABAP DeVElOPMENT PrOJECES.......ccccrireicerressisisesis st ssessssssssesssssssesssssessssssssssssssssssssssssssnss 18-6
Naming Conventions for REPOSITONY ODJECES........cccevirieiririreereresse s ssessssssssessssssssessssssssessssssssssssssessssssssnss 18-7

EPIOG: UNIT SUMIMEIYcooivieieeeeeeeeeeeeeree s ses s s ssssss s ss s sssssesse s sssss s s ssss s ssessesssssssssssssssssnssnees 18-8

P
ey

ABAP Programming
Techniques |

Part 2 oifi2

m R/3 System

= May 2000
m Materia number 50039584

Copyright 2000 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may

be copied or reproduced in any form or by any means,

or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

a4 SAPAG 1999

Trademarks:

Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®,
Multimedia Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ®
are registered trademarks of Microsoft Corporation.

Lotus ScreenCam ® is aregistered trademark of Lotus Development Corporation.

Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.

ARIS Toolset ® isaregistered Trademark of IDS Prof. Scheer GmbH, Saarbriicken
Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.

TouchSend Index ® is aregistered trademark of TouchSend Corporation.

Viso® is aregistered trademark of Visio Corporation.

IBM ®, OS2 ®, DB2/6000 ® and AIX ® are aregistered trademark of IBM Corporation.
Indeo ® is aregistered trademark of Intel Corporation.

Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.

OSF/Matif ® is aregigtered trademark of Open Software Foundation.

ORACLE ® isaregistered trademark of ORACLE Corporation, California, USA.
INFORMIX ®-OnLine for SAP is aregistered trademark of Informix Software Incorporated.
UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.
ADABAS® isaregistered trademark of Software AG

m The following are trademarks or registered trademarks of SAP AG; ABAP/4, InterSAP, RIVA, R/2,
R/3, R/3 Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript,
SAPtime, SAPtronic, SAP-EDI, SAP EarlyWatch, SAP ArchivelLink, SAP Business Workflow, and
ALE/WEB. The SAP logo and al other SAP products, services, logos, or brand names included
herein are also trademarks or registered trademarks of SAP AG.

m Other products, services, logos, or brand names included herein are trademarks or registered
trademarks of their respective owners.

Section Overview !’
DA

Section Basis Technology Overview

Section ABAP Workbench Concepts and Tools
Section Managing ABAP Development Projects
Section ABAP Dictionary

Section ABAP Programming Techniques

Section Techniques for List Creation and SAP Query
Section Transaction Programming

Section Programming Database Updates

Section Enhancements and Modifications

Section Data Transfer

a4 SAPAG 1999

Section: Programming Database Updates

8 SAP AG 1999

Content: Programming Database Updates H’
DA

Unit Introduction Unit SAP Lock Concept

Unit Database Updates with Unit Organizing Database
Open SQL Updates

Unit LUWSs and Client Server Unit Complex LUW
Architecture Programming

Appendix

a4 SAPAG 1999

Course Overview

Contents:

Course goals
Course objectives

Course content

Course overview diagram

Main business scenario

8 SAP AG 1999

Course Goals !’
A

This course will prepare you to:

® Program database updates in the same way that
you process transactions in the SAP R/3 System

a4 SAPAG 1999

Course Overview Diagram SAP

Complex LUW Processing

a Organizing Database Updates

Authorization

Checks Q

Number

Assignmen

LUWSs and Client/
Server Architecture

SAP Lock
Concepts

0 Course Overview

Preface

8 SAP AG 1999

Database Updates With Open SQL

Contents:

® Open SQL
® Single record operations

® Set operations

8 SAP AG 1999

Course Overview Diagram - Open SQL

. Dat;abase Updates -

With Open SQL

8 SAP AG 1999

Overview: Database Updates

Native SQL ABAP
specific
cluster database
DML DML
EXEC SQL. | MPORT FROM
| NSERT . .. DATABASE . ..
ENDEXEC. EXPORT TO
DATABASE . ..
DDL
EXEC SQL.
CREATE TABLE ...
ENDEXEC.

a4 SAPAG 1999

m You can update databases either using ABAP's Open SQL commands, or with the database-specific
commands of your database's Native SQL command set.

m You can access ABAP cluster databases using special ABAP commands.

® Y ou can access the data in database tables using the Open SQL commands. The command set
includes operations of the Data Manipulation Language (DML). The Data Definition Language
(DDL) operations are not available in Open SQL, as these functions are performed by the ABAP
Dictionary.

m Native SQL commands dlow you to carry out both DML and DDL operations.

m The commands for ABAP cluster databases enable operations to be carried out on the data in the
cluster databases. The tables themselves are created in the ABAP Dictionary as transparent tables.
For general information on cluster tables, refer to the course appendix.

m For further information on Native and Open SQL, see the ABAP Editor keyword documentation for
theterm SQL.

Open SQL: Portability and Buffering

Application server 1 Application server 2

ABAP program

DB interface

N
SAP | Open SQL | [Native SQL| SAP
table table

buffer buffer

DB SQL

T

Communication system

Database

a4 SAPAG 1999

m Each time you access the database using Open SQL, the database interface of each work process
(application server) converts this to a database-specific command. For this reason, the ABAP
programs themselves are independent of the database used and can be transferred to other system
platforms (with a different database system) without additional programming requirements.

m SAP database tables can be buffered at the application server level. The aims of buffering are to

* Reduce the time needed to access data with read accesses. Data on the application server can be
accessed more quickly than data on the database.

* Reduce the load on the database. Reading the data from application server buffers reduces the
number of database accesses.

m The buffered tables are accessed exclusively via database interface mechanisms.

m Database accesses with Native SQL enable database-specific commands to be used. This requires a
detailed knowledge of the syntax in question. Programs that use Native SQL commands need
additional programming after they are transported to different system environments (different
database systems), since the syntax of the SQL commands generally varies from one database to the
next.

Open SQL Property: Target Set On The Database H’

Open SQL |

| NSERT | NTO
UPDATE <dbt abvar >)
DELETE FROM

Single record Set of Table _\
records name

Tab 3

//

\

a4 SAPAG 1999

m Thetarget quantity can be limited on the database using all the Open SQL commands discussed here.

m One or more rows can be processed with a SQL command. Each command also provides the option
of specifying the table name dynamically.

m |n addition to this, each type of operation has a syntax variant, which can be used to change
individua fieldsin arow.

m With masked field selections (WHERE <f i el d1> LI KE ' <sear ch_mask>"), notethat ' '
masks an individual character and '%' masks a character string of any length (in line with the SQL
standard).

Example: If the airlines Alitalia(car ri d ='AZ") and American Airlines (car r i d ='AA") offer
flightsin the SFLI GHT table, you can change the price for both airlines (and for al other airlines
whose ID codes begin with 'A") to 1000 USD asfollows:
UPDATE sfl i ght
SET price = ' 1000
currency = 'uUsD
WHERE carrid LIKE 'A%.

Open SQL Properties: Client Dependency, Results !’
DA

Confirmations

Open SQL ‘

... CLIENT SPECIFIED ...
WHERE MANDT = ...

without addition = current client
with addition

valuated = specified client
not valuated = all clients

/

SY-SUBRC
SY-DBCNT

K—/J/

a4 SAPAG 1999

m For al Open SQL commands, you can edit data in the current client (standard). To do so, you do not
specify any command additions and leave the client field non valuated.

m If you want to edit data from other clients explicitly, use the SQL command with the addition
CLI ENT SPECI FI ED and enter the number of the client in which the SQL operation is to be
carried out in the WHERE clause of the command.

m All Open SQL commands return confirmation of the success or failure of the database operation in

the form of areturn code. Thisis always returned by the database interface in the sy- subr ¢
system field. The return code 'O’ (zero) aways means that the operation has been completed
successfully. All other values mean that errors have occurred. For further details, please refer to the
keyword documentation for the command in question.

m Inaddition, thesy- dbcnt system field displays the number of records for which the desired
database operation was actually carried out.

m Note that Open SQL commands do not perform any automatic authorization checks. Y ou need to
carry these out separately (see unit Authorization Checks).

Creating a Single Record

| NSERT | NTO <dbt ab> [CLI ENT SPECI FI ED] VALUES <wa>. |

wa_spfli
— [LH]ooo7]sinGAPORE] ... | DATA wa_spfli TYPE spfli.
wa_spfli-carrid = 'LH .
///”’——_—_____‘_—““~\\ wa_spfli-connid = ' 0007
= ' S| NGAPCRE' .

w wa_spfli-cityto

spfli | NSERT | NTO spfli VALUES wa_spfli.
| F sy-subrc NE O.

—>

v

a4 SAPAG 1999

Toinsert anew row in a database table, enter the command | NSERT | NTO <dbt ab> VALUES
<wa>. To do s0, you must specify the data to be written to the database in the <wa> structure (key
and non-key fields) before the command.

The <wa> structure must be typed according to the row structure of the database table to be updated
(DATA <wa> TYPE <dbt ab>).

Rows can also be inserted for views. However, there are two restrictions here: The view may only
contain fields from one table and must be created in the ABAP Dictionary with maintenance status
'read and change'.

The | NSERT command has the two return codes '0' (row could be inserted) and ‘4" (row could not be
inserted, as arow with the same key aready exists).

The following ABAP short forms exist:
e Short form 1: 1 NSERT <dbt ab> [CLI ENT SPECI FI ED] FROM <wa>.
* Short form 2:1 NSERT <dbt ab> [CLI ENT SPECI FI ED] .

The second short form requires that the data, which is to be added to the database, be availablein a
table work areacaled <dbt ab>. Thistable work area must be declared in the program with
TABLES: <dbt ab>.

The second short form is forbidden using ABAP Objects.

Creating a Set of Records H’
SAF

| NSERT <dbt ab> [CLI ENT SPECI FI ED] FROM TABLE <i t ab>.

it_spfli
LH[0007]| SINGAPORE] ... DATA:
T) K=H]0008] MUNIC it _spfli TYPE STANDARD TABLE OF spfli,
LH]0009] HONGKONG| ... wa_itab LIKE LINE OF it_spfli.
/_—_\ wa_itab-carrid = 'LH .
wa_itab-connid = '0009'.
v wa_itab-cityto = ' HONGKONG .
spfli T
APPEND wa_itab TO it_spfli.
| NSERT spfli FROM TABLE it_spfli.
—> | F sy-subrc NE O.

~

a4 SAPAG 1999

m You can usethecommand | NSERT <dbt ab> FROM TABLE <i t ab> to create several rowsin
adatabase table. The interna table <i t ab> contains the datain the rows that are to be inserted.
Theinterna table <i t ab> must be typed to row type <dbt ab>.

m |f the operation can be carried on al rows, the return code sy- subr ¢ returns the value zero. If
even one data record cannot be created, a runtime error is triggered. This means that no data record is
inserted by the command.

m You can prevent the runtime error occurring with the addition ACCEPTI NG DUPLI CATE KEYS.
In the event of an error, the addition sets return code 4 instead of the runtime error. The data records
that were successfully inserted are not regjected (no DB ROLLBACK)

m Thesy-dbcnt system field contains the number of rows that were successfully inserted in the
database.

Changing a Single Record

UPDATE <dbt ab> [CLI ENT SPECI FI EDJ
SET <f 1> = <gl1> ... <fn> = <gn>
WHERE <fi x_key>.

UPDATE <dbt ab> [CLI ENT SPECI FI ED] FROM <wa>.

wa_spfli
— [LH]0010]ROME [I | .. | pATA wa_spfli TYPE spfli.

//F\

"LH .
' 0010' .

wa_spfli-carrid
wa_spfli-connid

¥—_ > wa_spfli-cityto = ' ROVE' .
L —— wa_spfli-countryto = "I".
spfli) e
UPDATE spf | i
L |LH]0010| BERN CH SET cityto = wa_spfli-carrid
countryto = wa_spfli-countryto

WHERE carrid = wa_spfli-carrid
w AND connid = wa_spfli-connid.
| F sy-subrc NE O.

a4 SAPAG 1999

m Thecommand UPDATE <dbt ab> SET <f1> = <gl1> ... <fn> = <gn> WHERE
<f i x_key> dlowsyou to change datain one row in a database table. After the SET command, you
specify the fields in the rows whose values you want to change and the key of the database row in

the WHERE clause. The key must be specified completely; each individua field must be specified
with the relational operator '=".

m For numeric fields, the data following the SET command may be specified in the form of a
"caculation rule" carried out on the database:f = g,f = f + g,f = f - @.

The command has the two return codes O (row could be changed) and 4 (row could not be changed).

Rows can a so be changed in views. However, there are two restrictions here: The view may only
contain fields from one table and must be created in the ABAP Dictionary with maintenance status
'read and change'.

The following short forms exist:
e Short form 1: UPDATE <dbt ab> FROM <wa>.
e Short form 2: UPDATE dbt ab.

With short form 1, the entire data record must have been written to the <wa> structure (key and
non-key fields) beforeit is called up. The <wa> structure must be typed to the row type of the
database table (DATA: <wa> TYPE <dbt ab>. The short form is not field-specific, but sends the
entire structure to the database interface.

The second short form requires that the data, which is to be updated in the database, be available in a
table work areacaled <dbt ab>. Thistable work area must be declared in the program with
TABLES: <dbt ab>.

m The cernnd chort form i farhidden 1idina ARAP Ohierts

If identical changes are to be made to severa rows in atable, use the syntax specified on the dide.
Using the WHERE clause, specify the rows for which the change is to be carried out.

The following "calculations’ are also possible here for the numerical fields to be changed:
f =9gf =f +9g,f =f - g.

The command has the two return codes O (at least one row has been changed) and 4 (no rows could
be updated).

Thesy- dbcnt field contains the number of updated rows in the database table.

Thereisashort form UPDATE <dbt ab> SET <f1> = <gl> ...<fn> = <gn>. This
requires that a table work area has been created with TABLES <dbt ab> and changes the fields
specified after SET for all rows in the current client.

The short form is forbidden using ABAP Objects.

m |f changes are to be made to several rows in a database table, whereby the changes for each row are
determined via an interna table, use the syntax UPDATE <dbt ab> FROM TABLE <i t ab>.
Here, the internal table <i t ab> contains the data of the rows to be changed (key and non-key
fields). Theinternal table <i t ab> must have the row type<dbt ab>.

m The command has the two return codes O (all rows have been updated) and 4 (at least ane row of the
internal table was not used to update the database; the remaining rows have been updated).

m Thesystemfield sy- dbcnt contains the number of rows that have been updated in the database.

The MODI FY command is SAP-specific. It includes the operations of the two commands
| NSERT ... and UPDATE . ..:

* |n other words, MODI FY <dbt ab> FROM <wa> inserts anew datarecord if the structure
<wa> specifies adatarecord that does not yet exist in the database.

* If the<wa> structure specifies an existing data record, the command updates the row in question.

Using the different syntax variants, you can make changesto individua rows, make smilar changes
to several rows, and carry out operations on sets of records.

All variants of the MODI FY . . syntax have the two return codes O (all rows were inserted or
updated) and 4 (at least one line was not inserted or updated).

The operation can also be carried out on views. However, there are two restrictions here: The view
may only contain fields from one table and must be created in the ABAP Dictionary with
maintenance status 'read and change'.

Thefidd sy- dbcnt contains the number of rows that have been changed or inserted in the
database.

The command DELETE FROM <dbt ab> WHERE <f i xkey> enables one row to be deleted
from a database table. In the WHERE clause, specify all the key fields with the relational operator '=".

The command has the two return codes O (row has been deleted) and 4 (row has not been deleted).

A row can aso be deleted from views. However, there are two restrictions here: The view may only
contain fields from one table and must be created in the ABAP Dictionary with maintenance status
'read and change'.

The following short forms exist:
e Short form 1: DELETE <dbt ab> [CLI ENT SPECI FI ED] FROM <wa>,
» Short form 2: DELETE <dbt ab> [CLI ENT SPECI FI ED] .

Short form 1 requires that the <wa> structure has been filled with the key fields of the row to be
deleted before it is called up. The structure must have the row type<dbt ab>.

Short form 2 requires that the key fields of the row to be deleted be available in atable work area
cdled <dbt ab>. Thistable work area must be declared in the program with TABLES: <dbt ab>.

The second short form is forbidden using ABAP Objects.

m Thecommand DELETE FROM <dbt ab> WHERE <condi ti on> enables severa rows to be

deleted from a database table. Here, you can specify the rows that are to be deleted with the WHERE
clause.

m The command has the two return codes O (at |east one row was deleted) and 4 (no rows were
deleted).

m Thesystemfield sy- dbcnt contains the number of rows that have been updated on the database.

To delete severa specific rows from a database using a database operation, use the statement
DELETE <dbt ab> FROM TABLE <it ab>. Theinterna table<i t ab> here contains the

key fields for the rows that are to be deleted. The interna table <i t ab> must have the row type
<dbt ab>.

The command has the two return codes O (all rows have been deleted) and 4 (at Ieast one row could
not be deleted, the rest have been deleted).

There are two ways of deleting al the rows from a table in the current client:

e Either DELETE FROM <dbt ab> WHERE <fi el d> I N <i t ab> with ablank internal table
<i tab>

* or DELETE FROM <dbt ab> WHERE <fiel d> LIKE ' %.
The number of rows deleted from the database is shown in the system field sy- dbcnt .

If you receive a return code other than zero from the database interface in response to an Open SQL
statement for changing data in the database, you should make sure that the database is reset to the
status it had before the change attempt was made. Y ou can do this by means of a database rollback.
The database rollback undoes any changes made to the current database LUW (see the next unit).

For return codes from DB change statements (Open SQL), the most suitable means of triggering a
database rollback isto send a termination dialog message (A message or X message). Thistriggersa
database rollback and terminates the associated program.

All other message types (E,W, 1) dso involve adialog but do not trigger a database rollback.

Y ou can aso trigger a database rollback using the ABAP statement ROLLBACK WORK (without

terminating the program at the same time). Y ou should not use the ROLLBACK WORK statement
directly, unless you do not want to reset the program context (unlike a termination dialog message)
(see unit Organizing Database Updates).

Unit: Keywordsfor DB Updates
Topic: Single Record Changes

At the conclusion of these exercises, you will be able to:

Insert and modify single records in database tables.

*e e

The programSAPBC414T_CREATE_CUSTOVER_01 enables new
customer data to be entered in screen 100.

/ > / Extend this program to include the database dialog:

After the function code SAVE istriggered (e.g. by clicking the Save
icon), the customer data is to be written to the database table SCUSTOM

i Program: SAPMZ## _CUSTOVERL
||| m || m Il m || Transaction code: Z## CUSTOMVERL
Template: SAPBC414T CREATE_CUSTOVER 01

Model solution: SAPBC414S CREATE _CUSTQOVER 01

1-1 Copy the program template SAPBC414T_CREATE_CUSTOMER_01 with al sub-
objects to SAPMZ## CUSTOVER1 (## is the group number). Assign transaction
code Z##_CUSTOMERL to the program.

1-2 The ABAP statements for the database dialog are encapsulated in the subroutine
SAVE_SCUSTOM The subroutine has already been created (and is empty).

1-2-1 Insert the new customer data record in the database table SCUSTOM. The set
message S015 is to be output if the new data record is inserted successfully.
If the data record was not inserted successfully, the termination message
A048 is to be outpuit.

IR The customer datais stored in the structure SCUSTOM

The message class BC414 is set as an addition for the PROGRAM
statement and therefore is globally valid (throughout the program).

Optional Exercise

Unit: Keywordsfor DB Updates
Topic: Changing Data Sets

. At the conclusion of these exercises, you will be able to:

® Insert and modify data sets in database tables.

&

In the program SAPBC414T_UPDATE_STRAVELAG alist is generated
~ that presents the data of the travel agencies maintained in the

/ >) STRAVELAG table. The user can select the travel agency datathat isto

be changed on the next screen 100 by selecting one or more rows.
Extend the program to include the database dialog:
The changed datais to be saved to the STRAVELAG database table by
clicking the Save icon (function code SAVE) on screen 100.
.. Program: SAPNVZ## UPDATE _STRAVELAG
||| m || m || m || Template: SAPBC414T_UPDATE_STRAVELAG
M odel solution: SAPBC414S UPDATE STRAVELAG

2-1 Copy the program template SAPBC414T _ UPDATE_STRAVELAGwithall sub-
objects to SAPMZ## UPDATE_STRAVELAG (## is the group number). Asthisisa
type 1 program, a transaction code is not required.

2-2 Thedatabase dialog isinitiated by triggering the function code SAVE. Here, the
subroutine SAVE_CHANCES, whichcontains the database dialog, is called up in
the PAl module USER_COMVAND 0100 (screen 100). This subroutine has
already been created (empty).

2-2-1 Savethe changed address data to the database table STRAVELAG. When
doing so, note the performance aspects. If the change is successful, the set
message S030 is to be output. If it is unsuccessful, information message
1048 is to be output.

\ L/

The travel agency datais buffered in the internal tablel TAB_TRAVEL
(work areaWA _TRAVEL) . The rows in the interna table have the same

structure as those in STRAVELAG, with the exception of the additional
fiald MARK CHANICED (1) If the addrece Aata nn the arrean 10N hac

been changed, MARK _CHANGED has the value 'X'. Otherwise it is blank
or 0.

The model solutions provided here repeat the statements of the flow
logic and ABAP program parts that will be required.

The exercises for course BC414 are designed to expand on two
larger programs accompanying the contents of the unit in question.
For the sake of clarity, not all of the model solutions are provided
with complete coding. The following procedure is used instead:

The model solution for the activity in which a program is edited
for the first time is displayed completely.

Any model solutions that expand on this only explain flow logic,
subroutines, and modules, which have changed or appear for the
first time. The statements in the repeated modularization units
that need to be completed in order to solve the activity are
highlighted in bold.

A complete version of both programs is provided in the appendix
in the training folder.

The second activity in the unit on Database Updates With Open
L, which is marked as optional, is an exception to this procedure.
Since the program associated with this activity is not dealt with in
the following units, the model solution for this activity is explained
fully.

Unit: Keywordsfor DB Updates
/ Topic: SingleRecord Changes

Model Solution SAPBC414S CREATE_CUSTOMER_01

M odule Pool
L3
*& Modul pool SAPBC414S CREATE _CUSTOVER 01
L

| NCLUDE BC414S CREATE CUSTOVERTCP,
| NCLUDE BC414S CREATE CUSTOVEROD1.
| NCLUDE BC414S_CREATE_CUSTOVER! O1.
| NCLUDE BC414S_CREATE_CUSTOVER 01FO01.

SCREEN 100

PROCESS BEFORE QUTPUT.
MODULE st at us_0100.

PROCESS AFTER | NPUT.
MODULE exit AT EXI T- COVVAND.
MODULE save ok _code.
FI ELD: scustom nane MODULE mar k_changed ON REQUEST.
MODULE user _conmand_0100.

TOP Include

L <

*& I ncl ude BC414S CREATE_CUSTOVERTOP

L <

PROGRAM sapbc414s_create_custonmer MESSAGE-ID bc414.

DATA: answer, fl ag.

NATA. P I [T T P2 PR D B P o DU [

_______ *

*

_______ *

_______ *

*

_______ *

TABLES: scustom

PBO Modules

<
*& Modul e STATUS_0100 CQUTPUT
<
MODULE STATUS_0100 QUTPUT.

SET PF- STATUS ' DYN_0100'.

SET TI TLEBAR ' DYN_0100' .
ENDMODULE. " STATUS_0100 QUTPUT

PAl Modules

Ea
*& Module EXIT | NPUT
E
MODULE exit | NPUT.
CASE ok_code.
VWHEN ' EXI T .
|F sy-datar IS INTIAL AND flag IS I NI TI AL.
* no changes on screen 100
LEAVE PROGRAM
ELSE.
PERFORM ask _save USI NG answer .
CASE answer .
VWHEN " J'.
ok_code = ' SAVE&EXI T' .
VWHEN ' N .
LEAVE PROGRAM
VWHEN " A" .
CLEAR ok_code.
SET SCREEN 100.

ENDI F.
VWHEN ' CANCEL' .
|F sy-datar IS INTIAL AND flag IS I NI TI AL.
* no changes on screen 100
LEAVE TO SCREEN 0.
ELSE.
PERFORM ask | oss USI NG answer .
CASE answer .
WHEN ' J' .
LEAVE TO SCREEN O.
WHEN ' N .
CLEAR ok_code.
SET SCREEN 100.
ENDCASE.
ENDI F.
ENDCASE.
ENDMODULE. " EXIT | NPUT
B m o o o o o o e e e e e o o e e e e e e e e e e m e e e e e e e e e e mmmemm-o -
*& Modul e SAVE _OK _CODE | NPUT
B m o m s o o e e e e e e e e o emmm -
MODULE save_ok_code | NPUT.
save_ok = ok_code.
CLEAR ok_code.
ENDMODULE. " SAVE_ (K CODE | NPUT

E
*& Modul e USER_COMVAND 0100 | NPUT
E
MODULE user _conmmand _0100 | NPUT.
CASE save ok.
WHEN ' SAVE&EXI T' .
PERFORM save.
LEAVE PROGRAM
VWHEN ' SAVE' .
IF flag IS INITIAL.
SET SCREEN 100.
ELSE.
PERFORM save.
SET SCREEN O.

VWHEN ' BACK' .
IF flag IS I NITIAL.
SET SCREEN O.
ELSE.
PERFORM ask _save USI NG answer .
CASE answer .
VWHEN " J'.
PERFORM save.
SET SCREEN 0.
VWHEN ' N .
SET SCREEN 0.
VWHEN " A" .
SET SCREEN 100.
ENDCASE.
ENDI F.
ENDCASE.
ENDMODULE. " USER_COWNAND 0100 | NPUT

*& ___ *
*& Modul e MARK CHANGED | NPUT
*& ___ *
MODULE mar k_changed | NPUT.
* set flag to mark changes were nmade on screen 100

flag = ' X .
ENDMCDULE. " MARK CHANGED | NPUT

FORM Routines

B m o o o o o o e e e e o o m e e e e e e e e o e e e e e e e e e e e e e mmaa——o- -
*& Form NUVBER GET_NEXT
B m o o oo o o eemmo -
* -->P_ WA SCUSTOM t ext
FORM nunber _get _next USI NG p_scustom LI KE scust om

DATA: return TYPE inri-returncode.
* get next free nunber in the nunber range '01'
* of nunber range object' SBUSPI D

CALL FUNCTI ON ' NUVMBER _GET_NEXT'

EXPORTI NG
nr_range_nr

1 oll
' SBUSPI D

obj ect
| MPORTI NG

nunber p_scustomid

ret urncode return
EXCEPTI ONS
OTHERS
CASE sy-subrec.
VWHEN 0.
CASE return.
VWHEN 1.
* nunber of remaining nunbers critical
MESSAGE s070.
VWHEN 2.
* | ast nunber
MESSAGE s071
VWHEN 3.
* no free nunber left over
MESSAGE a072.
ENDCASE.
VWHEN 1.

* internal error
MFQQAGF aN72 W TH <qv-<ithr e

I
=

ENDCASE.
ENDFCRM " NUMBER_GET_NEXT

-

*& Form ASK SAVE

EaJ </
* -->P_ANSWER t ext

*

FORM ask_save USI NG p_answer.
CALL FUNCTI ON ' POPUP_TO _CONFI RM STEP

EXPORTI NG
textlinel = 'Data has been changed.' (001)
textline2 = 'Save before | eaving transaction?' (002)
titel = 'Create Custoner' (003)
| MPORTI NG
answer = p_answer.
ENDFORM " ASK_SAVE
L
*& Form ASK LCSS
Ea
* -->P_ANSWER t ext
*

FORM ask | oss USI NG p_answer.
CALL FUNCTI ON ' POPUP_TO _CONFI RM LOSS OF DATA

EXPORTI NG
textlinel = 'Continue? (004)
titel = 'Create Custoner' (003)
| MPORTI NG
answer = p_answer.
ENDFCRM " ASK _LGSS
L
*& Form ENQ SCUSTOM
L

FORM enq_scustom
CALL FUNCTI ON ' ENQUEUE_ESCUSTOM

EXPORTI NG

id = scustomid
EXCEPTI ONS

foreign_I| ock =1

systemfailure
OTHERS =3
CASE sy-subrc.
VHEN 0.
VWHEN 1.
MESSACE e060.
VWHEN OTHERS.
MESSACE €063 W TH sy-subrc.
ENDCASE.
ENDFORM " ENQ_SCUSTOM

* & ___ *
*& Form DEQ ALL
* & ___ *
FORM deq_al | .

CALL FUNCTI ON ' DEQUEUE_ALL' .
ENDFORM " DEQ ALL

*& Form SAVE
K e o o e e e e e *
FORM save.
* get SCUSTOM I D from nunber range object SBUSPI D
PERFORM nunber _get _next USI NG scust om
* save new cust oner
PERFORM save_scust om

ENDFORM " SAVE

L2 2 *
*& Form SAVE SCUSTOM

K e o eeeee *

FORM save_scustom
I NSERT | NTO scust om VALUES scust om
| F sy-subrc <> 0.
* insertion of dataset in DBtable not possible
IMESSAGE a048.
ELSE.

* jnsertion successfull

ENDI F.
ENDFCRM " SAVE_SCUSTOM

Solutions

/ Unit: Keywordsfor DB Updates
Topic: Changing Data Sets

Model Solution SAPBC414S UPDATE_STRAVELAG

M odule Pool
* & ___ *
*& Modul pooI SAPBC414S UPDATE STRAVELAG *
* & ___ *

| NCLUDE bc414s_updat e_st ravel agt op.
| NCLUDE bc414s_updat e_stravel agf 01.
| NCLUDE bc414s_updat e_stravel ago01.
| NCLUDE bc414s_updat e_stravel agi 01.
| NCLUDE bc414s_update_stravel ageO1l.

SCREEN 100
PROCESS BEFCRE QUTPUT.
MODULE STATUS_0100.
* fill table control (only agencies, marked on list)
LOOP AT | TAB TRAVEL | NTO WA TRAVEL W TH CONTROL TC_STRAVELAG
MODULE TRANS_TO DYNPRO.
ENDL OCP.

PROCESS AFTER | NPUT.
MODULE EXIT AT EXI T- COMVAND.
LOOP AT | TAB_TRAVEL.
CHAI N.
FI ELD: STRAVELAG STREET, STRAVELAG- POSTBOX, STRAVELAG POSTCODE,
STRAVELAG CI TY, STRAVELAG COUNTRY, STRAVELAG REG ON,

* mark datasets, that were changed in table control (subset of all
* agencies, thet were shown on table control)
MODULE SET_MARKER ON CHAI N- REQUEST.
ENDCHAI N.
ENDL OOP.
MODULE SAVE_OK_CODE.
MODULE USER _COMVAND_0100.

TOP Include

<

*& I ncl ude BC414S_UPDATE_STRAVELAGTCP

L <

PROGRAM sapbc414s _updat e_stravel ag NO STANDARD PAGE HEADI NG
LI NE- SI ZE 120
LI NE- COUNT 10
MESSAGE- | D bc414.

* Line type definition for internal table itab_trave
TYPES: BEG N OF stravel _type.
| NCLUDE STRUCTURE stravel ag.
TYPES: mar k_changed,
END OF stravel _type.

* Standard internal table for travel agency data buffering and
* correspondi ng workar ea
DATA: itab_stravel ag LI KE STANDARD TABLE OF stravel ag

W TH NON- UNI QUE KEY agencynum

wa_stravel ag TYPE stravel ag.

* Workarea for transport of field values fromto screen 100
TABLES: stravel ag.

* Transport function code from screen 100
DATA: ok_code TYPE sy-ucomm save_ok LI KE ok_code.

* Table control structure on screen 100
CONTROLS: tc_stravel ag TYPE TABLEVI EW USI NG SCREEN ' 0100' .

* Internal table to collect marked list entries, correspondi ng
* wor kar ea

DATA: itab_travel TYPE STANDARD TABLE OF stravel _type
W TH NON- UNI QUE KEY agencynum
wa_travel TYPE stravel _type.

* Mark field displayed as checkbox on |i st
DATA: marKk.

__*

*

__%*

* Fl ags:
DATA: fl ag,

"changes performed on table contro

nodi fy |ist.

* Positions of fields on |ist

CONSTANTS: posl
pos?2
pos3
pos4
pos5S
pos6
pos7

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

"modi fication of

3,
14,
40,
71,
82,

VALUE 108.

|ist buffer

i S neccessary

PBO Modules

K o o o o o e - *
* & ___ *
*& Modul e STATUS 0100 QUTPUT

* & ___ *

MODULE st atus_ 0100 QUTPUT.
SET PF- STATUS ' DYNPRO .
SET TI TLEBAR ' DYNPRO .

ENDMODULE. " STATUS_0100 QUTPUT

* & ___ *
*& Modul e TRANS_TO DYNPRO QUTPUT

* & ___ *

MODULE trans_to_dynpro QUTPUT.
* Field transport to screen
MOVE- CORRESPONDI NG wa_t ravel TO stravel ag.
ENDMODULE. " TRANS TO DYNPRO QOUTPUT

PAI Modules

K o e *
*& ___ *
*& Modul e USER_COWWAND 0100 | NPUT

*& ___ *

MODULE user _conmand_0100 | NPUT.
CASE save_ok.
WHEN ' SAVE' .
IF flag IS INITIAL.
* enries on table control not changed.
SET SCREEN 0.

* at least one field on table control changed
PERFORM save_changes.

SET SCREEN 0.
ENDI F.
ENDCASE.
ENDMODULE. " USER_COMMAND 0100 | NPUT
* & ___ *
*& Mbdul e SAVE_OK_CODE | NPUT
* & ___ *

MODULE save_ok_code | NPUT.
save_ok = ok_code.
CLEAR ok_code.

ENDMODULE. " SAVE_OK_CCDE | NPUT

* & ___ *
*& Module EXIT | NPUT

* & ___ *

MODULE exit | NPUT.
CASE ok_code.
VWHEN " CANCEL' .
|F sy-datar ISINTIAL AND flag IS I NI TI AL.
* no changes performed on screen
LEAVE TO SCREEN O.
ELSE.
* at |least one field on table control changed.
PERFORM popup_to_confirm/l oss_of data.

ENDI F.
ENDCASE.
ENDMODULE. " EXIT |INPUT
*& ___ *
*& Modul e SET_MARKER | NPUT
*& ___ *

MODULE set _mar ker | NPUT.
MOVE- CORRESPONDI NG stravel ag TO wa_travel .

* mark datasets in internal table as nodified
MODI FY TABLE itab_travel FROM wa_travel .
* at |l east one dataset is nodified in table control
flag = ' X.
ENDMODULE. " SET_MARKER | NPUT

K o e e o e e e e e e o e *
* I NCLUDE BC4A14S_UPDATE_STRAVELAGEO1 *
K o o o o o e - *
* & ___ *
*& Event START- CF- SELECTI ON

* & ___ *

START- GF- SELECTI ON.

* Read data from STRAVELAG i nto internal table | TAB_STRAVELAG
PERFORM read_data USI NG itab_stravel ag.

* Wite data from| TAB_STRAVELAG on i st
PERFORM wri t e_dat a.

L2 2 *
*& Event TOP- OF-PAGE

L2 2 *
TOP- OF- PAGE.

* Wite page title and page headi ng
PERFORM wri t e _header.

L2 <2 *
*& Event END- OF- SELECTI ON
L2 2 *

END- OF- SELECTI ON.

* Set PF-Status and Title of Iist
SET PF- STATUS ' LI ST'.
SET TI TLEBAR ' LI ST .

< *
*& Event AT USER COMVAND
< *

AT USER- COVIVAND.
CLEAR nodify_list, flag, itab_travel.

* Collect data corresponding to marked lines into internal table
PFRFCRM | non at list IISING itah travel

* Call screen if any line on |list was narked
CHECK NOT itab_travel IS INTIAL.
PERFORM cal | _screen.
* Modify list buffer if database table was nodified -> submt report
CHECK NOT nodify list IS INTIAL.
SUBM T (sy-cprog).

FORM Routines

K o e *
* & ___ *
*& Form READ DATA

* & ___ *
* -->P_| TAB_STRAVELAG t ext

* *

FORM read_data USING p_itab_stravel ag LI KE itab_stravel ag.
SELECT * FROM stravel ag
| NTO CORRESPONDI NG FI ELDS OF TABLE p_itab_stravel ag.

ENDFORM " READ_DATA

L2 2 *
*& Form WR TE_DATA

L2 2 *

FORM write data.
LOOP AT itab_stravel ag | NTO wa_stravel ag.

WRI TE AT: /posl mark AS CHECKBOX,
pos2 wa_stravel ag-agencynum COLOR COL_KEY,
pos3 wa_stravel ag-nane,
pos4 wa_stravel ag-street,
pos5 wa_stravel ag- post code,
pos6 wa_stravel ag-city,
pos7 wa_stravel ag-country.

H DE: wa_stravel ag.

ENDL OCP.
ENDFCRM " VRl TE_DATA
*& ___ *
*& Form WR TE_HEADER
*& ___ *

FORM wri t e_header.
WRITE: / '"Travel agency data' (007), AT sy-linsz sy-pagno.
Lh1NF

FORMAT COLOR COL_HEADI NG

WRI TE AT: /pos2 ' Agency' (001),
pos3 ' Nane' (002),
pos4 ' Street' (003),
pos5 ' Postal Code' (004),
pos6 ' G ty' (005),
pos7 ' Country' (006).

ULI NE.

ENDFCRM " WRI TE_HEADER

*& ___ *

*& Form LOOP_AT LIST

* & ___ *
* -->P_| TAB_AGNECYNUM t ext

* *

FORM | oop_at _list USING p_itab_travel LIKE itab_travel.
DO.
CLEAR narKk.
READ LI NE sy-index FIELD VALUE nar K.
| F sy-subrc <> 0.
EXIT.
ENDI F.
CHECK NOT mark IS I NI TIAL.
APPEND wa_stravelag TO p_itab_travel.

ENDDO.
ENDFORM " LOOP_AT LIST
* & ___ *
*& Form CALL_SCREEN
*& ___ *

FORM cal | _screen.
* Initialize table control on screen
REFRESH CONTROL ' TC_STRAVELAG FROM SCREEN ' 0100' .
* Show screen in nodal dial og box.
CALL SCREEN 100 STARTING AT 5 5
ENDI NG AT 80 15.

ENDFORM " CALL_SCREEN
* & ___ *
*& Form POPUP_TO CONFI RM LOSS OF_DATA
* & ___ *
FORM popup_to_confirm| oss_of data.
DATA answer .
CALL FUNCTI ON ' POPUP_TO_CONFI RM LOSS OF_DATA
EXPORTI NG
textlinel = 'Cancel processing of travel agencies? (008)
titel = ' Cancel processing' (009)

| MPORTI NG
answer = answer.
CASE answer .
WHEN ' J'.
LEAVE TO SCREEN 0.
WHEN ' N .
LEAVE TO SCREEN ' 0100' .
ENDCASE.

ENDFORM
POPUP_TO_CONFI RM LOSS_OF _DATA

K e o il *
*& Form SAVE_CHANGES
e & o e e e e *
FORM save_changes.
* declare internal table and workarea of sane |inetype as DB table
DATA: itab TYPE STANDARD TABLE OF stravel ag,
wa LIKE LINE CF itab.
* search for datasets changed on the screen
LOOP AT itab_travel INTO wa_travel
VWHERE nmark _changed = ' X' .
* fill workarea fitting to DB table
MOVE- CORRESPONDI NG wa_travel TO wa.
* fill corresponding internal table
APPEND wa TO it ab.
ENDL OCP.
* mass update on stravel ag -> best performance
UPDATE stravel ag FROM TABLE it ab.
* check success
| F sy-subrc = 0.
* all datasets are successfully updated
MESSACGE s030.
ELSE.

* at | east one dataset fromthe internal table could not be updated
* on the database table

MESSACE i 048.
ENDI F.
* Flag: List does not show correct data any nore
nmodify list ="'X .
ENDFORM " SAVE_CHANGES

LUWSs and Client/Server Architecture

Contents:
® SAP LUW
® Database LUW

® Consequences of the client/server architecture

8 SAP AG 1999

Course Overview Diagram - LUWSs

Architecture

~
—

=
9
O
©

=

LUWSs and Clienfl
Server Architecture

8 SAP AG 1999

SAP Logical Unit of Work (SAP LUW):

Preliminary Definition

Elementary
business process

\ \

R/3
[

a4 SAPAG 1999

An SAP logical unit of work (LUW) isafunctionally complete set of steps within a business
process in the R/3 System.

The process steps must be logically related.

SAP LUWswork on an al-or-nothing principle: Either al or none of its steps are carried out.

The business process to be mapped must be basic. For example, you would not have asingle SAP
LUW consisting of al of the steps between a customer processing an order and an invoice being
produced. Instead, you would split this up into separate parts, each of which would then be
represented in the R/3 System by its own LUW. What congtitutes an "elementary” process depends
on the overal process and how you have modeled it.

For further information, see the ABAP Editor keyword documentation for the term transaction
pr ng.

Database LUW !’
YA

Database operations Intermediate states
insert, update, delete
Consistent Consistent
status 1 status 2
DB COMMIT
ROLLBACK
possible

a4 SAPAG 1999

m A databaselogical unit of work (LUW) is anon-separable sequence of database operations. At the
beginning and end of the LUW, the database isin a consistent state.

m The database LUW is either fully carried out by the database system, or is not carried out at all.

m A database LUW is opened with every dialog step and by a database commit of the previous DB
LUW.

m The database LUW is closed with a database commit. It is only in the commit that the datais written
to the database (after which it can no longer be reversed). Before the database commit, you can undo
the changes using a database rollback. Here, the database is reset to the status that it had before the
first change was made to the current DB LUW.

m Datathat has been written to the database permanently with a database commit cannot be rolled
back.

m Database LUWSs alow you to encapsulate logicaly related actions from a business process. For
example, when transferring sums of money in financia accounting, you must deduct an amount from
one account and then add it to another account. Before and after the process, the data is consistent,
but in between the two steps, it can be inconsistent.

m For further information, see the ABAP Editor keyword documentation for the term transaction
processing.

R/3 Software View: Client/Server Architecture

N i
— 1
i
SAPGUI SAPGUI SAPGUI SAPGUI :
i

C [[e [
Dispatcher
: } ‘} ‘} :
| i
! Work Work Work i
1 1
i process| |process| [process !
1
1
R [NPT FE [——
: : 0 0 | Database i
1 ! 1 l | work processes |
| | I | | | E

a8 SAP AG 1999

The SAP R/3 System is based on the three-tier architecture of a client/server system. The threetiers
are the database, application, and presentation server layers.

This architecture, along with the distribution of users requests (user digpatching), leadsto a highly-
efficient, cost-effective multi-user system.

The three-tier architecture means that alarge number of users with low-cost desktop computers (with
low performance) can be mapped to a small number of high-performance (and considerably more
expensive) work processes on application servers. Each work process on an application server is
assigned awork process on a high-performance database server.

Didtributing user requests to work processes assigns individual clients at presentation server level to
awork process for a particular period. In turn, the work process uses another work processin the
database. After the work process has processed the user input in a dialog step, the user, along with
the program context, is removed from the work process, which can then be used by another user.

The three-tier architecture is far more scalable than a"fat”" client architecture, in which the
presentation and application levels run on one server. With athree-tier architecture, the number of
database usersis considerably lower than the number of users active in the system. Thishasa
positive effect on the behavior of the database.

System Architecture: Implicit DB Commit

Screen 1 Screen 2

DB COMMIT DB COMMIT DB COMMIT

Screen 3

DB LUW 1 DB LUW 2 DB LUW 3 DBLUW 4 Time

a4 SAPAG 1999

m The three-tier architecture of the R/3 System has certain consequences for process handling. When a
work processis released for use by another user (client), an implicit database commit is triggered for
the database process assigned to it (via a basis program).

m Work processes on the application server and database are released before each user dialog. This
ensures that long user dialogs in which the system is "only displaying a screen” are not included in
database LUWSs. The duration of the user interaction will be longer than the DB LUW duration.
Shorter database LUWSs lead to less load on the database.

m Implicit commits on the database are triggered whenever the work process has to wait. This includes:
- When the system sends a new screen
- When the system sends a dialog message
- When you make a synchronous remote function call (RFC)
- When you usethe CALL TRANSACTI ON <t _code> or SUBM T <pr ogr an statement.

Target: Bundling The DB Changes Of An SAP LUW H’

!_ < SAP LUW >
| User dialogs |
: S_= :
: ABAP i
i program | !

o— 5

a4 SAPAG 1999

m Using an SAP LUW to represent a business process chain usually involves user dialogs as well as the
changes to the database. The aim of an R/3 transaction is to represent the information exchanged in
the SAP LUW as an indivisible unit in the database. This means that an SAP LUW can only use a
single database LUW.

m Since SAP LUWSs usudly involve several database LUWS, you need to bundle the database changes
in asingle database LUW within your transaction.

LUWSs and Client/Server Architecture: Unit !
S NINETRY DA

. You are now able to:

® Explain the meaning of the terms database LUW
and SAP LUW

® Explain why you need to bundle changes to
database tables in the client/server architecture of
the R/3 System

a4 SAPAG 1999

Exercises

X

*ee

).

/

i,

Unit: LUW Concepts

At the conclusion of these exercises, you will be ableto:

Assess function modules and subroutines for LUW processing
suitability.

The program SAPBC414T_BOOKI NGS_01 alows you to cancel

bookings for a flight. For this purpose, bookings can be prepared for
cancellation by selecting the appropriate checkbox on screen 200.

Implement the database dialog:

By clicking the Save icon (function code SAVE) on screen 200, the
bookings selected in the SBOOK table are to be changed. In addition and
within the same database LUW, the flight in question must be modified in
the SFLI GHT table (the total number of bookings and number of
reserved seats will change as a result of the cancellation). The changes
made to the data records of both database tables must be made within one
database LUW. Existing function modules are to be used for this purpose.

Program: SAPMZ## _BOOKI NGS1
Transaction code: Z## BOOKI NGS1
Template: SAPBC414T_BOOKI NGS_01

Model solution: SAPBC414S BOCKI NGS 01

1-1 Copy the program template SAPBC414T_ BOOKI NGS_01 with all sub-objectsto
SAPNZ## BOOKI NGS1 (## isthe group number) and assign transaction code
Z## BOOKI NGS1 to the program. Familiarize yourself with the program
functionality.

1-2 The ABAP statements for the database updates are to be encapsulated in the
subroutine SAVE_MODI FI ED_BOOKI NG, which is called up from the PAI

module USER_COVIMAND 0200 (screen 200).

The database update is to be performed using the available function modules. A
choice of two function modules is available for each table: UPDATE _SBOCK,

I IDNATE CRrYYW A IIDNATE CCI I AT Aand I IDNATE CCI I AT A CallinAnin

\|//

4

\
/1N

the function modules with the right combination and sequence will ensure that the
data remains consistent throughout all of the database tables in the case of an error.

1-2-1

1-2-2

1-2-3

Which function modules must be called up and in what order? For this
purpose, check the source code in the function modules for ABAP
statements, which terminate the database L UW prematurely and can,
therefore, result in inconsistent data being written to the tables permanently.

Call up the function modules in the appropriate order from the subroutine
SAVE_MODI FI ED_BOOKI NG.

Deal with the exceptions of the function modules. Possible user messages:

Flight / bookings updated b Message 034

Error with flight / booking update p Message 044
Updates unsuccessful p Message 048

Flight sold out p Message 045

Flight does not exist p Message 046

The data records to be changed in the database table SBOOK are buffered
intheinternal tablel TAB_SBOOK_MOD FY.

The key fields of the corresponding flight can be captured via the
WA SFLI GHT structure.

For information on the functionality of the template, see the attached
graphic.

/ Unit: LUW Concepts

Model Solution SAPBC414S BOOKINGS 01

M odule Pool
*& ___ *
*& Modul pool SAPBC414S BOOKI NGS 01 *
*& ___ *

| NCLUDE BC414S_BOOKI NGS_01TOP.
| NCLUDE BC414S_BOOKI NGS_01001.
| NCLUDE BC414S_BOOKI NGS_01I 01.
| NCLUDE BC414S_BOOKI NGS_01F01.
| NCLUDE BC414S_BOOKI NGS_01F02.
| NCLUDE BC414S_BOOKI NGS_01F03.
| NCLUDE BC414S_BOOKI NGS_01F04.
| NCLUDE BC414S BOOKI NGS_01F05.
| NCLUDE BC414S_BOOKI NGS_01F06.

SCREEN 100

PROCESS BEFORE QOUTPUT.
MODULE STATUS_0100.

*

PROCESS AFTER | NPUT.

MODULE EXIT AT EXI T- COVIVAND.
MODULE SAVE_OK_CODE.
CHAI N.

* cancel booking: check if flight exists or flight can be created
FIELD: SDYN_CONN- CARRI D, SDYN_CONN CONNI D, SDYN_CONN- FLDATE.
MODULE USER COMVAND 0100.

ENDCHAI N.

SCREEN 200

PROCESS BEFORE OUTPUT.
MODULE STATUS_0200.
MODULE TRANS DETAI LS.
CALL SUBSCREEN SUB1 | NCLUDI NG SY- CPROG ' 0201' .
LOOP AT | TAB_BOCK | NTO WA BOOK W TH CONTROL TC_SBOCK.
MODULE TRANS TO TC.

* allow only nodification of bookings, that are not allready
cancel | ed

MODULE MODI FY_SCREEN.
ENDL OOP
*
PROCESS AFTER | NPUT.
LOOP AT | TAB_BOCK.
* mark changed bookings in internal table itab_book
FI ELD SDYN_BOOK- CANCELLED MODULE MCDI FY_| TAB ON REQUEST.
ENDLOOP
MODULE EXI T AT EXI T- COMVAND.
MODULE SAVE_OK_CODE
MODULE USER_COMVAND_0200.

SCREEN 201

PROCESS BEFORE QUTPUT.
PROCESS AFTER | NPUT.

SCREEN 300

PROCESS BEFORE OUTPUT.
MODULE STATUS_0300.
MODULE TABSTRI P I NI T.
MODULE TRANS DETAI LS.
CALL SUBSCREEN TAB_SUB | NCLUDI NG SY- CPROG SCREEN NO
.
PROCESS AFTER | NPUT.
CALL SUBSCREEN TAB_SUB.
MODULE EXI T AT EXI T- COMVAND.
MODULE SAVE_OK_CCDE.
MODULE TRANS_FROM 0300.

MODULE USER_COMVAND_0300.

SCREEN 301
PROCESS BEFCRE OUTPUT.
* MODULE H DE_BOOKI D.
PROCESS AFTER | NPUT.

SCREEN 302
PROCESS BEFCRE OUTPUT.
PROCESS AFTER | NPUT.

SCREEN 303

PROCESS BEFCRE QUTPUT.
PROCESS AFTER | NPUT.

TOP Include

*& ___ *
*& I ncl ude BC414S_BOCKI NGS_01TORP *
*& ___ *

PROGRAM sapbc414s_booki ngs 01 MESSAGE- I D bc414.

* line type of internal table itab_book, used to display bookings in
* table control
TYPES: BEGA N OF wa_book_type.
I NCLUDE: STRUCTURE sbook.
TYPES: nanme TYPE scust om nane,
mar Kk,
END OF wa_book_type.

* work area and internal table used to display bookings in table
* control

DATA: wa_book TYPE wa_book _type,
itab_book TYPE TABLE OF wa_book_type.

* bookings to be nodified on database table
DATA: itab_sbook_nodify TYPE TABLE OF sbook.

* change docunents: booki ngs before changes are perfornmed
DATA: itab_cd TYPE TABLE OF sbook W TH NON-UNI QUE KEY
carrid connid fldate bookid customd

* work areas for database tables spfli, sflight, sbook.
DATA: wa_sbook TYPE sbook, wa_sflight TYPE sflight, wa_spfli TYPE
spfli.

* conpl ex transactions: nunber of the custonmer created in the called
* transaction
data: scust _id(20).

* transport function codes from screens

DATA: ok_code TYPE sy-ucomm save_ok LI KE ok_code.

* define subscreen screen nunber on tabstrip, screen 300
DATA: screen_no TYPE sy-dynnr.

* used to handl e sy-subrc, which is determined in form

* transporting fields to/from screen

TABLES: sdyn_conn, sdyn_book.

* table control declaration (display bookings),

* tabstrip declaration (create booking)

CONTROLS: tc_sbook TYPE TABLEVI EW USI NG SCREEN ' 0200,
tab TYPE TABSTRI P.

PBO Modules

* & ___ *
*& Modul e STATUS 0100 QUTPUT
* & ___ *

MODULE st atus_ 0100 QUTPUT.
SET PF- STATUS ' DYN_100'.
SET TI TLEBAR ' DYN_100' .

ENDMODULE. " STATUS_0100 QUTPUT

* & ___ *
*& Modul e STATUS_0200 QOUTPUT

* & ___ *

MODULE st at us_0200 QUTPUT.
SET PF- STATUS ' DYN_200' .
SET TI TLEBAR ' DYN_200" W TH sdyn_conn-carrid sdyn_conn-conni d

sdyn_conn-f | dat e.

ENDMODULE. " STATUS_0200 QUTPUT

* & ___ *
*& Modul e STATUS 0300 QUTPUT

* & ___ *

MODULE st at us_0300 QUTPUT.
SET PF- STATUS ' DYN_300' .
SET TI TLEBAR ' DYN 300" W TH sdyn_conn-carrid sdyn_conn-conni d
sdyn_conn-f| dat e.

ENDMODULE. " STATUS_0300 QUTPUT

* & ___ *
*& Modul e TRANS_DETAI LS QOUTPUT

* & ___ *

MODULE trans_detail s OUTPUT.
MW\F- CORRFSPONDI NG wa snfli TO <dvn cnonn

wa_sflight TO sdyn_conn,
wa_sbook TO sdyn_book.

ENDMODULE. " TRANS_DETAI LS OUTPUT
*& ___ *
*& Modul e TRANS TO TC OUTPUT

*& ___ *

MODULE trans_to_tc OUTPUT.
MOVE- CORRESPONDI NG wa_book TO sdyn_book.
ENDMODULE. " TRANS TO TC QUTPUT

B m o o oo o o eemmo -
*& Modul e MODI FY_SCREEN QUTPUT
Ea
MODULE nodi fy_screen OUTPUT.
LOOP AT SCREEN.
CHECK screen-nane = ' SDYN BOCK- CANCELLED
CHECK (NOT sdyn_book-cancelled IS INITIAL) AND
(sdyn_book-mark IS INITIAL).
screen-input = 0.
MODI FY SCREEN
ENDL OOP
ENDMODULE. " MODI FY_SCREEN QUTPUT

Ea /e
*& Modul e TABSTRIP_INIT QUTPUT
-
MODULE tabstrip_init OUTPUT.

CHECK tab-activetab I'S I NI Tl AL.

tab-activetab = ' BOX' .

screen_no = '0301".

ENDMODULE. " TABSTRIP_INIT QUTPUT

<
*& Modul e H DE_BOCOKI D QUTPUT

<

MODULE hi de_booki d OUTPUT.

* hide field displaying custoner nunber when working with nunber
range

* obj ect BS_SCUSTOM
LOOP AT SCREEN
CHECK screen-nanme = ' SDYN _BOOK- BOXKI D .
screen-active = 0.
MODI FY SCREEN.
ENDL OOP
ENDMODULE. " H DE_BOOKI D QUTPUT

PAI Modules

K o eeee s *
*& Module EXIT | NPUT
L2 *

MODULE exit | NPUT.
CASE ok_code.
VWHEN ' CANCEL' .
CASE sy-dynnr.
VHEN ' 0100 .
LEAVE PROGRAM
VHEN ' 0200 .
LEAVE TO SCREEN ' 0100' .
VHEN ' 0300' .
LEAVE TO SCREEN ' 0100'.
VWHEN OTHERS.
ENDCASE.
VWHEN ' EXI T .
LEAVE PROGRAM
VWHEN OTHERS.
ENDCASE.
ENDMODULE. " EXIT | NPUT

* & ___ *
*& Modul e SAVE_OK _CODE | NPUT
*& ___ *
MODULE save ok _code | NPUT.

save_ ok = ok_code.

CLEAR ok _code.

ENDMODULE. " SAVE_OK_CODE | NPUT
* & ___ *
*& Modul e USER_COMVAND_0100 | NPUT

MODULE user _command_0100 | NPUT.

CASE save_ok.
****************************CA'\CEL Bw<|’\Gk*************************
VWHEN ' BOCOKC .
PERFCRM read_sflight USI NG wa_sflight sysubrc.
* process returncode - if flight does not exist: e-nessage

PERFORM pr ocess_sysubr c_bookc.

PERFORM read_spfli USI NG wa_spfli.

PERFORM r ead_sbook USING itab_book itab_cd.
REFRESH CONTRCOL ' TC_SBOOK' FROM SCREEN ' 0200' .

****************************CREATE Bm(l I\G\'*************************

VWHEN ' BOOKN .
PERFCRM read_sflight USING wa_sflight sysubrc.
* process returncode - if flight does not exist: e-nessage

PERFORM pr ocess_sysubr c_bookn.
PERFORM read_spfli USI NG wa_spfli.
PERFORM i ni ti al i ze_sbook USI NG wa_sbook.

WHEN ' BACK' .
SET SCREEN O.

VWHEN OTHERS.
SET SCREEN ' 0100'.

ENDCASE.
ENDMODULE. " USER_COMVAND 0100 I NPUT

e & e . *
*& Modul e USER_COMVWAND 0200 | NPUT
K e o e e e *
MODULE user _conmmand_0200 | NPUT.
CASE save ok.
WHEN ' SAVE' .
* collect marked (changed) data sets in seperate internal table
PERFORM col | ect _nodi fied_data USING itab_sbook _nodify.
* perform dat abase changes
PERFORM save_nodi fi ed_booki ng.
SET SCREEN ' 0100 .
WHEN ' BACK' .
SET SCREEN ' 0100 .
VWHEN OTHERS.

ENDCASE.

ENDMODULE. " USER_COWNVAND 0200 | NPUT

* & ___ *
*& Modul e MODI FY_I TAB | NPUT

* & ___ *

MODULE nodi fy_itab | NPUT.
wa_book- cancel | ed = sdyn_book- cancel | ed.
wa_book-mark = ' X .
MODI FY itab_book FROM wa_book | NDEX tc_sbook-current_Iine.

ENDMODULE. " MODI FY_I TAB | NPUT

* & ___ *
*& Modul e USER_COMVAND 0300 | NPUT

* & ___ *

MODULE user _conmmand 0300 | NPUT.
PERFORM t abstri p_set.
CASE save ok.
VWHEN ' NEW CUSTOM .
PERFORM cr eat e_new_cust oner .
SET SCREEN ' 0300 .
VWHEN ' SAVE' .
PERFORM save_new_booki ng.
SET SCREEN ' 0100 .

WHEN ' BACK' .
SET SCREEN ' 0100' .
WHEN OTHERS.
SET SCREEN ' 0300' .
ENDCASE.
ENDMODULE. " USER_COMMAND 0300 | NPUT
* & ___ *
*& Mbdul e TRANS_FROM 0300 | NPUT
* & ___ *

MODULE trans_from 0300 | NPUT.
MOVE- CORRESPONDI NG sdyn_book TO wa_sbook.

FORM Routines
FO1

K o o o e - *
* & ___ *
*& Form COLLECT_MODI FI ED _DATA

* & ___ *
* -->P_| TAB_SBOOK_MODI FY text

* *

FORM col | ect _nodi fi ed_data USI NG p_itab_sbook _nodi fy
LI KE i tab_sbook_nodi fy.
DATA: wa_book LIKE LINE OF itab_book,
wa_sbook nodify LIKE LINE OF p_itab_sbook nodify.
CLEAR p_itab_sbook nodify.
* Only bookings are collected, that
* 1) have been changed (mark = 'X)
* 2) shall be cancelled (cancelled = "'X)
LOOP AT itab _book | NTO wa_book
VWHERE mark = 'X
AND cancelled = ' X .
MOVE- CORRESPONDI NG wa_book TO wa_sbook_nodi fy.
APPEND wa_sbook_nodi fy TO p_itab_sbook_nodify.

ENDL OOP.
ENDFORM " COLLECT MODI FI ED DATA
* & ___ *
*& Form | N TIALI ZE_SBOOK
* & ___ *
* -->P WA SBOOK text
* *

FORM initialize_sbook USI NG p_wa_sbook TYPE sbook.
CLEAR p_wa_sbook.

ENDFORM " I NI TI ALI ZE_SBOCK

K e o e e *
*& Form PROCESS_SYSUBRC BOCKC
K e e i *
FORM pr ocess_sysubr c_bookc.
CASE sysubrc.
VWHEN O.
SET SCREEN ' 0200' .
VWHEN OTHERS
MESSACE €023 W TH sdyn_conn-carrid sdyn_conn-connid
sdyn_conn-f| dat e.
ENDCASE.
ENDFORM " PROCESS_SYSUBRC _BOCOKC
K e e i *
*& Form PROCESS SYSUBRC BOOKN
K e o il *
FORM pr ocess_sysubrc_bookn.
CASE sysubrc.
VWHEN 0.
SET SCREEN ' 0300' .
WHEN OTHERS
MESSAGE €023 W TH sdyn_conn-carrid sdyn_conn-connid
sdyn_conn-f | dat e.
ENDCASE.
ENDFCORM " PROCESS_SYSUBRC BOOKN
K e e i *
*& Form TABSTRI P_SET
K e o o e e e e *

FORM t abstri p_set.
| F save_ok = 'BOK' OR save ok = 'DETCON OR save_ok = 'DETFLT .
t ab-activetab = save_ok.
ENDI F.
CASE save_ok.

screen_no = '0301'.

VHEN ' DETCON .
screen_no = '0302'.
VWHEN ' DETFLT" .
screen_no = '0303'.
ENDCASE.
ENDFORM " TABSTRI P_SET
* & ___ *
*& Form CREATE_NEW CUSTOVER
* & ___ *

FORM creat e_new_cust oner.
R R b I b R S I I TO BE I I\/PLEIVEI\I‘I’ED LATER EIR IR IR b I S R I S R I b O

ENDFCRM " CREATE_NEW CUSTOMVER

* & ___ *
*& Form NUMBER GET_NEXT

* & ___ *

FORM nunber _get _next USI NG p_wa_sbook LI KE sbook.
kkkkkhkkkhkkkhkkhkikkkhkhkkhkkik*k*%k TO BE INPLE'VENTED LATER khkkhkkkhkhkkkhkkikkhkhkkkikkikkk*k
ENDFORM " NUMBER_GET_NEXT

K o o o o o e - *
K o o o o o o o e a2 *
* FORM ENQ_SFLI GHT

* *

FORM enq_sflight.
kkkkkhkkkkhkhkkhkkhkhkkkhkkhkkk*%x TO BE IIVPLENENTED LATER kkhkkkkhkkkhkhkkkhkkkhkkhkkhkkkhkkkhk*k*k
ENDFCRM "ENQ_SFLI GHT

FORM enq_sbook.
kkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkhkhkhkkk*k TO BE INPLENENTED LATER R R R IR S b b b b b b b b b b S
ENDFORM " ENQ_SBOXX

FORM enq_sfl i ght _sbook.
khkkkkhkkkhkhkhkkhkkkikkhkhkhkkhkkkhk*k TO BE IIVPLENENTED LATER kkhkkkkhkhkkhkkhkkhkhkkhkkkhkkhkkhkkhkhkkhkkkx
ENDFORM "ENQ_SFLI GHT _SBOXK

FORM deq_al I .
kkhkkkhkkkhkkkhkkhkkhkkkkhkkhkkk*k TO BE IIVF)LENEN]’ED LATER kkkkkhkkkhkhkkkhkkkhkkkhkkkhkkikk*k
ENDFORM "DEQ ALL

FO3

* | NCLUDE BC414S_BOOKI NGS_01F03

K o e e e e e e e e e e e e e o e *
* & ___ *
*& Form READ SFLI GHT

* & ___ *
* -->P WA SFLI GHT text

* - ->P_SYSUBRC t ext

* *

FORM read_sflight USING p_wa_sflight TYPE sflight
p_sysubrc LI KE sy-subrc.
SELECT SINGLE * FROM sflight I NTO p_wa_sflight

VWHERE carrid = sdyn_conn-carrid
AND connid = sdyn_conn-connid
AND fldate = sdyn_conn-fl date.
p_sysubrc = sy-subrc.
ENDFORM " READ_SFLI GHT
*& ___ *
*& Form READ SBOXX
*& ___ *
* -->P_| TAB_ BOK text
* -->P | TAB_CD t ext
* *

FORM read_sbook USI NG p_itab_book LIKE itab_book
p_itab_cd LI KE itab_cd.
TYPES. BEA N OF wa_custom type,
id TYPE scustomid,
name TYPE scust om nane,
END OF wa_custom type.
DATA: wa_custom TYPE wa_custom type,
itab_custom TYPE STANDARD TABLE OF wa_custom type
W TH NON- UNI QUE KEY i d,
wa_book LI KE LINE OF p_itab_book,
wa_cd LIKE LINE OF p_itab_cd.
CLEAR p_itab_book, p_itab_cd.
* Sel ect custoner nanmes in buffer table (array fetch)
SELECT id nanme FROM scustom | NTO CORRESPONDI NG FI ELDS
OF TABLE itab_custom
* Sel ect all bookings on selected flight (array fetch)

WHERE carrid
AND connid = sdyn_conn-connid
AND fldate = sdyn_conn-fl date.

* read customer names corresponding to custoner nunber from buffer
* table

LOOP AT p_itab_book I NTO wa_book.
READ TABLE itab_custom | NTO wa_cust om W TH TABLE KEY

id = wa_book- cust om d.

sdyn_conn-carrid

wa_book-nanme = wa_cust om nane.

MODI FY p_itab_book FROM wa_book.
MOVE- CORRESPONDI NG wa_book TO wa_cd.
APPEND wa_cd TO p_itab_cd.

ENDLOOP.

SORT p_itab_book BY bookid custonid.
ENDFORM " READ_SBOXK
e il *
*& Form READ SPFLI
e il *
* -->P_WA_SPFLI text
* *

FORM read_spfli USING p_wa_spfli TYPE spfli.
SELECT SINGLE * FROM spfli I NTO p_wa_spfli
WHERE carrid = sdyn_conn-carrid
AND connid = sdyn_conn-conni d.
| F sy-subrc <> 0.
MESSAGE €022 W TH sdyn_conn-carri d sdyn_conn- conni d.
ENDI F.
ENDFCORM " READ_SPFLI

K o o o o o e - *
* & ___ *
*& Form SAVE _MODI FI ED_BOOKI NG

* & ___ *

FORM save_nodi fi ed_booki ng.
* Modify data on dat abase tabl es sbook and sflight
CALL FUNCTI ON ' UPDATE_SBOXK!

EXPORTI NG
i tab_sbook = itab_sbook_nodify
EXCEPTI ONS
update failure =
OTHERS = 2.
CASE sy- subrc.
VWHEN 0.
PERFORM updat e_sfl i ght.
WHEN OTHERS

MESSACE a044 W TH wa_sflight-carrid wa_sflight-connid
wa_sflight-fldate.

ENDCASE
ENDFCORM " SAVE_MODI FI ED_BOOKI NG
*& ___ *
*& Form UPDATE_SFLI GHT
*& ___ *

FORM updat e_sflight.
CALL FUNCTI ON ' UPDATE_SFLI GHT'

EXPORTI NG
carrier

wa_sflight-carrid
wa_sflight-connid

connection

dat e = wa_sflight-fldate
EXCEPTI ONS

update failure =1

flight _full =2

flight_not _found = 3

OTHERS = 4.

CASE sy-subrc.
VWHEN O.
MESSACGE s034 WTH wa_sflight-carrid wa_sflight-connid
wa_sflight-fldate.
VWHEN 1.
MESSAGE a044 WTH wa_sflight-carrid wa_sflight-connid
wa_sflight-fldate.
VWHEN 2.
MESSAGE a045.
VWHEN 3.
MESSACE a046.
VWHEN OTHERS.
MESSACGE a048.
ENDCASE.
ENDFORM " UPDATE_SFLI GHT

*& ___ *
*& Form SAVE_NEW BOOKI NG

*& ___ *
FORM save_new_booki ng.

khkkkkhkhkkkhkhkkhkkhkhkhkkikkhkkkkhkx TO BE IIVPLENEI\I'I'ED LATER kkhkkhkkhkkkhkhkhkkhkhkkhkkkkhkkhkhkkhkkkkhkkk*k
ENDFORM " SAVE_NEW BOCKI NG

K o o o e o o o o e o o o o o o e a2 *
* & ___ *
*& Form CONVERT_TO LOC_CURRENCY

* & ___ *
* -->P_\WA SBOOK text

* *

FORM convert to | oc_currency USI NG p_wa sbook TYPE sbook.
SELECT SI NGLE currcode FROM scarr | NTO p_wa_sbook- | occur key
WHERE carrid = p_wa_sbook-carrid.
CALL FUNCTI ON ' CONVERT _TO LOCAL_CURRENCY N

EXPORTI NG
client = sy- mandt
dat e = sy-datum

f or ei gn_anount p_wa_sbook- f or curam

foreign_currency p_wa_sbook- f or cur key

| ocal _currency p_wa_sbook- | occur key

| MPORTI NG

| ocal _anount = p_wa_sbook- | occuram
EXCEPTI ONS

no_rate found =1

overfl ow =2

no factors found = 3

no_spread_found = 4

derived 2 times =5

OTHERS = 6.

| F sy-subrc <> 0.
MFSSAGF eNRN W TH <v-<ithre

ENDI F.
ENDFCRM " CONVERT_TO_LOC_CURRENCY

K o o o e o e e . *
L2 2 *
*& Form CREATE_CHANGE_DOCUMENTS

K e o e *

FORM cr eat e_change_docunent s.
kkkkkhkkkkhhkkhkkhkhkkkikkhkkk*%x TO BE IIVPLENENTED LATER kkhkkkkhkkkhkhkkkhkkhkkkhkkkhkkkhkk*k*k
ENDFORM " CREATE_CHANGE_DOCUMENTS

SAP Lock Concept F'
SAP

Contents:

Lock modules
Lock objects

[
®
® Monitoring
)

Using locks

8 SAP AG 1999

Course Overview Diagram - SAP Lock Concept

SAP

SAP Lock
Concept

8 SAP AG 1999

Overview: Overview

a4 SAPAG 1999

Overview
Setting and releasing locks

Lock objects

Using locks: time sequence

z-!‘ zl '-'

To avoid competing
accesses to the same
data

Program A

Program B e Program C

)\ 4
Tab 1 Tab 4
Tab 3
mammny Tab 6

2 Tab 5
-
11

a SAP AG 1999

m |f several users are competing to access the same resource or resources, you need to find away of
synchronizing the access in order to protect the consistency of your data.

m Example: In aflight booking system, you would need to check whether seats were till free before
making areservation. You also need a guarantee that critical data (the number of free seats in this
case) cannot be changed while you are working with the program.

m Locksare away of coordinating competing accesses to aresource. Each user requests a lock before
accessing critical data.

m |t isimportant to release the lock as soon as possible, so as not to hinder other users unnecessarily.

Database Locks Are Not Enough

o y e R N N
| R S R A
[} _I____________ ___________ e e ——— g ————————————— e

CounT

(mplicit) (implicit) (explicit)

| UPDATE| | | NSERT | ﬁ(E;ESLD DELETE
i | Froeis - :
_» 7 i
a SAP AG 1999

m Whenever you make direct changes to data on the database in a transaction, the database system sets
corresponding locks.

m The database management system (DBMS) physically locks the table entries that you want to change
(I NSERT; UPDATE, MODI FY), and those that you read from the database and intend to change
(SELECT SI NGLE <f> FROM <dbt ab> FOR UPDATE). Other users who want to access the
locked record or records must wait until the physical lock has been released. In such a case, the
ABAP program waits until the lock has been released again.

m At the end of the database transaction, the database releases all of the locks that it has set during the
transaction.

m |nthe R/3 System, this means that each database lock is released when a new screen is displayed,
since a change of screen triggers an implicit database commit.

SAP Lock Concept: Logical Locks

I
|
i
i
|
|
|
|
|
|
|
|
=

SAPGUI SAPGUI SAPGUI SAPGUI | | SAPGUI SAPGUI

Diﬁatcher | E

. |[Enqueue
WP

] e
.--_-- ______________ o

DB Management System

—————— r——=-

| + Dispatcher H_°_“ Message_§_°§_|

Server

a4 SAPAG 1999

m To keep alock set through a series of screens (from the dialog program to the update program), the
R/3 System has aglobal lock table at the application server level, which you can use to set logical
locks for table entries.

m One application server contains this lock table and a specia enqueue work process, which
administers al requests for logical locks in the R/3 System. All logical lock requests of the R/3
System run using this work process.

m You canalso uselogical locksto "lock" table entries that do not yet exist on the database (inserting
new lines). Y ou cannot do this with physical database locks.

m For further information, see the ABAP Editor keyword documentation for the term L ocking.

Overview: Setting and Releasing Locks

a4 SAPAG 1999

Overview
Setting and releasing locks
Lock objects

Using locks: time sequence

Setting and Deleting Logical Locks

Order:
Generate lock

[Fockitable

P 00 |— e
foBAr\aPm Lock module
p g 4_— h ------- —
Answer: EXCEPTIONS
Lock set successfully none
No lock set
« Entry already locked FOREIGN_LOCK

e Error in lock administrationSYSTEM_FAILURE

a4 SAPAG 1999

Logical locks are generated when an entry is written in the lock table. Y ou use function modules to
do this.

You can only set alock if the relevant table entry is not already locked.

The SAP transaction receives information on the success of alock request from a return code sent
viathe EXCEPTI ON interface of the function module. In other words, the control is returned to the
program using the function module. The ABAP program does not need to wait.

The SAP transaction can react appropriately by analyzing the return code.

Another user cannot gain access to work with the same table entries that are already |ocked.

Depending on the bundling technique in use for database updates), the program must delete the lock
entries it generated using alock module, or have them deleted indirectly (see unit Organizing
Database Updates).

If the user terminates the program that generated the lock entries (usually a dialog program), the
locks are released automatically (implicitly). You can do this by entering / n in the command field,
or with the statements LEAVE PROGRAM, LEAVE TO TRANSACTI ON,and'A" or' X
messages.

Calling the Lock Modules H’
DA

CALL FUNCTI ON g=No¥=v =g =SiZNNCy IR
EXPORTI NG m |
CARRID = ...
CONNID = ...
FLDATE

EXCEPTI ONS FOREI GN_LOCK 1 Lock table

SYSTEM FAI LURE I
CASE sy- subrc. I G

VHEN 1.
VHEN 2.
ENDCASE.

inon
N

CALL FUNCTI ON@p =0V = =g=Si s NNe IR

EXPORTI NG
CARRID = ... - Delete lock entry

CONNI D
FLDATE

a4 SAPAG 1999

When you cal an ENQUEUE function module, the dialog program tries to generate alock entry.
The export parameters identify the table entry (or entries) that you want to lock.

The program that generates the locks (usualy dialog program) analyzes the return code for lock
requests and reacts accordingly.

If the lock could not be set, you should normally output an error message.

At the end of the dialog program, you can use the corresponding DEQUEUE function module to
delete the entries from the lock table.

DEQUEUE function modules have no exceptions. If you try to release an entry that is not locked, this
has no effect.

If you want to release al of the locks that you have set, at the end of your dialog program, you can
use the function module DEQUEUE_ALL.

m Thelock table contains the lock arguments for each table (for lock arguments, see the following
dide).

m To display the lock table, use transaction SM12.

m Theentriesin the lock table are standard. Locks are always set using the values of the key fieldsin a
table. These form the lock argument.

m You pass the values for the lock argument to the lock modules via their interface (function module
| MPORT parameters).

m |f you fail to set any of these parameters, the system interprets it generically, that is, the lock is set
for al table lines that meet the criteria specified in the other parameters. The client parameter isan
exception to this rule, where the default client SY- MANDT applies.

m Lock entries must be assigned to alock mode.
m There are three different lock modes:

* Mode 'E' for write locks: Thisis set if you want to write data to the database (change, create, or
delete).

Example: You want to book a seat for a flight. Once you have chosen the flight you want to book,
you should ensure that no other customer books the same flight, to prevent the last free seat from
being occupied more than once. (Technically speaking, you must lock the flight in the SFLIGHT

table -> SEATSOCC field = number of occupied seats).

* Mode'S' for read locks: Thisis set if you want to ensure that the data, whichyou are reading from
the database in your program, is not changed by other users while the program is running. Y ou do
not want to change the data itsalf in your program.

Example: You are atravel agent and quote a customer the price for aflight that he or sheis
considering booking. While the customer is considering whether to buy the flight, you want to
ensure that the price is not changed by another employee.

* Mode 'X for write locks: Like mode 'E', mode X' is used for writing data to the database. The

technical difference between mode X' and mode 'E' is that locks of mode X' are not accumul ated
while a program is being executed. (For further details, see the following pages).

m |f someone tries to lock the same data record again with a second program (different user), the
various lock modes take effect as follows:

* Write locks ('E' or "X) mean that any lock attempts from other users are refused, irrespective of the
mode in which the lock is attempted.

* If adatarecordislocked in mode'S' (shared), further locks in mode 'S' may be set by other users.
Lock attempts in other lock modes ('E' or ' X)) are refused.

m If you want to try to lock a data record more than once while a program is running (for example
using a function module that you call up, which sets locks itself), the lock system reactsin the
following way:

Mode 'E' write locks are not refused. Instead, a cumulative counter is incremented. The same
appliesto read locks (mode 'S)).

If adatarecord islocked in mode 'E', alock request generates a second lock, which is marked as a
read lock.

If adatarecord islocked in mode'S' and no further read locks are set by other users, alock
attempt in mode 'E' is possible. This generates a second entry in the lock table (for mode 'E)).

If adatarecord islocked in mode "X, al further lock requests are refused.

m If you want to ensure that you are reading up-to-date data in your program (with the intention of
changing and returning this to the database), you should use the following procedure for lock
requests and database accesses in your program:

* Firgt, lock the data that you want to edit.

* Then read the current data from the database.

* Inthe next step, process (change) the datain your program and write this to the database.
* Inthefina step, release the locks that you set at the beginning.

m This procedure ensures that your changes run fully with lock protection and that you only read data
that has been changed consistently by other programs (provided that these also use the SAP lock
concept and follow the procedure described here).

m Lock modules are created for lock objects and not tables.
m Lock objects are maintained in the dictionary. Customer lock objects must begin with "EY" or "EZ".

m A lock object isalogica object composed of alist of tablesthat are linked by foreign key
relationships. Lock modules are generated for these objects and enable common lock entries to be set
for al tables contained in the lock object. This allows combinations of table entries to be locked.

Example: A lock object that contains the tables SFLIGHT and SBOOK enables a flight with its
bookings to be locked.

m Thelist of tablesfor alock object consists of a primary table. Further table entries are referred to as
secondary tables. Only tables with foreign key relationships to the primary table can be used as
secondary tables.

m With lock objects, you can assign different names for the parameters that describe the fields of the
lock arguments for the lock modules. The names of the table fields (key fields of the tables) are
proposed by the system.

m You can specify the lock mode (awrite lock 'E' or "X or aread lock 'S’) for each table. These
function as default values for the lock modules.

m After you have assigned tables and default lock modes, lock objects must be generated.

m When you activate alock object, the system generates an ENQUEUE and a DEQUEUE function
module.

m These have the names ENQUEUE_<obj ect _name>and DEQUEUE_<obj ect _nane>
respectively.

m If you want to ensure that you are reading current data in your program (with the intention of
changing and returning this to the database), you should use the following procedure in your
program for lock requests and database accesses.

1. Lock the data that you want to edit.

2. Read the current data from the database.

3. Process (change) the data in your program and write this to the database.
4. Release the locks that you set at the beginning.

m This procedure ensures that your changes run fully with lock protection and that you only read data,
which has been changed consistently by other programs (with the restriction that these are also using
the SAP lock concept and following the procedure described).

m |f you change the order of the four stepsto Read -> Lock -> Change -> Unlock, you run the risk that
the data read by your program will not be up to date. Y our program can read data before another
user's program writes changes to the database. This means that a user of your program will make
decisions for entries that are not based on up-to-date data from the database. For this reason, you
should aways follow the recommended procedure.

Requesting alock from a program is a communication step with lock administration. The
communication step requires a certain time interval. If your program sets locks for several objects,
thisinterval occurs more than once.

By using so-cdled loca lock containers, you can reduce these communication intervals with lock
administration. To do so, collect the required lock requests of your program and send them together
to lock administration.

The locks (delayed execution) can be collected when the lock modules are called. For this purpose,

qualify the | MPORT parameter_collect with 'X'. The data transferred via the lock module interface is
then registered in alist (lock container) as alock request that needs to be executed.

The lock container can be terminated using the FLUSH ENQUEUE function module and sent to lock
administration.

When the lock orders of alock container can be executed, the lock container is deleted.

If one of the locks in a container cannot be set, the function module FLUSH ENQUEUE triggers the

exception FORElI GN_LOCK. In this case, none of the registered lock requests is executed. The
registered locks remain in the lock container.

Y ou can delete the contents of an existing lock container with the function module
RESET_ENQUEUE.

The specified function modules have release status internally-released.

*e e

).

i,

Unit: SAP Lock Concept
Using the SAP L ock Concept

At the conclusion of these exercises, you will be able to:
Call and use lock modules.

L ocate the places in programs where locks must be set and released in
order to ensure that the data to be changed is protected adequately
against competing accesses.

The program SAPMZ## BOOKI NGS1 from the previous unit isto be
changed to include locks that will prevent the booking data from being
canceled and the flight data from being changed.

Program: SAPMZA# BOOKI NGS2
Transaction code: Z##_BOOKI NGS2
Template: SAPBCA14T_BOOKI NGS_02

M odel solution: SAPBC414S BOOKI NGS_02

1-1 Copy your solution SAPNVZ## BOOKI NGS1 or the program template
SAPBCA414T_BOCKI NGS_02 with all sub-objectsto SAPMZ##_BOOKI NGS2
(## is your group number). Assign transaction code Z##_BOOKI NGS2 to the
program.

1-2 Call the lock modules ENQUEUE_ESFLI GHT, ENQUEUE ESBOCK,
ENQUEUE_ESFLI GHT_SBOOK and DEQUEUE_ALL in subroutines. The
subroutines in question are already created (blank) and combined in the Include
MZ##_BOOKI NGS2F02. To supply the interface parameters for the lock modules,
use the fields in the structures SDYN_CONN and SDYN_BOCK.

1-3 Provide solutions for the exceptions of the lock modules. Possible user messages:

Data record is aready being edited p Message 060
Processing terminated (booking already locked) b Message 061
Flight and/or bookings are already being edited b Message 062
Lock request not successful p Message 063

1-4

\\I//

\ Y/

/1N

Protect the database changes related to the booking cancellations by calling up the
corresponding lock modules (by calling up the corresponding subroutines). If a user
action calls up screen 100, the locks must be canceled.

OPTIONAL

1-5

The lock module ENQUEUE_ESFLI GHT enables locks to be set for
entries in table SFLI GHT. The lock module ENQUEUE_ ESBOOK
enables locks to be set for entries in table SBOOK. The lock module
ENQUEUE_ESFLI GHT _SBOCK enables locks to be set in both tables at
the same time (SFL1 GHT, SBOOK) (reason: to lock aflight with
booking(s)).

Extend your program for creating a new customer to include the necessary lock
module calls. The calls ENQUEUE ESCUSTOM (lock customer) and
DEQUEUE_ALL (remove al locks) are already coded and encapsulated in the
subroutines ENQ_SCUSTOMand DEQ_ALL (Include
BC414T_CREATE_CUSTOVER 02F01).

1-5-1

1-5-2

Copy your solution SAPMZ## _CUSTOVERL or the program template
SAPBCA414T_ CREATE_CUSTOVER 02 with all sub-objectsto
SAPNZ## CUSTOMERZ2 (##is your group number). Assign transaction
code Z##_CUSTOVERZ to the program.

Insert the call for the subroutines ENQ_SCUSTOMand DEQ SCUSTOMat
the appropriate places in your program. When should the customer data
record be locked? Locate all the places at which the data record lock must
be canceled. Familiarize yourself withthe program flow, using the debugger

if necessary.

Optional Exercise

Unit: SAP Lock Concept
Optional Exercise: Lock Objects

At the conclusion of these exercises, you will be able to:
Search for and find lock objects.

*e P

2-1 Find out which function modules are maintained for logically locking flights,
bookings, and flights with all dependent bookings in the system.

/ Unit: SAP Lock Concept

Model Solution SAPBC414S BOOKINGS 02

PAIl Modules

Ea /e
*& Module EXIT | NPUT
Ea
MODULE exit | NPUT.
CASE ok_code.
WHEN ' CANCEL' .
CASE sy-dynnr.
WHEN ' 0100' .
LEAVE PROGRAM
WHEN ' 0200' .
* renove all database | ocks
PERFORM deq_al | .
LEAVE TO SCREEN ' 0100'.
VWHEN ' 0300' .
LEAVE TO SCREEN ' 0100'.
VWHEN OTHERS.
ENDCASE.
VWHEN ' EXI T' .
LEAVE PROGRAM
WHEN OTHERS.
ENDCASE.
ENDMODUL E. " EXIT | NPUT

*& Modul e USER_COWIVAND 0100 | NPUT
K e o e e *
MODULE user _conmmand _0100 | NPUT.
CASE save_ ok.
Kk ko Kk ok Kk Kok Kk Kok Kk Kk xRk ko x CANCEL BOOK] NGE * % % % % % % % o %k 4 k ok %ok 4 ko %ok 4 k%
VWHEN ' BOOKC .
* set database |ock for selected flight and dependi ng booki ngs
PERFORM enq_sf | i ght _sbook.
PERFORM read_sflight USING wa_sflight sysubrc.
PERFORM pr ocess_sysubr c_bookc.
PERFORM read_spfli USI NG wa_spfli.
PERFORM r ead_sbook USING itab_book itab_cd.
REFRESH CONTROL ' TC_SBOOK' FROM SCREEN ' 0200' .
Kok kK kK Kk kR Kok Kk Kk Kk kR k% k% CREATE BOOKI NGE* %% %% %% %k %k % k% k4 k4 k4 k4 k% k
VWHEN ' BOOKN .
PERFCRM read_sflight USING wa_sflight sysubrc.
PERFORM pr ocess_sysubr c_bookn.
PERFORM read_spfli USING wa_spfli.
PERFORM i nitial i ze_sbook USI NG wa_sbook.
VWHEN ' BACK' .
SET SCREEN O.
VWHEN OTHERS.
SET SCREEN ' 0100' .
ENDCASE.

ENDMODULE. " USER_COWNVAND 0100 | NPUT

K e o o e e *
*& Modul e USER_COMVAND 0200 | NPUT
K e o e e *
MODULE user _command_0200 | NPUT.
CASE save ok.
VWHEN ' SAVE' .
PERFORM col | ect _nodi fied_data USING itab_sbook nodify.
PERFORM save_nodi fi ed_booki ng.
* renove all database | ocks
PERFCORM deq_al | .
SET SCREEN ' 0100 .
VWHEN ' BACK' .

PERFORM deq_al I .

SET SCREEN ' 0100'.

VHEN OTHERS.

SET SCREEN ' 0200' .

ENDCASE.
ENDMODULE.

USER_COMVAND_0200

I NPUT

FORM Routines
FO1

Ea
*& Form PROCESS_SYSUBRC BOCKC
E
FORM pr ocess_sysubrc_bookc.
CASE sysubrec.
VWHEN 0.
SET SCREEN ' 0200 .
VWHEN OTHERS
* renove all database | ocks
PERFCORM deq_al | .
MESSACE €023 W TH sdyn_conn-carrid sdyn_conn-connid
sdyn_conn-f | dat e.
ENDCASE
ENDFORM " PROCESS_SYSUBRC BOCOKC

*

* FORM ENQ_SFLI GHT

*

FORM enqg_sflight.
CALL FUNCTI ON ' ENQUEUE_ESFLI GHT

EXPORTI NG
carrid = sdyn_conn-carrid
connid = sdyn_conn-conni d
fldate = sdyn_conn-fl date
EXCEPTI ONS

1
=

foreign | ock

systemfailure
OTHERS =3
CASE sy-subrc.
VWHEN 0.
VWHEN 1.
MESSACGE e060.
WHEN OTHERS.

MESSAGE e063 W TH sy-subrc.
ENDCASE.

ENDFCORM "ENQ_SFLI GHT

FORM enq_sbook
CALL FUNCTI ON ' ENQUEUE_ESBOOK!

EXPORTI NG
carrid = sdyn_book-carrid
connid = sdyn_book- conni d
fl date = sdyn_book-fl dat e
booki d = sdyn_book- booki d
customd = sdyn_book- custom d
EXCEPTI ONS

foreign_|ock

systemfailure
OTHERS =3
CASE sy-subrec.
VWHEN 0.
VWHEN 1.
MESSACGE e061.
WHEN OTHERS
MESSACE €063 W TH sy-subrc.
ENDCASE
ENDFORM " ENQ_SBOXK

FORM enq_sfl i ght _sbook
CALL FUNCTI ON ' ENQUEUE ESFLI GHT SBOOXK

EXPORTI NG
carrid = sdyn_conn-carrid
connid = sdyn_conn- conni d
fl date = sdyn_conn-fl date
EXCEPTI ONS

foreign_|ock

systemfailure
OTHERS =3
CASE sy- subrc.

VWHEN O.
VWHEN 1.
MESSACGE €062.
WHEN OTHERS.
MESSAGE €063 W TH sy- subrc.
ENDCASE.

ENDFORM " ENQ_SFLI GHT_SBOCK

FORM deq_al I .
CALL FUNCTI ON ' DEQUEUE_ALL' .
ENDFORM "DEQ ALL
FO3

* & ___ *
*& Form READ SPFLI

* & ___ *
* -->P WA SPFLI text

FORM read_spfli USING p_wa_spfli TYPE spfli.
SELECT SINGLE * FROM spfli I NTO p_wa_spfli
VWHERE carrid

AND connid = sdyn_conn-conni d.

sdyn_conn-carrid

| F sy-subrc <> 0.
* renove all database | ocks
PERFORM deq_al | .
MESSAGE €022 W TH sdyn_conn-carri d sdyn_conn- conni d.
ENDI F.
ENDFORM " READ_SPFLI

OPTIONAL:

Model Solution SAPBC414S CREATE_CUSTOMER 02

FORM Routines
FO1

K o e e o e e e e e e o e
Ea </
* & Form SAVE

Ea </
FORM save.

* | ock dataset
PERFORM eng_scust om
PERFORM nunber _get _next USI NG scust om

PERFORM save_scustom
* unl ock dat aset

PERFORM deq_al | .
ENDFORM " SAVE

Organizing Database Updates

Contents:

® Changes from the dialog
m Direct
m Using delayed subroutines
® Update techniques
m Asynchronous, local, and synchronous updates
m V1 and V2 updates
m The concept of the SAP LUW

8 SAP AG 1999

Course Overview Diagram - Database Updates

e Organizing Database Updates

Organizing
Database Updates

8 SAP AG 1999

Overview Organizing Database Updates:

Direct Changes From the Dialog

»

a4 SAPAG 1999

Direct Changes from the Dialog:

Timescale
< SAP Transaction >
! A A A A !

UPDATE t abl.
UPDATE t ab2.
UPDATE t ab3. ..

¥

a4 SAPAG 1999

m |f your transaction executes database updates from the dialog program, you must bundle al of your
database updates into a single didog step (usually the last). Thisis the only way to ensure that your
database changes are processed on the al-or-nothing principle.

< SAP Transaction >

1 Dialog Dialog L
i I_ step 1 step 2
§ [Global Program Data

a4 SAPAG 1999

m With database changes from the dialog program, you must save the data you want to change in the
global program data until the database changes are made. This data is written to the database with the
status it had for the last dialog step.

Direct Changes From the Dialog: Locks

I Lock duration 1

Data
selection

__________ tﬁ--- - o

a4 SAPAG 1999

m With database changes from the didog, your program must set and release SAP locks itsalf.
The following order is recommended:

* Lock data

* Read data

* Update data on the database
* Release locks

m Note that the lock entries must be deleted by a program. To do so, you can either call up the lock
modules of the object for releasing DEQUEUE_<object_name> or the function module
DEQUEUE_ALL. For more detailed information, consult the function module documentation.

Overview of Changes From the Dialog:

Using Delayed Subroutines

»

a4 SAPAG 1999

PERFORM ON COMMIT: Timescale (1) H’

» Time

! < SAP Transaction

SR W I e Y Wy l
_E’—.3 """""") AR B I I R AR i

i System table

i Prog_name Nr Name

i z my_prog 2 vy |

i Pp{z_my prog 1 x :

a4 SAPAG 1999

Database updates from the dialog can be executed in bundled form by using the special subroutine
technique PERFORM <subr outi ne> ON COW T.

The statement PERFORM <subr out i ne> ON COW T registers the subroutine that has been
called up. Thiswill not be executed until the next COVMM T WORK statement is reached.

If the database updates are encapsulated in the subroutines, they can be separated from the program
logic and relocated to the end of the LUW processing.

Each subroutine registered with PERFORM ON COVM T is only executed once per LUW. Calls can
be made more than once (no errors); the subroutine, however, is only executed once.

From release 4.6 onward nested PERFORM ON COW T cdlslead to aruntime error.

PERFORM ON COMMIT: Timescale (2) r.!"
>

» Time
SAP Transaction >

System table
Prog_name Nr Name

z_my_prog 2 y
z_my_prog 1 X

UPDATE

8 SAP AG 1999

m TheCOW T WORK statement carries out all subroutines registered to be executed and triggers a
database commit (ends the DB LUW).

m Unlike normal subroutines, those that you call using the ON COVM T addition do not have an
interface. They work instead with global data, thet is, the values of the data objects at the point
wher e the subroutineis actually run. This can aso include Imports from memory.

m The PERFORM ... ON COW T technique can aso be used in the update. Thiswill be discussed
later.

m For further information, see the ABAP Editor keyword documentation for the term PERFORM

m Update techniques allow you to separate user dialogs from the database changes. Both are executed
by different programs, which generally run in different work processes.

m You work with a program that manages the user diaogs. It is referred to as a dialog program.

m You use a so-cdled update program that updates the data received by the dialog program on the
database. No diaogs run in the update programs.

m Step 1. The dialog program receives the data changed by the user and writes it to a specia log table.
The entries in this table function as requests. The data contained in the log table will be written to the
database |later by the update program.

m A diadog program can write several entries to the log table.

m Theentriesin the log table represent an LUW, in other words they will either be executed on the
database together or not at all (al-or-nothing principle).

m Step 2: The dialog program completes the logical data packet that was written to the log table. The
SAP LUW finishesin the didog part and informs the Basis system that a packet needs to be updated.

m Step 3: A basis program reads the data associated with the LUW from the log table and suppliesit to
the update program.

m Step 4. The update program accepts the data transferred to it and updates the database entries.

m Step 5: If the update program runs successfully, a Basis program deletes all entries for the LUW
from the log table.

m |n the event of an error, the entries remain in the log table and are flagged as errored.

m The option of informing users by mail that an update action has failed can be set using the profile
parametersr di sp/ vb_mai | _user _|i st andrdi sp/ vbnail.

* The parameter r di sp/ vbrmai | canbesetto'0" (no malil is sent in the event of an error) or '1' (a
mail is sent in the event of an error).

* Therdi sp/vb_mai | _user _|i st parameter setting specifies who will be informed in the

event of an error (r di sp/ vbmai | = 1) (JACTUSER informs the user who generated the data
record to be updated).

m The monitor transaction for update ordersis SM13.

m Thedialog program and the update program can be linked in various ways:
* Asynchronousy

* Synchronously
* Viaaloca update

Technical implementation of the update concept requires a so-called update program as well as the
program that manages the user dialog. The update program tasks are carried out by specia function
modules called update modules.

Create an update function module by choosing the processing radiobutton property ‘'updat e
nodul e'.

Update modules, like other function modules, have an interface for transferring data. The interface
for update function modules only includes | MPORTI NGand TABLES parameters. These must be
typed using reference fields or structures.

Export parameters and exceptions are ignored in update modules.
The function module contains the actual database update statements.

m Theentriesin thelog file are generated from the dialog program. They are generated by calling up
the associated update function module. The function module must be called using the addition | N
UPDATE TASK. This ensures that the module is not executed immediately. Instead, the current data
from the function module interface is written to the log table.

m Forevery CALL FUNCTION ... | N UPDATE TASK statement in the dialog program, the

system generates an entry in the log table containing the name of the update function module and the
associated parameters.

m All of the update requestsin an SAP LUW are stored under the same update key (VB key). The
update key is a unique key.

m When the system reaches the next COMM T WORK statement, alog header is generated for the
corresponding log entries, concluding the set of update entries for that SAP LUW. The log header
contains information on the dialog program that wrote the log entries, as well as information on the
update modules to be executed.

m Aswadll asthe header entry, the ABAP command COMM T WORK ensures that the dispatcher
process is informed about the availability of afurther update packet.

In adialog consigting of several steps, you can store multiple entries in the update log table that are
then processed following the ABAPCOWM T WORK command.

However, you may also need to delete the update requests of the current SAP LUW using a
ROLLBACK WORK statement.

In a ROLLBACK WORK statement, the system:
- Deletesall form routines registered usng PERFORM <subr outi ne> ON COWM T
- Deéletes all database update requests from the log
- Triggersarollback on the database, followed by a database commit
- Statsanew SAP LUW

With relation to database changes already completed in the dialog, the ROLLBACK WORK statement
means that all changes in the current database LUW are undone.

The ROLLBACK WORK statement deletes all lock entries generated up to now from the dialog
program.

m The ROLLBACK WORK statement does not affect the program context, in other words all data
objects (program-specific objects and objects from function groups that may be used) remain
unchanged, they are NOT reset.

m You can generaly only reset the data objects of your program by ending the dialog program.
Therefore, you should not use the ROLLBACK WORK statement directly. Instead, trigger an implicit

rollback by sending a termination message (type A). This ensuresthat al of the data from the
program is also reset when the program terminates.

The task of an update module isto pass the requests for database updates to the database and to
evaluate their return codes.

If the database cannot successfully complete an update, the update function module must be able to
react.

If you want to trigger a database rollback in the update task, you can use a termination message. This
triggers an implicit database rollback.

The rdlback ends the update task. The log entry belonging to the SAP LUW isflagged as containing
an eror. The termination message is aso entered in the log.

The system sends an express mail to the relevant user, telling him or her that the update was
unsuccessful. You can examine the log entry by using Transaction SM13.

You may not use the explicit ABAP statements COMM T WORK or ROLLBACK WORK inan update
module.

If your program isto run using locks, you must record the locks in the lock table. These are inherited
by the update modules with the ABAP command COMM T WORK and can then no longer be
accessed by the dialog program.

To ensure that the update modules run with the protection of locks, the lock entries must not be
released beforethe COM T WORK.

Y ou do not need to release the locks explicitly in the update modules, since they are automatically
released at the end of the update process by a basis program.

The locks are also released if one of the update modules triggers a database rollback by sending a
termination message.

If the update modules allow failed update requests to be reprocessed (see V1 update), you should
note that the data in the database tables at the point of reprocessing may be different from that at the
point of the failed update attempt. Reprocessing failed update requestsis only useful if the datato be
updated is not dependent on the database status (e.g. writing of a document failed because of a
tablespace overflow).

Faled update requests are reprocessed without locks.

m |n asynchronous update, the dialog program and update program run separetely.
- The diaog program writes the update requests into the log table VBLOG in the database.

- You conclude the dialog part of the SAP LUW withthe COMM T WORK statement. A new SAP
LUW immediately starts in the dialog program, which can carry on processing user dialogs
without interruption. The diadlog program does not wait for the update program to finish.

- The update program is run on a specia update work process. This need not be on the same
server as the corresponding dialog work process.

- The SAP LUW that began in the didog program is continued and then closed by the update
program.

m Thelog table VBLOG can be implement as a cluster file in your system, or be replaced with the
transparent tables VBHDR, VBMOD, VBDATA, and VBERROR.

m Asynchronous updates are useful in transactions where the database updates take along time and the
"perceived performance” by the shorter user dialog response time is important.

m Asynchronous update is the standard technique for dialog processing.
m The entries that have aHEADER can be andyzed in SM13.

In local update, the update functions are run on the same dialog process used by the dialog program
containing the COVM T WORK statement.

To do this, you must include the SET UPDATE TASK LOCAL statement in the dialog program.
The effect of thisisthat update requests are kept in main memory rather than being written into table
VBLOG in the database.

When the system reaches the COVMM T WORK statement, the corresponding update modules are
processed in the dialog work process currently being used by the dialog program. If all of the update
modules run successfully, a database commit is triggered. If not, a database rollback occurs.

Once the update function modules have been processed, the dialog program resumes with a new SAP
LUW.

The SET UPDATE TASK LQOCAL flag can only be set if no other update requests were generated
for the same LUW before the program was called up.

The SET UPDATE TASK LCOCAL flag is effective until the next COMM T WORK or ROLLBACK
WORK command.

m With synchronous updates, the dialog program waits for the end of the update modules. The dialog
program does not begin to process the new SAP LUW until the update modules have terminated.

m To switch from asynchronous to synchronous update, use the AND WAI T addition in the COMM T
WORK statement.

m The entriesthat have aHEADER can be analyzed in SM13.

m Asynchronous update is useful in transactions where subsequent user dialogs do not depend on the
database updates being made immediately. Once the update task has been called, control returns
directly to the user.

m Loca updateis particularly useful for processing dialog transactions in the background. Thereis no
contact with the database table VBLOG, and if the program is running alone on the server, loca
update is faster than either synchronous or asynchronous update. If, asis the usual case, several users
are using the server, the speed of the program depends on the total server load.

m Synchronous update is useful in transactions where you want to use the advantages of update
techniques (logging, opportunity to reprocess failed update requests), but where subsequent user
dialogs nevertheless do depend on the results of the update. One particular application for this
technique isin "transactions within transactions' - where one transaction uses other transactions as
modularization units (CALL TRANSACTION <t_code>). When you use this method, you can
determine in the call the update technique that you want the transaction to use. For further
information, see the keyword documentation in the ABAP Editor for theterm CALL
TRANSACTION.

Update function modules can be separated into two groups. The group determines when the function
module is processed: Function modules that are classified as V1 can be further divided into two
subclasses: Sart immediately or Sart immediately, no restart. V2 function modules are processed
asynchronoudly after all V1 update modules have finished running.

If you have used the Sart immediately (V1) option, you can update any records that contained errors
manually, using Transaction SM13. If you use the Start immediately, no restart (V1) option, thisis
not possible. V2 update function modules (Start delayed) can aways be manually updated.

V1 update function modules do not normaly run using the SAP lock concept. In other words, the V1
update program is executed with the protection of the locks from the dialog program.

Any lock entries are released at the end of the V1 update. V2 update function modules aways run
without logical locks.

Y ou can aso classify an update module using attribute 'Coll. run' (collective run). This option is used
SAP internal only (specia form of V2 update, asynchronoudly, start via program RSML3005).

m Theflow diagrams discussed up to now all deal with V1 updates.
m Update requests for V2 update modules are a so generated by the dialog program.

m V1 update modules generate update requests in table VBLOG in synchronous and asynchronous
update, and in main memory in local update.

m V2 update modules generate entries in VBLOG and aways run asynchronously.

m V1 update modules are handled by the system with priority and are executed before the V2 update
requests.

m V1 updates can be performed synchronoudly, asynchronoudy, or locally.

V2 update function modules are not processed until all V1 update function modules have been
successfully processed.

The V2 update function modules run in a separate DB LUW. They are executed in a V2 update work
process. If there are no V2 update work processes set up in your system, the V2 update function
modules run in a V1 update work process.

Once all of the V2 update function modules have been executed successfully, the V2 update requests
are deleted from VBLOG.

If an error occurs in a V2 update function module to which the function module reacts with a
termination error message, the system triggers a database rollback. All of the V2 changes in the SAP
LUW are undone and an error flag is set in table VBLOG for all of the V2 update requests.

V2 update function modules run without SAP locks.

The division between V1 and V2 update function modules allows you to set 'high priority' and ‘low
priority' updates.

V2 update function modules are used for low-priority tasks, such aswriting statistics to the database.

m The locks generated in the dialog program are usually inherited by the V1 update modules when the
update takes place. Thisis controlled by the SCOPE interface parameter of the lock modules. When
SCOPE = 2, the V1 update programs inherit the locks that are set in the dialog program.

m 2 isthe default setting for SCOPE when you call alock module.

m You do not need to release the locks explicitly in your program, since they are automatically rel eased
at the end of the V1 update process.

m Thelocks are also released if one of the V1 update modules triggers a database rollback by sending a
termination message.

m An SAP LUW maps updates, which are logicaly related and usually involve severa didog steps, to
adatabase LUW. The database updates are encapsulated via update modules.

m SAP LUWSs are supported specificaly by R/3:
* Locks (Scope=2)
* The CALL FUNCTION IN UPDATE TASK call mechanism
* The command COMMIT WORK

* Type'A' or "X diadog messages.

An SAP LUW can be divided into three phases (three-phase modd!).

Dialogs, user entries, and their input checks take place in phase 1. Cals of update modules are not
alowed here, since they might be registered more than once during an error dialog (E message).
Phase 1 ends when the first update module is called. The data to be updated must be held in global
program data during phase 1.

Preparations for database updates take place in phase 2. Phase 2 begins when the first update module
is called and ends with the COVMM T WORK statement. The system must now respond to any errors
with atype 'A' or 'X' dialog message. The COMM T WORK that concludes phase 2 should only be set
at the top level if call hierarchies are used, since the lower-level modularization unitsin the hierarchy
are not aware of the status of the program context.

The database updates are performed in phase 3. The system must aways respond to any errorsin

phase 3 with atype'A' or 'X' dialog message. This leadsto aROLLBACK of the complete database
LUW aswell as atermination of the update.

Local update processing isactivated using the ABAP command SET UPDATE TASK LOCAL. The
update type can only be changed if it is processed before the first update module is called.

With local updates, the update modules are executed in the dialog work process that is currently
performing the SAP LUW.

Asisthe case with synchronous updates, the user must wait while the update modules are being
executed.

Loca updates should be used for:

- Transactions that are carried out in the background (batch) (CALL TRANSACTI ON USI NG)
Exception: If unbuffered number assignments and higher parallel processing is requested at the
same time.

- Dialog transactions with very few database changes (3 - 5 statements) for which the dialog
behavior is not critical.

Note that the fewer the number of users making changes simultaneously, the better the response time
of the database.

m Synchronous updates are triggered by the ABAP statement COMMIT WORK AND WAIT. Witha
synchronous update, the update modules are executed in an update work process.

m Unlike asynchronous updates, the dialog part of the transaction is stopped while the update modules
are being executed.

m The success or failure of the update is displayed in system field sy- subr ¢ once the update has
been completed.

m For every action on the database that prompits table updates, the record to be changed is locked
physically by the database. The same appliesif you are reading with SELECT ... FOR UPDATE

m Other users cannot change the same data for the duration of the lock.

m To reduce the lock duration on the database, you should use the following rule to program the
database updates carried out by the update modules:

* First, new table entries should be created. These present the smallest ‘problem’ for the other users.

* You should then perform table updates that are not critical to performance. As arule, these are the
tables that are accessed 'smultaneoudly’ by as few users as possible.

» Tablesthat are central resources in the system (which many users access at once) should always be
changed as late as possible.

m To lock the centrd tables (performance critica) for as short atime as possible, you can use
PERFCRM uprog ON COW T in the update.

m For this purpose, encapsulate the changes to the central tablesin FORMroutines and call these upin
the update using PERFORM ON COWM T. The FORMroutines are then not executed until the last
update module has been processed.

m After the last update module has been processed, a program executes the ABAP command COWM T
WORK, which then performs the FORM routines registered in the update.

Unit: Organizing Database Updates

*e e

At the conclusion of these exercises, you will be able to:

Perform database updates using the asynchronous update technique

The program SAPMZ##_BOOKI NGS2 from the previous unit isto be
changed or enhanced so that database updates can be performed using the

} > / asynchronous update technique.

Canceling bookings:
To implement the asynchronous update technique, the existing source
code needs to be adjusted here.

Creating a new booking:

The database dialog part is to be implemented here. The data for a new
booking is entered on screen 300. Clicking the Save icon (function code
SAVE) on screen 300 is to insert the new bookings in the SBOOK table
and modify the flight in question in the SFLIGHT table. The updates are
to be performed within a DB LUW and using the asynchronous update

technique.
. Program: SAPNMZ## BOOKI NGS3
||| m || m Il m || Transaction code: Z## BOOKI NGS3
Template: SAPBC414T_BOOKI NGS_03

Model solution: SAPBC414S BOCKI NGS 03

Copy your solution SAPMZ##_BOOKI NGS2 or the program template
SAPBC414T_BOOKI NGS_03 with all sub-objects to SAPMZ##_BOOKI NGS3
(## is your group number). Assign transaction code Z##_BOOKI NGS3 to the
program.

Canceling existing bookings:

1-2-1 Function modules UPDATE_SFLI GHT and UPDATE_SBOOK are used to
update the table entries in the DB tables SLFIGHT and SBOOK. Can these
function modules aso be used to perform the updates using the update
technique?

1-2-2 Modify your program so that the updates to the DB tables SFLI GHT and
SBOCK are performed using the update technique:

Call up the corresponding function modules capable of performing updates in the
SAVE_MODI FI ED_BOOKI NGsubroutine

Insert the statement COVMM T WORK in the PAI module USER _ COMVAND 0200

Note that the locks (SCOPE = 2) areinherited by the update program and, therefore, are
not released explicitly in the dialog program.

1-3 Generating a new booking:
To generate a new entry in the DB table SBOOK, use the function module
I NSERT_SBQOCK, which is capable of performing updates. This function module is
to be called up in the subroutine SAVE_NEW BOOKI NG. The subroutine is called
up from the PAI module USER_COVMAND 0300 (screen 300) and is aready
created (blank).

1-3-1 Cal up the function modules | NSERT _SBOCOK and UPDATE_SFLI GHT,
which are capable of performing updates, to update the DB tables SBOOK
and SFLI GHT using the update technique.

1-3-2 Insert the statement COMM T WORK in the PAI module
USER _COMIVAND 0200.

1-3-3 Lock the flight and the booking by calling up the corresponding lock
modules. Call up subroutine ENQ_SFLI GHT and ENQ_SBOOK inthe

appropriate places. If auser action calls up screen 100, rel ease the locks.

RS The booking dataiis held in structure WA SBOOK.

/ Unit: Organizing Database Updates

Mode Solution SAPBCA414S BOOKINGS 03

PAl Modules

o
Eu /e
*& Module EXIT | NPUT
Ea
MODULE exit | NPUT.
CASE ok_code.
VWHEN ' CANCEL' .
CASE sy-dynnr.
WHEN ' 0100' .
LEAVE PROGRAM
WHEN ' 0200' .

PERFORM deq_al | .
LEAVE TO SCREEN ' 0100'.
VWHEN ' 0300' .
* renove all database | ocks
PERFORM deq_al | .
LEAVE TO SCREEN ' 0100' .
WHEN OTHERS.
ENDCASE.
VWHEN ' EXI T .
LEAVE PROGRAM
VWHEN OTHERS.
ENDCASE.
ENDMODULE. " EXIT | NPUT

e il *
*& Mbdul e USER_COMVAND 0100 | NPUT
e o il *
MODULE user _conmand_0100 | NPUT.
CASE save_ok.
Kok ko ko Rk Kk kK Rk Kk Kk ok ko k% CANCEL BOOKI NGE* * % % % % % % % %k ok ok k4 ok ok k% k4
VWHEN ' BOCKC .
PERFORM enq_sfl i ght _sbook.
PERFCRM read_sflight USING wa_sflight sysubrc.
PERFORM pr ocess_sysubrc_bookc.
PERFORM read_spfli USI NG wa_spfli.
PERFORM r ead_sbook USI NG itab_book itab cd.
REFRESH CONTROL ' TC_SBOOKX' FROM SCREEN ' 0200' .
Kok ok ko ko ko ko Kk ko ko Kk Kk ok k¥ OREATE BODK] NG * % % % % % % % o ok ok ok ok ko ko &k k
VWHEN ' BOOKN .

* lock flight in Table SFLIGHT, which will be nodified when new
* booking is saved

PERFORM eng_sf I i ght.
PERFCRM read_sflight USING wa_sflight sysubrc.
PERFORM pr ocess_sysubr c_bookn.
PERFORM read_spfli USING wa_spfli.
PERFORM i niti al i ze_sbook USI NG wa_sbook.

VWHEN ' BACK' .
SET SCREEN 0.

VWHEN OTHERS.
SET SCREEN ' 0100'.

ENDCASE.
ENDMODULE. " USER_COVMAND 0100 | NPUT

e o il *
*& Modul e USER_COMVAND 0200 | NPUT
e o il *
MODULE user _conmand_0200 | NPUT.
CASE save_ok.
WHEN ' SAVE' .

PERFORM col | ect _nodi fied data USING itab _sbook nodify.

PERFORM save_nodi f i ed_booki ng.
* start asynchronous update and new SAP- LUW

AAAA T A/

* dat abase | ocks are renoved by update program
SET SCREEN ' 0100' .
VWHEN ' BACK' .
PERFORM deq_al | .
SET SCREEN ' 0100' .
WHEN OTHERS.
SET SCREEN ' 0200' .
ENDCASE.
ENDMODULE. " USER_COMVAND 0200 | NPUT

K e o il *
*& Modul e USER_COWVIVAND 0300 | NPUT
e & o e e e e *
MODULE user _conmand_0300 | NPUT.
PERFCORM t abstri p_set.
CASE save_ok.
VWHEN ' NEW CUSTOM .
PERFCORM cr eat e_new _cust oner.
SET SCREEN ' 0300 .
VWHEN ' SAVE' .
PERFORM save new booki ng.
* start asynchronous update and new SAP- LUW
QOW T WORK.
* dat abase | ocks are renoved by update program
SET SCREEN ' 0100' .
VWHEN ' BACK' .
* renove all database | ocks
PERFORM deq_al I .
SET SCREEN ' 0100' .

VWHEN OTHERS.
SET SCREEN ' 0300'.
ENDCASE.
ENDMODULE. " USER_COVMAND 0300 | NPUT
FORM Routines
FO1
* *

* & ___ *
*& Form PROCESS_SYSUBRC BOCKN
* & ___ *

FORM pr ocess_sysubrc_bookn.
CASE sysubrc.

SET SCREEN ' 0300' .
WHEN OTHERS.
* renove all database | ocks
PERFORM deq_al | .
MESSACE €023 W TH sdyn_conn-carrid sdyn_conn-connid
sdyn_conn-f | dat e.
ENDCASE.
ENDFORM " PROCESS_SYSUBRC BOCKN

K o o o o o e - *
* & ___ *
*& Form SAVE _MODI FI ED_BOOKI NG

* & ___ *

FORM save_nodi fi ed_booki ng.
CALL FUNCTI ON ' UPDATE_SBOOK' | N UPDATE TASK
EXPORTI NG
itab_sbook = itab_sbook_nodify.
* no exception handling when using asynchronous update techni que
PERFORM updat e_sfl i ght.

ENDFORM " SAVE_MODI FI ED_BOOKI NG

* & ___ *
*& Form UPDATE_SFLI GHT

* & ___ *

FORM updat e_sflight.
CALL FUNCTI ON ' UPDATE_SFLI GHT' | N UPDATE TASK

EXPORTI NG
carrier = wa_sflight-carrid

connection = wa_sflight-connid

date wa_sflight-fldate.

* no exception handling when using asynchronous update techni que

ENDFORM " UPDATE_SFLI GAT

* & ___ *
*& Form SAVE_NEW BOOKI NG

* & ___ *

FORM save_new_booki ng.
PERFORM convert _to_l oc_currency USI NG wa_sbook.
* | ock booking on DB table sbook to be created
PERFORM enq_sbook.
CALL FUNCTI ON ' I NSERT_SBOOK' | N UPDATE TASK
EXPORTI NG

wa_shbook = wa_sbook.
* no exception handling when using asynchronous update techni que
PERFORM updat e_sfl i ght.
ENDFORM " SAVE_NEW BOOKI NG

Complex LUW Processing H'
A

Contents:

Call techniques for programs
The logical memory level model
Data transfer between programs
Complex LUWSs

Lock behavior for complex LUWSs

8 SAP AG 1999

Course Overview Diagram - Complex LUW

Processing

Complex LUW Processing

- - Complex_
LUW Processing
il

8 SAP AG 1999

Overview Complex LUW Processing:

Call Techniques for Programs

, Call techniques for programs
The logical memory level model
Data transfer between programs

LUW processing for program calls

Locks for program calls

a4 SAPAG 1999

Synchronous Calls

Time . Main | . Main |
. memory ! ; memory
A A |
New program Insert program
| B | i i
= s B |
; Program 1 | End insertion |
4 Program 2 A i
New program Insert program
* SUBMIT <program>. * SUBMIT <program> AND RETURN.
* LEAVETO CALL TRANSACTION <t_code>.
TRANSACTION * CALL FUNCTION <function>...
<t _code>.

a4 SAPAG 1999

m |nan ABAP program, there are two ways of executing another program synchronously:

- Terminate the current program and start the other program (SUBM T <pr ogr ane, LEAVE
TO TRANSACTI ON <t _code>)

- Cadll the other program without terminating the other program. The calling program is
interrupted, and the system returns to it when the program that it has called is finished (CALL
TRANSACTI ON, SUBM T <pr ogr an> AND RETURN, CALL FUNCTI ON).

m Youcanonly useSUBM T <prograneand SUBM T <progran> AND RETURNto start
executable programs (program type 'Executable program', formerly program type '1).

m Youuse LEAVE TO TRANSACTI ON <t _code>and CALL TRANSACTI ON <t _code>to
start programs that have a transaction code.

m Youuse CALL FUNCTI ON <f unct i on> to execute afunction module.

m The executed commands differ with regard to the visibility of program data in the calling program
and the called program, and in their behavior with regard to LUW processing.

Calling an Executable Program H’
DA

Program 1 Program 2: Report SAPBC400...
. SAPBC400... _
SUBM T sapbc400... P [PROGRAM ... || BLAEL
| &F3
SUBM T sapbc400. .. SAPBCA00... Liis
AND RETURN. — PROGRAM ...
N]
©F3
.. Selection screen
VI A SELECTI ON- SCREEN
AND RETURN. 5 PROGRAM ...

g

l&r3

a4 SAPAG 1999

With the SUBM T statement, you start programs that are directly executable programs.
The addition VI A SELECTI ON- SCREEN is used to send the selection screen of the program (if the

program has a standard selection screen).

To return to the calling program after the program has finished, use the addition AND RETURN.

Calling an executable program alows you to use alogica database to read data.

For further information, see the keyword documentation in the ABAP Editor for SUBM T.

Calling a Transaction

Program 1 Program 2: Transaction [m[eel
MODULE ... | NPUT.

CALL TRANSACTI ON ' TCGB' . (E o B M WRSTO {CTeTy
S OAND SKI P ERSE SCREEN., L | SAPMTCGB

ENDMODULE. \ MODULE ... INPUT.

LEAVE PROGRAM |
A IS ENDMODUL

a4 SAPAG 1999

Y ou can execute ABAP programs with atransaction code <t _code> using the statement CALL
TRANSACTI ON <t _code>. When the program that you called has terminated, the system
continues processing the caling program.

If the transaction that you call inthe CALL TRANSACTI ON <t _code> statement uses update
techniques, you can determine which technique it should use (synchronous or asynchronous) using
the FUNCTI ON parameter in the call.

To exit an ABAP program, use the LEAVE PROGRAM statement. If you use this statement in a
program that you have called usng CALL TRANSACTI ON <t _code> or SUBM T <pr ogr an®
AND RETURN, the system returns to the calling program. Otherwise, the system returns to the
application menu from which you started the program.

To initiate a transaction with the transaction code <t _code>, usethe LEAVE TO TRANSACTI ON
<t _code> statement. This does not allow you to return to where the transaction was called from.
This statement has the same effect as entering / n<t _code> in the command field.

For further information, see the keyword documentation in the ABAP Editor for CALL and LEAVE

Encapsulating Dialogs in Function Modules

Program A _
MODULE modul el | NPUT Functlon.group. FLIG
Program: SAPLFLIG
CALL FUNCTI ON
' DI SP_FLI GHT' \
EXPORTI NG . . . FUNCTION [EEENGERESl |
ENDMODULE. - Screen
CALL SCREEN 100. SAPLFLIG
— 0100
ENDFUNCT! ON.
Program B MODULE MO 0100 OUTPUT.
MODULE nodul e2 | NPUT. ENWLE_
CALL FUNCTI ON /
' DI SP_FLI GHT' MODULE M 0100 | NPUT.
EXPORTI NG . . . o
ENDMODULE. ENDVODULE.

a4 SAPAG 1999

m You can encapsulate dialogs in reusable function modules.

m |f you call up ascreen within afunction module, this screen belongs to the program of function
group SAPL<f _gr oup> of the function module.

Overview of Complex LUW Processing:

Logical Memory Level Model

Call techniques for programs

, The logical memory level model
Data transfer between programs
LUW processing for program calls

Locks for program calls

a4 SAPAG 1999

The Logical Memory Level Model H’
>
User session (logon) ‘\
2

é(ternal session (window)h é(ternal session (window)
) /- —

Internal session?

- >
% _ J GE)
- =
o /Internal session D o Internal session 1
< <
o (0]
< <

&
- —/ -/

\[SAP memory (SET/GET parameters) J/

a4 SAPAG 1999

(i
(

A logical memory model illustrates how the main memory is distributed from the view of executable
programs. A distinction is made here between exter nal sessionsand internal sessions.

An external session is usually linked to an R/3 window. Y ou can create an externa session by
choosing System/Create session, or by entering / o<t _code> in the command field. An external
session is broken down further into internal sessions. Program datais only visible within an internal
session. Each external session can include up to 20 internal sessions (stacks).

Every program you start runsin an internal session.

All "sguares’ with rounded "corners’ displayed in the status diagram represent a set of data objects
in the main memory.

The data in the main memory is only visible to the program concerned.

m CALL TRANSACTI ON <t code>and SUBM T <pr ogranm> AND RETURNoOpen anew
internal session that forms a new program context. The internal sessionsin an externa session form a
memory stack. The new session is added to the top of the stack.

m When a program has finished running, the top internal session in the stack is removed, and the
caling program resumes processing.

m The same occurs when the system processes a LEAVE PROGRAMstatement.

m LEAVE TO TRANSACTI ONremoves all internal sessions from the stack and opens a new one
containing the program context of the calling program.

m The ABAP memory isinitialized after the program is called. In other words, you cannot transfer any
datato a program called with LEAVE TO TRANSACTI ON <t code> viathe ABAP memory.

m SUBM T <pr ogr an® replaces the interna session of the program performing the call with the
internal session of the program that has been called. The new internal session contains the program
context of the called program with which it is performed.

m When afunction module is called, the following steps are executed:

* A check is made to establish whether your program has called a function module of the same
function group previoudly.

* If thisis not the case, the system loads the associated function group to the interna session of the
caling program as an additional program group. This initializesits global data.

* |f your program used a function module of the same function group before the current cdll, the
function module that you have called up at present can access the globa data of the function
group. The function group is not reloaded.

m Within the internal session, all of the function modules that you call from the same group access the
global data of that group.

m |f, inanew interna session, you call a function module from the same function group as in interna
session 1, anew set of globa dataisinitialized for the second interna session. This means that the
data accessed by function modules called in session 2 may be different from that accessed by the
function modules in session 1.

Y ou can call function modules asynchronoudy as well as synchronously. To do so, you must extend
the function module call using the addition STARTI NG NEW TASK ' <nane>' . Here,

' <nane>' isasymbolic namein the calling program that identifies the externa session, in which
the called program is executed.

Function modules that you call using the addition STARTI NG NEW TASK ' <nanme>' are
executed independently of the calling program. The calling program is not interrupted.

To make function modules available for local asynchronous calls, you must identify them as
executable remotely (processing type: Remote-enabled module).

For further information, see the keyword documentation in the ABAP Editor for CALL FUNCTI ON.

m There are various ways of transferring data between programs that are running in different program
contexts (internal sessions). Y ou can use:

(@] The interface of the called program (standard selection screen, or interface of a
subroutine, function module, or dialog module)

2 ABAP memory

3 SAP memory

4 Database tables

5) Local files on your presentation server.

m For further information about transferring data using database tables and the shared buffer, refer to
the keyword documentation in the ABAP Editor for the terms EXPORT and | MPORT.

m For further information about transferring data between an ABAP program and your presentation
server, refer to the documentation for the function modules W UPLOADand W5 DOWNL QAD.

m Function modules have an interface, which you can use to pass data between the calling program and
the function module itself (there is aso a comparable mechanism for ABAP subroutines). If a
function module supports RFC, certain restrictions apply to its interface.

m |f you are calling an ABAP program that has a standard selection screen, you can pass values to the
input fields. There are two options here:

- By using avariant of the standard selection screen in the program call

- By passing actua vaues for the input fields in the program call

If you want to call areport program without displaying its selection screen (default setting), but still
want to pass values to its input fields, there is a variety of techniques that you can use.

The W THaddition allows you to assign values to the parameters and select-options fields on the
standard selection screen.

If the selection screen isto be displayed when the program is caled, use the addition: VI A
SELECTI ON- SCREEN.

Use the pattern button in the ABAP Editor to insert a program call via SUBM T. The structure shows
you the names of data objects that you can complete with the standard selection screen.

For further information on working with variants and further syntax variants for the W THaddition,
see the key word documentation in the ABAP Editor for SUBM T.

Y ou can use SAP memory and ABAP memory to pass data between different programs.

The SAP memory is a user-specific memory areafor storing field values. It isavailablein all of the
open sessionsin auser's termina session, and is reset when the terminal session ends. Y ou can use
its contents as default values for screen fields. All external sessions can access SA P memory. This
means that it is only of limited use for passing data between interna sessions.

The ABAP memory is also user-specific, and is local to each external session. You can useit to pass
any ABAP variables (fields, structures, internal tables, complex objects) between the inter nal
sessions of asingle externa session.

Each externa session hasits own ABAP memory. When you end an external sesson (/i inthe
command field), the corresponding ABAP memory is released automaticaly.

To copy aset of ABAP variables and their current values (data cluster) to the ABAP memory, use
the EXPORT TO MEMORY | D <i d> statement. The<i d> (up to 32 characters) is used to identify
the different data clusters.

If you repeat an EXPORT TO MEMORY | D <i d> statement to an existing data cluster, the new
data overwrites the old.

To copy data from ABAP memory to the corresponding fields of an ABAP program, use the
| MPORT FROM MEMORY | D <i d> gtatement.

Thefields, structures, internal tables, and complex objects in a data cluster in ABAP memory must
be declared identically in both the program from which you exported the data and the program into
which you import it.

To release adata cluster, use the FREE MEMORY | D <i d> statement.
Y ou can import just parts of a data cluster with | MPORT, since the objects are named in the cluster.

m |nthe SAP memory, you can define memory areas (SET/ GET parameters, or parameter | Ds), which
you can then address by a name of up to 20 characters.

m You can fill these memory areas either using the contents of input/output fields on screens, or using
the ABAP statement:
SET PARAMETER I D ' <parameter_id> FIELD <val ue>.
The memory area with the name <par amnet er _i d> now hasthe value <val ue>.

m You can use the contents of a memory areato display a default value in an input field on a screen.

m You can aso read the memory areas from the SAP memory using the ABAP statement GET
PARAMETER | D <parameter _i d> FI ELD <fi el d>. Thefidd <fi el d> then containsthe
value from parameter <par anet er _i d>.

m Thelink between an input/output field and a memory areain SAP memory is inherited from the data

element on which the field is based. Y ou can enable the set parameter or get parameter attributesin
the input/output field attributes.

m Once you have set the Set parameter attribute for an input/output field, you can fill it with default
values from SAP memory. Thisis particularly useful for transactions that you call from another
program without displaying the initial screen. For this purpose, you must activate the Set parameter
functionality for the input fields of the first screen of the transaction.

m You can:

(1) Copy the data that is to be used for the first screen of the transaction to be called to the

parameter ID in the SAP memory. To do so, use the statement SET PARAMVETER immediately
before calling the transaction.

(2) Start the transaction using CALL TRANSACTI ON <t _code> or LEAVE TO
TRANSACTI ON <t _code>. If you do not want to display the initial screen, use the AND
SKI P FI RST SCREEN addition.

(3) The system program that starts the transaction fills the input fields that do not already have
default values and for which the Get parameter attribute has been set with values from SAP
memory.

m The Technical information for the input fields in the transaction you want to call contains the names
of the parameter | Ds that you need to use.

m Parameter |Ds should be entered in table TPARA. This happens automaticaly if you create them via
the Object navigator.

Programs that you call using the statements SUBM T <pr ogr an®, LEAVE TO TRANSACTI ON
<t _code>,SUBM T <progranr AND RETURN, or CALL TRANSACTI ON <t _code>run
intheir own SAP LUW, and update requests receive their own update key.

When you use SUBM T <pr ogr ankand LEAVE TO TRANSACTI ON <t _code>, the SAP
LUW of the calling program ends. If no COMM T WORK statement occurred before the program call,
the update requests in the log table remain incomplete and cannot be processed. They can no longer
be executed. The same appliesto inline changes that you make using PERFORM ... ON COWM T.
Datathat you have written to the database using inline changes is committed the next time a new
screen is displayed.

If youuse SUBM T <progrant> AND RETURNor CALL TRANSACTI ON <t code>toinsert
aprogram and then return to the calling program, the SAP LUW of the calling program is resumed
when the called program ends. The LUW processing of calling and called programs is independent.
In other words, inline changes are committed the next time a new screen is displayed. Update
requestsand callsusing PERFORM . .. ON COWM T require an independent COM T WORK
statement in the SAP LUW in which they are running.

Function modules run in the same SAP LUW as the program that calls them.

m |f you call transactions with nested calls, each transaction needs itsown COVM T WORK, since each
transaction maps its own SAP LUW.

m The same applies to calling executable programs, which are called usng SUBM T <pr ogr an
AND RETURN.

m The statement CALL TRANSACTI ONalowsyou to

* Shorten the user dialog when calling using CALL TRANSACTI ON <t code> USI NG
<i tab>.

* Determine the type of update (asynchronous, local, or synchronous) for the transaction called. For
this purpose, use the addition CALL TRANSACTI ON <t code> USI NG <i t ab> UPDATE

" updat e_node' , where updat e_node can have the vaues A (asynchronous), L (loca), or S
(synchronous).

m Combining the two options enables you to call severa transactions in sequence (logical chain), to
reduce their screen sequence, and to postpone processing of the SAP LUW 2 until processing of the
SAP LUW 1 has been completed.

m When you cal afunction module asynchronoudy using the CALL FUNCTI ON <f unct i on>
STARTI NG NEW TASK ' ' statement, it runsinits own SAP LUW.

Programs that are executed withaSUBM T <pr ogr an> AND RETURNor CALL
TRANSACTI ON <t _code> statement start their own LUW processing. Y ou can use these to
perform nested (complex) LUW processing.

Y ou can use function modules as modularization units within an SAP LUW.

Function modules that are called asynchronoudly are suitable for programs that alow pardlée
processing of some of their components.

All techniques are suitable for including programs with purely display functions.

Note that afunction module called with CALL FUNCTI ON <f > STARTI NG NEW TASKis
executed as anew logon. It, therefore, sees a separate SAP memory area. Y ou can use the interface
of the function module for data transfers.

Example: In your program, you want to call adisplay transaction that is displayed in a separate
window (amodal). To do so, you encapsulate the transaction cal in a function module, which you set
asto Remote-enabled module. Y ou use the function module interface to accept values that you write
to the SAP memory. Y ou then call up the transaction in the function module using CALL
TRANSACTI ON <t code> AND SKI P FI RST SCREEN. You cdl the function module itself
asynchronoudly.

m Type ‘E' locks for nested program calls may be requested more than once from the same object. This
behavior can be described as follows:

- Lock entries from function modules called synchronously increment the cumulative counter,
and are therefore successful.

- Lock entries from programs called with CALL TRANSACTI ONor SUBM T <p> AND
RETURN are refused. The object to be locked by the called program is displayed as already
locked by another user.

m Programsthat you call usng SUBM T <pr ogr an® or LEAVE TO TRANSACTI ON <t _code>
cannot come into conflict with lock entries from the calling program, since the old program ends
when the cal is made. When a program ends, the system deletes all of the lock entries that it had set.

m Lock requests belonging to the same user from different R/3 windows or logons are treated as lock
requests from other users.

*e e

).

i,

Unit: Complex LUW Processing

At the conclusion of these exercises, you will be able to:

Usethe CALL TRANSACTI ON <t code> technique for
modularization at program level

Use the SAP memory to transfer data

New bookings can be entered in program SAPMZ## BOOKI NGS3 (see
last exercise). One requirement, however, is that the posting customer is
aready maintained in the system.

Clicking the Create new customer icon (function code NEW CUSTOM) on
screen 300 will enable a customer to be created from the posting

program. For this reason, program SAPNVZ## _CUSTOMERZ (transaction
code: Z##_CUSTOMER2) will be called up using the CALL

TRANSACTI ON <t code> technique. You have created this program
in exercise 1 for the Database Updates with Open SQL unit and enhanced
it in the optional part of exercise 1 for the SAP Lock Concept unit.

Program: SAPNZ## BOOKI NG4
Transaction code: Z## BOOKI NG34
Template: SAPBCA14T _BOOKI NGS 04 /

SAPBC414T CREATE CUSTQOMER 03
M ode! solution: SAPBC414S BOOKI NGS 04 /
SAPBC414S CREATE CUSTOVER

1-1 Copy your solution SAPMZ## BOOKI NGS3 or the program template
SAPBC414T_BOOKI NGS_04 with all sub-objectsto SAPMZ## _BOOKI NGS4
(## is the group number). Assign transaction code Z##_BOOKI NGS4 to the
program.

1-2 Copy the program template SAPBC414T_CREATE_CUSTOMER_03 with all sub-
objects to SAPMZ## CUSTOVER3 (## is the group number) and assign
transaction code Z##_CUSTOVERS to the program.

1-3 Thetransaction call for creating a new customer is to be encapsulated in the
CREATE_NEW CUSTOVER subroutine. The subroutine is called up from the PAI
module USER COMIVAND 0300 (screen 300) and is already created (blank).

\\I//

\ Y/

/1N

1-3-1 Implement the transaction call. Call your transaction Z## CUSTOVERS.

The customer number is determined in the SAPMZ##_CUSTOVER3 program using

an internal number assignment, in other words it is assigned by the application
itself. The SAP memory isto be used to transfer the customer number to the caling

program.

1-4-1 Changethe SAPMZ## _CUSTOMERS program so that the customer number

is written to the SAP memory after a customer has been created
successfully. To which SET/GET parameter must the customer number be
assigned?

1-4-2 Change the calling program SAPMZ## BOOKI NGS4 so that the customer

number appears in the appropriate field of the subscreen 301 after a
customer has been created successfully.

Y ou can display the name of the SET/GET parameter that is assigned to
thisfield viathe F1 Help for a screen field.

SAPNMZ## CUSTOMERS: The customer number isin the data object
SCUSTOM | D

/ Unit: Complex LUW Processing

Model Solution SAPBC414S BOOKINGS 04

FORM Routines
FO1

E
*& Form CREATE_NEW CUSTOVER
K m o o o o o o e e o o m e aam—-o-
FORM creat e_new_cust oner.

CALL TRANSACTI ON ' BCA14S _CREATE_CUST' .
* Called Transaction set the SET/ GET Paraneter CSM??

GET PARAMETER ID 'CSM field scust _id.
* scust_id <> initial -> custonmer created -> clear customd to get
* custoner nunber via SET/ GET Paraneters

check not scust_id is initial.

clear: wa_sbook-custom d.
ENDFCORM " CREATE_NEW CUSTOVER

Musterl6sung SAPBC414S CREATE_CUSTOMER

FORM Routines
FO1

Ea /e
*& Form SAVE_SCUSTOM
Ea
FORM save_scust om
I NSERT | NTO scust om VALUES scust om
| F sy-subrc <> 0.
* initialize SCUSTOM I D i n SAP- MEMORY
SET PARAMETER ID ' CSM FI ELD space.
* insertion of dataset in DB table not possible
MESSAGE a048.
ELSE.
wite SCUSTOM | D back to SAP- MEMORY
SET PARAMETER ID ' CSM FI ELD scustom i d.
* insertion successfull
MESSACE s015 W TH scustomi d.
ENDI F.
ENDFCORM " SAVE_SCUSTOM

*

Appendix H'
A

Content:

® Complete model solution for program:
Creating customer data

® Complete model solution for program:
Canceling/creating bookings

® Slide index

8 SAP AG 1999

Solutions

Program: Generating Customer Data Records
/ Complete Transaction

Model Solution SAPBC414S CREATE_CUSTOMER

M odule Pool
K o o o o e e o o o o e e o e e e e e e e e e e e e mmmmme e oo
*& Modul pool SAPBCA414S CREATE CUSTOMVER
K o o o o f e o o o e e e e e e e e e e e e e e e mmmmmm oo

| NCLUDE BC414S_CREATE_CUSTOVERTOP.
| NCLUDE BC414S_CREATE_CUSTOVEROD1.
| NCLUDE BC414S_CREATE_CUSTOVER! O1.
| NCLUDE BC414S_CREATE CUSTOVERFOL.

SCREEN 100

PROCESS BEFCORE QUTPUT.
MODULE st at us_0100.

PROCESS AFTER | NPUT.
MODULE exit AT EXI T- COMVAND.
MODULE save_ok_code.
FI ELD. scustom nane MODULE mar k_changed ON REQUEST.
MODULE user _commrand_0100.

TOP Include

-

*& I ncl ude BC414S CREATE_CUSTOVERTCP

L <

PROGRAM sapbc414s_creat e_cust omer MESSACGE-1D bc414.

_*

*

_*

_ %

*

_%

DATA: answer, flag.
DATA: ok _code LIKE sy-ucomm save ok LI KE ok _code.
TABLES: scustom

PBO Modules

<
*& Modul e STATUS 0100 QUTPUT
<
MODULE STATUS_0100 QUTPUT.

SET PF- STATUS ' DYN_0100'.

SET TI TLEBAR ' DYN_0100' .
ENDMODULE. " STATUS_0100 QUTPUT

PAl Modules

Ea
*& Module EXIT | NPUT
E
MODULE exit | NPUT.
CASE ok_code.
VWHEN ' EXI T .
|F sy-datar IS INITIAL AND flag IS I NI TIAL.
* no changes on screen 100
LEAVE PROGRAM
ELSE.
PERFORM ask _save USI NG answer .
CASE answer .
VWHEN " J'.
ok_code = ' SAVE&EXI T' .
VWHEN ' N .
LEAVE PROGRAM
VWHEN " A" .
CLEAR ok_code.
SET SCREEN 100.

ENDI F.
VWHEN ' CANCEL' .
|F sy-datar IS INTIAL AND flag IS I NI TI AL.
* no changes on screen 100
LEAVE TO SCREEN 0.
ELSE.
PERFORM ask | oss USI NG answer .
CASE answer .
VWHEN " J'.
LEAVE TO SCREEN O.
VWHEN ' N .
CLEAR ok_code.
SET SCREEN 100.
ENDCASE.
ENDI F.
ENDCASE.
ENDMODULE. " EXIT | NPUT

B m o o o m o emmo o
*& Mbdul e SAVE_OK_CODE | NPUT
L
MODULE save_ok_code | NPUT.

save_ok = ok_code.

CLEAR ok_code.
ENDMODULE. " SAVE (K CODE | NPUT

B m o o o o o o e e e e o o m e e e e e e e e o e e e e e e e e e e e e e mmaa——o- -
*& Modul e USER_COMVAND 0100 | NPUT
B m o o o o o o e e e e e o o e e e e e e e e e e m e e e e e e e e e e mmmemm-o -
MODULE user _conmmand 0100 | NPUT.
CASE save ok.
VWHEN ' SAVESEXI T' .
PERFORM save.
LEAVE PROGRAM
VWHEN ' SAVE' .
IF flag IS INITIAL.
SET SCREEN 100.
ELSE.
PERFORM save.
SET SCREEN O.
ENDI F.
VWHEN ' BACK' .
IF flag IS INITIAL.
SET SCREEN 0.
ELSE.
PERFORM ask_save USI NG answer .
CASE answer .
VWHEN " J' .
PERFCRM save.
SET SCREEN 0.
WHEN ' N .
SET SCREEN 0.
WHEN " A .
SET SCREEN 100.
ENDCASE.
ENDI F.

ENDCASE.

ENDMODULE. " USER_COWNVAND 0100 | NPUT

* & ___ *
*& Modul e MARK_CHANGED | NPUT

* & ___ *

MODULE mar k_changed | NPUT.
* set flag to mark changes were made on screen 100

flag = ' X .
ENDMODULE. " MARK_CHANGED | NPUT

FORM Routines

B m o o o o o o e e e e o o m e e e e e e e e o e e e e e e e e e e e e e mmaa——o- -
*& Form NUVBER GET_NEXT
B m o o oo o e e e e e e o e mmmmm o
* -->P_ WA SCUSTOM t ext
FORM nunber _get _next USI NG p_scustom LI KE scust om

DATA: return TYPE inri-returncode.
* get next free nunber in the nunber range '01'
* of nunber range object' SBUSPI D

CALL FUNCTI ON ' NUVMBER _GET_NEXT'

EXPORTI NG
nr_range_nr

1 01I
' SBUSPI D

obj ect
| MPORTI NG

nunber p_scustomid

ret urncode return
EXCEPTI ONS
OTHERS
CASE sy-subrec.
VWHEN 0.
CASE return.
VWHEN 1.
* nunber of remaining nunbers critical
MESSAGE s070.
VWHEN 2.
* | ast nunber
MESSAGE s071
VWHEN 3.
* no free nunber left over
MESSAGE a072.
ENDCASE.
VWHEN 1.

* internal error

I
=

MFSSAF AaN72 W TH <sv-<ithre

ENDCASE.
ENDFCRM " NUMBER_GET_NEXT

L3-S
*& Form ASK_SAVE
K o o o o o e e e o o o e e e e e e e e e e e e e e e e mmmmme oo
* -->P_ANSWER t ext
FORM ask_save USI NG p_answer.

CALL FUNCTI ON ' POPUP_TO_CONFI RM_STEF

EXPORTI NG
textlinel = 'Data has been changed.' (001)
textline2 = 'Save before | eaving transacti on?' (002)
titel = 'Create Custoner' (003)
| MPORTI NG
answer = p_answer.
ENDFORM " ASK_SAVE
K R e e
*& Form ASK LGSS
Ee
* -->P_ANSWER text
*

FORM ask_| oss USI NG p_answer .
CALL FUNCTI ON ' POPUP_TO CONFI RM LOSS OF DATA

EXPORTI NG
textlinel = ' Continue? (004)
titel = 'Create Custoner' (003)
| MPORTI NG
answer = p_answer.
ENDFORM " ASK LCSS
Ee
*& Form ENQ SCUSTOM
L

FORM enqg_scust om
CALL FUNCTI ON " ENQUEUE_ESCUSTOM
EXPORTI NG

EXCEPTI ONS
foreign_|ock

system failure
OTHERS =3
CASE sy- subrc.
WHEN 1.
* dataset allready |ocked
MESSACGE e060.
WHEN 2 OR 3.
* | ocking of dataset not possible for other reasons
MESSACE €063 W TH sy-subrc.
ENDCASE.
ENDFORM " ENQ_SCUSTOM

L3-S
*& Form DEQ ALL
B m o m e e o e o eammmm-o -
FORM deq_al I .

CALL FUNCTI ON ' DEQUEUE ALL' .
ENDFORM " DEQ ALL

Ea
*& Form SAVE_SCUSTOM
E
FORM save_scustom
I NSERT | NTO scust om VALUES scust om
| F sy-subrc <> 0.
* initialize SCUSTOMID i n SAP- MEMORY
SET PARAMVETER ID ' CSM FI ELD space.
* insertion of dataset in DB table not possible
MESSAGE a048.
ELSE.
wite SCUSTOM I D back to SAP- MEMORY
SET PARAMETER I D ' CSM FI ELD scustonti d.
* insertion successfull
MESSACGE s015 W TH scustom i d.
ENDI F.

*

*& ___ *

* & Form SAVE
*& ___ *
FORM save.

* | ock dat aset
PERFORM eng_scust om
* get SCUSTOM I D from nunber range object BC _SCUSTOM
PERFCRM nunber _get _next USI NG scust om
* save new cust oner
PERFORM save_scust om
* unl ock dat aset
PERFORM deq_al | .
ENDFORM " SAVE

Solutions

Program: Canceling/Creating Bookings
/ Complete Transaction

Model Solution SAPBC414S BOOKINGS

M odule Pool

K e o o e e *
*& Modul pool SAPBC414S BOOKI NGS *
K e o e i *
| NCLUDE bc414s_booki ngst op.

| NCLUDE bc414s_booki ngso01.

| NCLUDE bc414s_booki ngsi 01.

| NCLUDE bc414s_booki ngsf 01.

| NCLUDE bc414s_booki ngsf 02.

| NCLUDE bc414s_booki ngsf 03.

| NCLUDE bc414s_booki ngsf 04.

| NCLUDE bc414s_booki ngsf 05.

| NCLUDE bc414s_booki ngsf 06.

I NCLUDE f bc414 cdocscdc.

SCREEN 100

PROCESS BEFCRE QUTPUT.
MODULE STATUS_0100.

*

PROCESS AFTER | NPUT.

MODULE EXI T AT EXI T- COVIVAND.
MODULE SAVE_OK_CCDE.
CHAI N.

* cancel booking: check if flight exists or flight can be created
FI ELD: SDYN_CONN- CARRI D, SDYN_CONN CONNI D, SDYN_CONN- FLDATE
MODULE USER_COWVAND 0100.

ENDCHAI N.

SCREEN 200

PROCESS BEFORE OUTPUT.
MODULE STATUS_0200.
MODULE TRANS DETAI LS.
CALL SUBSCREEN SUB1 | NCLUDI NG SY- CPROG ' 0201' .
LOOP AT | TAB_BOOK | NTO WA _BOOK W TH CONTROL TC_SBOCK.
MODULE TRANS TO TC.

* allow only nodification of bookings, that are not allready
* cancel | ed

MODULE MODI FY_SCREEN.
ENDL OCP
*
PROCESS AFTER | NPUT.
LOOP AT | TAB_BOCK.
* mark changed bookings in internal table itab_book
FI ELD SDYN _BOOK- CANCELLED MODULE MODI FY_I TAB ON REQUEST.
ENDL OOP
MODULE EXI T AT EXI T- COVIVAND.
MODULE SAVE _OK_CODE
MODULE USER_COWMVAND_0200.

SCREEN 201

PROCESS BEFORE QUTPUT.
PROCESS AFTER | NPUT.

SCREEN 300

PROCESS BEFORE OUTPUT.
MODULE STATUS_0300.
MODULE TABSTRI P_I NI T.
MODULE TRANS DETAI LS.
CALL SUBSCREEN TAB_SUB | NCLUDI NG SY- CPROG SCREEN NO
.
PROCESS AFTER | NPUT.
CALL SUBSCREEN TAB_SUB.
MODULE EXI T AT EXI T- COMVAND.
MODULE SAVE_OK_CODE.
MODULE TRANS_FROM 0300.

MODULE USER_COMVAND_0300.

SCREEN 301
PROCESS BEFCRE OUTPUT.
MODULE HI DE_BOOKI D.
PROCESS AFTER | NPUT.
SCREEN 302
PROCESS BEFCRE OUTPUT.
PROCESS AFTER | NPUT.
SCREEN 303

PROCESS BEFCRE QUTPUT.
PROCESS AFTER | NPUT.

TOP Include

*& ___ *
*& I ncl ude BC414S BOOKI NGSTCP *
*& ___ *

PROGRAM sapbc414s_booki ngs MESSAGE-| D bc414.

* change docunents: data definitions for use of function nodul es
| NCLUDE fbc414 cdocscdt.

* line type of internal table itab_book, used to display bookings in
* table control
TYPES: BEA N OF wa_book_type.
| NCLUDE: STRUCTURE sbook.
TYPES: nanme TYPE scust om nane,
mar Kk,
END OF wa_book type.

* work area and internal table used to display bookings in table
* control

DATA: wa_book TYPE wa_book_t ype,
itab_book TYPE TABLE OF wa_book_type.

* bookings to be nodified on database table
DATA: itab_sbook_nodify TYPE TABLE OF sbook.

* change docunents: bookings before changes are perforned
DATA: itab_cd TYPE TABLE OF sbook W TH NON-UNI QUE KEY
carrid connid fldate bookid custom d

* work areas for database tables spfli, sflight, sbook.

DATA: wa_sbook TYPE sbook, wa sflight TYPE sflight, wa _spfli TYPE
spfli.

* conpl ex transactions: nunber of the custoner created in the called
* transaction
data: scust _id(20).

* transport function codes from screens
DATA: ok_code TYPE sy-ucomm save_ok LI KE ok_code.

DATA: screen_no TYPE sy-dynnr.
* used to handle sy-subrc, which is determined in form
DATA sysubrc LIKE sy-subrc.

* transporting fields to/from screen

TABLES: sdyn_conn, sdyn_book.

* table control declaration (display bookings),

* tabstrip declaration (create booking)

CONTRCLS: tc_sbook TYPE TABLEVI EW USI NG SCREEN ' 0200,
tab TYPE TABSTRI P

PBO Modules

K o o o o o e - *
* & ___ *
*& Modul e STATUS 0100 QUTPUT

* & ___ *

MODULE st atus 0100 QUTPUT.
SET PF- STATUS ' DYN_100'.
SET TI TLEBAR ' DYN_100' .

ENDMODULE. " STATUS_0100 QUTPUT

* & ___ *
*& Modul e STATUS_0200 QOUTPUT

* & ___ *

MODULE st at us_0200 QUTPUT.
SET PF- STATUS ' DYN_200' .
SET TI TLEBAR ' DYN_200" W TH sdyn_conn-carrid sdyn_conn-conni d

sdyn_conn-f | dat e.

ENDMODULE. " STATUS_0200 QUTPUT

* & ___ *
*& Modul e STATUS 0300 QUTPUT

* & ___ *

MODULE st at us_0300 QUTPUT.
SET PF- STATUS ' DYN_300' .
SET TI TLEBAR ' DYN 300" W TH sdyn_conn-carrid sdyn_conn-conni d
sdyn_conn-f| dat e.

ENDMODULE. " STATUS_0300 QUTPUT

* & ___ *
*& Modul e TRANS_DETAI LS QUTPUT

* & ___ *

MODULE trans_detail s OUTPUT.
MW\F- CORRFSPONDI NG wa snfli TO <dvn cnonn

wa_sflight TO sdyn_conn,
wa_sbook TO sdyn_book.

ENDMODULE. " TRANS_DETAI LS OUTPUT
*& ___ *
*& Modul e TRANS TO TC OUTPUT

*& ___ *

MODULE trans_to_tc OUTPUT.
MOVE- CORRESPONDI NG wa_book TO sdyn_book.
ENDMODULE. " TRANS TO TC QUTPUT

B m o o oo o o eemmo -
*& Modul e MODI FY_SCREEN QUTPUT
Ea
MODULE nodi fy_screen OUTPUT.
LOOP AT SCREEN.
CHECK screen-nane = ' SDYN BOCK- CANCELLED
CHECK (NOT sdyn_book-cancelled IS INITIAL) AND
(sdyn_book-mark IS INITIAL).
screen-input = 0.
MODI FY SCREEN
ENDL OOP
ENDMODULE. " MODI FY_SCREEN QUTPUT

Ea /e
*& Modul e TABSTRIP_INIT QUTPUT
-
MODULE tabstrip_init OUTPUT.

CHECK tab-activetab I'S I NI Tl AL.

tab-activetab = ' BOX .

screen_no = '0301".

ENDMODULE. " TABSTRIP_INIT QUTPUT

<
*& Modul e H DE_BOCOKI D QUTPUT

<

MODULE hi de_booki d OUTPUT.

* hide field displaying custoner nunber when working with nunber
range

* obj ect BS_SCUSTOM
LOOP AT SCREEN
CHECK screen-nanme = ' SDYN _BOOK- BOXKI D .
screen-active = 0.
MODI FY SCREEN.
ENDL OOP
ENDMODUL E. " H DE_BOOKI D QUTPUT

PAI Modules

K o o o e o e e . *
L2 *
*& Module EXIT | NPUT

L2 *

MODULE exit | NPUT.
CASE ok_code.
VWHEN ' CANCEL' .
CASE sy-dynnr.
WHEN ' 0100' .
LEAVE PROGRAM
VWHEN ' 0200' .
PERFORM deq_al | .
LEAVE TO SCREEN ' 0100' .
VWHEN ' 0300' .
PERFORM deq_al | .
LEAVE TO SCREEN ' 0100' .
VWHEN OTHERS.
ENDCASE.
VWHEN ' EXIT' .
LEAVE PROGRAM
VWHEN OTHERS.
ENDCASE.
ENDMODULE. " EXIT | NPUT

K e o e e *
*& Modul e SAVE _OK_CODE | NPUT
K e o e e *
MODULE save ok _code | NPUT.

save ok = ok_code.

CLEAR ok _code.
ENDMODULE. " SAVE _OK CODE | NPUT

L3 *
*R Madil e ISFR COMMAND 0100 | NPLIT

K e & e . *
MODULE user _conmand_0100 | NPUT.
CASE save_ ok.
Kok ok kK Kok Kk Kk Kk Kk Kok kR ok ok ok CANCEL BOOK] NG * % * % % % % % % ok ok ok % ok 4k ok %k 4 ko ¢
VWHEN ' BOCOKC .
PERFORM enq_sf | i ght _sbook
PERFCRM read_sflight USI NG wa_sflight sysubrc.
* process returncode - if flight does not exist: e-nessage
PERFORM pr ocess_sysubr c_bookc.
PERFORM read_spfli USI NG wa_spfli.
PERFORM r ead_sbook USING itab_book itab_cd
REFRESH CONTROL ' TC_SBOOK' FROM SCREEN ' 0200' .
Kok kK ko Kk kR Kk Kk Kk kR kR %k k CREATE BOOKI NGE* %% %% %% %k % k% k4 k4 k4 k4 k% k& k
VWHEN ' BOOKN .
PERFORM enq_sfl i ght.
PERFORM read_sflight USING wa_sflight sysubrc.
* process returncode - if flight does not exist: e-nessage
PERFORM pr ocess_sysubr c_bookn
PERFORM read_spfli USING wa_spfli
PERFORM i nitialize_sbook USI NG wa_sbook
VWHEN ' BACK' .
SET SCREEN O.
WHEN OTHERS
SET SCREEN ' 0100 .
ENDCASE
ENDMODUL E. " USER_COWVAND 0100 | NPUT

K e o e e *
*& Modul e USER_COMVAND 0200 | NPUT
K e o e il *
MODULE user _conmmand 0200 | NPUT.
CASE save ok.
VWHEN ' SAVE' .
* collect marked (changed) data sets in seperate internal table
PERFORM col | ect _nodi fied_data USING itab_sbook nodify.
* perform dat abase changes
PERFORM save_nodi fi ed_booki ng.
* create change docunents

COW T WORK.
* Unl ocking data sets is executed by the update program!!
SET SCREEN ' 0100' .
WHEN ' BACK' .
PERFCORM deq_al | .
SET SCREEN ' 0100' .

VWHEN OTHERS.
SET SCREEN ' 0200' .
ENDCASE.
ENDMODULE. " USER_COWNAND 0200 | NPUT
* & ___ *
*& Modul e MODI FY_I TAB | NPUT
* & ___ *

MODULE nodi fy_itab | NPUT.

wa_book- cancel | ed = sdyn_book- cancel | ed.

wa_book-mark = "'X .

MODI FY i tab_book FROM wa_book | NDEX tc_sbook-current |ine.
ENDMODULE. " MODI FY_I TAB | NPUT

e o o . *
*& Modul e USER_COWVIVAND 0300 | NPUT
e & o e e e e *
MODULE user _conmand_0300 | NPUT.
PERFCORM t abstri p_set.
CASE save_ok.
VWHEN ' NEW CUSTOM .
PERFCORM cr eat e_new _cust oner.
SET SCREEN ' 0300 .
VWHEN ' SAVE' .
PERFORM save new booki ng.
COW T WORK.
* Unl ocking data sets is executed by the update program!!
SET SCREEN ' 0100' .
VWHEN ' BACK' .
PERFORM deq_al I .
SET SCREEN ' 0100' .

VHEN OTHERS.
SET SCREEN ' 0300' .
ENDCASE.
ENDMODULE. " USER_COWNVAND 0300 | NPUT
* & ___ *
*& Modul e TRANS_FROM 0300 | NPUT
* & ___ *

MODULE trans_from 0300 | NPUT.
MOVE- CORRESPONDI NG sdyn_book TO wa_sbook.
ENDMODULE. " TRANS_FROM 0300 | NPUT

FORM Routines

FO1

K o e o e *
***| NCLUDE BCA14S_BOOKI NGSFO1

K e o e e e e e e e e e e e *
* & ___ *
*& Form COLLECT_MODI FI ED_DATA

* & ___ *
* -->P_| TAB_SBOOK_MODI FY t ext

* *

FORM col | ect _nodi fi ed data USI NG p_itab_sbook nodify
LIKE i tab_sbook nodify.
DATA: wa _book LIKE LINE CF itab_book,
wa_sbook_nodify LIKE LINE OF p_itab_sbook _nodify.
CLEAR p_itab_sbook_nodify.
* Only bookings are coll ected, that
* 1) have been changed (mark = 'X)
* 2) shall be cancelled (cancelled = "'X)
LOOP AT itab_book I NTO wa_book
VWHERE mark = 'X
AND cancelled = ' X' .
MOVE- CORRESPONDI NG wa_book TO wa_sbook nodi fy.
APPEND wa_sbook_nodi fy TO p_itab_sbook nodify.

ENDL OOP.
ENDFORM " COLLECT_MODI FI ED_DATA
* & ___ *
*& Form | N Tl ALI ZE_SBOOK
* & ___ *
* -->P_WA SBOOK text
* *

FORM initialize_sbook USING p_wa _sbook TYPE sbook.
CLEAR p_wa_sbook.
MOVE- CORRESPONDI NG wa_sflight TO p_wa_sbook.
MOVE: wa_sflight-price TO p_wa_sbook- f or curram
wa_sflight-currency TO p_wa_sbook- f or curkey,

ENDFORM " I NI TI ALI ZE_SBOCK

* & ___ *
*& Form PROCESS_SYSUBRC_BOCKC
* & ___ *

FORM pr ocess_sysubr c_bookc.
CASE sysubrc.

VWHEN 0.
SET SCREEN ' 0200 .

WHEN OTHERS.
PERFORM deq_al I .
MESSAGE €023 W TH sdyn_conn-carrid sdyn_conn-connid

sdyn_conn-f| dat e.

ENDCASE.
ENDFCRM " PROCESS_SYSUBRC_BOOKC

e il *
*& Form PROCESS _SYSUBRC BOCKN
e e il *
FORM process_sysubr c_bookn.
CASE sysubrc.
VWHEN O.
SET SCREEN ' 0300' .
WHEN OTHERS.
PERFORM deq_al | .
MESSACGE €023 W TH sdyn_conn-carrid sdyn_conn-conni d
sdyn_conn- f| dat e.

ENDCASE.
ENDFCRM " PROCESS_SYSUBRC BOOKN
* & ___ *
*& Form TABSTRI P_SET
* & ___ *

FORM t abstri p_set.
| F save_ok = 'BOK' OR save ok = 'DETCON OR save_ok = 'DETFLT .
tab-activetab = save_ok.
ENDI F.
CASE save_ ok.
VWHEN ' BOX' .
screen_no = '0301'.
VWHEN ' DETCON .
screen_no = '0302'.
VWHEN ' DETFLT' .
screen_no = '0303'.

ENDCASE.
ENDFORM " TABSTRI P_SET
* & ___ *
*& Form NUVBER GET_NEXT
* & ___ *
* -->P WA SBOOK text
* *

FORM nunber _get _next USI NG p_wa_sbook LI KE sbook.

DATA: return TYPE inri-returncode.
* get next free nunber in the nunber range '01' of nunber range
* obj ect ' SBOXKI D
CALL FUNCTI ON ' NUMBER_GET_NEXT'
EXPORTI NG
nr_range_nr = "'01'
' SBOXKI D
subobj ect = p_wa_sbook-carrid
| MPORTI NG
nunber

obj ect

p_wa_sbook- booki d

ret urncode return
EXCEPTI ONS
OTHERS
CASE sy-subrc.
VHEN 0.
CASE return.
VWHEN 1.
* nunber of remaining nunbers critical
MESSAGE s070.
VWHEN 2.
* | ast nunber
MESSACE s071
VWHEN 3.
* no free nunber |eft over
MESSACE a072.
ENDCASE.
VWHEN 1.
internal error
MESSAGE a073 W TH sy- subrc.

I
=

*

ENDCASE
ENDFCRM " NUMBER_GET_NEXT
*& ___ *
*& Form CREATE_NEW CUSTOVER
*& ___ *

FORM cr eat e_new_cust omer.
CALL TRANSACTI ON ' BC414S CREATE _CUST' .
* Called Transaction set the SET/ GET Par aneter CSM??

* scust_id <> initial -> custonmer created -> clear scustomd to get
* custoner nunber via SET/ GET Paraneters

CHECK NOT scust _id IS INTIAL.

CLEAR wa_sbook-cust om d.
ENDFORM " CREATE_NEW CUSTOMVER

K o e o e *
*& ___ *
*& Form ENQ SFLI GHT

*& ___ *

FORM enq_sflight.
CALL FUNCTI ON ' ENQUEUE_ESFLI GHT'

EXPORTI NG
carrid = sdyn_conn-carrid
connid = sdyn_conn- conni d
fl date = sdyn_conn-fl date
EXCEPTI ONS
foreign_|ock =
systemfailure =
OTHERS =3
CASE sy- subrc.
VWHEN O.
VWHEN 1.
MESSACGE e060.
VWHEN OTHERS.
MESSACE €063 W TH sy-subrc.
ENDCASE.
ENDFORM " ENQ_SFLI GHT
e o e e e *
*& Form ENQ_SFLI GHT_SBOOK
K e o o e e e *

FORM enq_sfli ght _sbook.
CALL FUNCTI ON ' ENQUEUE ESFLI GHT SBOXX

EXPORTI NG

carrid = sdyn_conn-carrid

connid = sdyn_conn-conni d

fldate = sdyn_conn-fl date
EXCEPTI ONS

foreign_|ock

systemfailure
OTHERS
CASE sy-subrec.
VWHEN 0.
VWHEN 1.
MESSACE e062.
VWHEN OTHERS
MESSACE €063 W TH sy-subrc.
ENDCASE
ENDFORM " ENQ_SFLI GHT_SBOXK

*& ___ *
*& Form ENQ SBOOK
*& ___ *
FORM enq_sbook

CALL FUNCTI ON ' ENQUEUE_ESBOXK'

EXPORTI NG
carrid = sdyn_book-carrid
connid = sdyn_book- conni d
fl date = sdyn_book- fl date
booki d = sdyn_book- booki d
customd = sdyn_book- cust om d
EXCEPTI ONS

foreign_|ock

systemfailure
OTHERS =3
CASE sy-subrec.
VWHEN 0.
VWHEN 1.
MESSACGE e061.
WHEN OTHERS
MESSACE €063 W TH sy-subrc.

ENDFORM ENQ_SBOXK
*& ___ *
*& Form DEQ ALL
*& ___ *
FORM deq_al I .
CALL FUNCTI ON ' DEQUEUE_ALL' .
ENDFORM DEQ ALL
FO3
K o e *
* | NCLUDE BC414S BOOKI NGSF03
K o o e e e e e e e e e *
*& ___ *
*& Form READ_SFLI GHT
*& ___ *
* -->P_ WA SFLIGHT text
* - ->P_SYSUBRC t ext
K o e o e e e e e o e o e *
FORM read_sflight USING p wa_sflight TYPE sflight
p_sysubrc LIKE sy-subrc.
SELECT SINGLE * FROM sflight I NTO p_wa_sflight
WHERE carrid = sdyn_conn-carrid
AND connid = sdyn_conn-connid
AND fldate = sdyn_conn-fl date.
p_sysubrc = sy-subrc.
ENDFORM READ_SFLI GHT
*& ___ *
*& Form READ SBOOK
*& ___ *
* -->P_I TAB_BOXX text
* -->P_I TAB_CD t ext
* *

FORM read_sbook USING p_itab_book LIKE itab_book
p_itab _cd LI KE itab_cd.
TYPES. BEA N OF wa_custom type,
id TYPE scustomid,
nanme TYPE scust om nane,
END OF wa_custom type.
DATA: wa_custom TYPE wa_custom type,
itab_custom TYPE STANDARD TABLE OF wa_custom type
W TH NON- UNI QUE KEY i d,
wa_book LIKE LINE OF p_itab_book,
wa_cd LIKE LINE OF p_itab_cd.
CLEAR p_itab_book, p_itab_cd.
* Sel ect custoner nanmes in buffer table (array fetch)
SELECT id nane FROM scustom | NTO CORRESPONDI NG Fl ELDS
OF TABLE itab_custom
* Select all bookings on selected flight (array fetch)
SELECT * FROM sbook | NTO CORRESPONDI NG FI ELDS OF TABLE p_itab_book
WHERE carrid
AND connid
AND fldate

* read customer nanes corresponding to custoner nunber from buffer
* table

LOOP AT p_itab_book I NTO wa_book.
READ TABLE itab_custom I NTO wa_cust om W TH TABLE KEY
id = wa_book-custom d.

sdyn_conn-carrid
sdyn_conn-conni d

sdyn_conn-f| dat e.

wa_book-nane = wa_cust om nane.

MODI FY p_itab_book FROM wa_book.
MOVE- CORRESPONDI NG wa_book TO wa_cd.
APPEND wa_cd TO p_itab_cd.

ENDL OOP.

SORT p_itab_book BY bookid custom d.
ENDFORM " READ_SBOOK
* & ___ *
*& Form READ_SPFLI
* & ___ *
* -->P_WA _SPFLI text
* *

EORM road enfli ITIRIN n wa enfli TVPFE enfli

SELECT SINGLE * FROM spfli I NTO p_wa_spfli
WHERE carrid = sdyn_conn-carrid
AND connid = sdyn_conn-conni d.
| F sy-subrc <> 0.
PERFORM deq_al | .
MESSACE €022 W TH sdyn_conn-carrid sdyn_conn-conni d.
ENDI F.
ENDFORM " READ_SPFLI

K o e *
* & ___ *
*& Form SAVE_MODI FI ED_BOOKI NG

* & ___ *

FORM save_nodi fi ed_booki ng.
* Modi fy data on database tabl es sbook and sflight
CALL FUNCTI ON ' UPDATE_SBOOK' | N UPDATE TASK
EXPORTI NG
itab_sbook = itab_sbook nodify.
PERFORM updat e_sfl i ght.

ENDFCRM " SAVE_MODI FI ED_BOCKI NG

* & ___ *
*& Form UPDATE_SFLI GHT

* & ___ *

FORM updat e_sflight.
CALL FUNCTI ON " UPDATE_SFLI GHT* | N UPDATE TASK
EXPORTI NG

carrier

wa_sflight-carrid

connection = wa_sflight-connid

dat e wa_sflight-fldate.
ENDFORM " UPDATE_SFLI GHT

* & ___ *
*& Form SAVE_NEW BOOKI NG

* & ___ *
FORM save _new booki ng.

* transform amount fromforeign currency to | ocal currency (of
carrier)

PERFORM convert _to_l oc_currency USING wa_sbook.
* nunmber ranges: Get next nunber (internal)

PERFORM nunber _get _next USI NG wa_sbook.
* | ock booking to be created

PERFORM enq_sbook.

CALL FUNCTI ON ' I NSERT_SBOOK' | N UPDATE TASK

EXPORTI NG
wa_sbook = wa_sbook.

PERFORM updat e_sfl i ght.

ENDFORM " SAVE_NEW BOOKI NG

K o e o e e e e e o e o e *
* & ___ *
*& Form CONVERT_TO_LOC CURRENCY

* & ___ *
* -->P_WA SBOK text

* *

FORM convert _to_l oc_currency USING p_wa_sbook TYPE sbook.
SELECT SI NGLE currcode FROM scarr | NTO p_wa_sbook- | occur key
WHERE carrid = p_wa_sbook-carrid.
CALL FUNCTI ON ' CONVERT_TO _LOCAL_CURRENCY_N

EXPORTI NG
client = sy- mandt
dat e = sy-datum

f or ei gn_anount p_wa_sbook- f orcuram

p_wa_sbook-f or cur key

foreign_currency
p_wa_sbook- | occur key

| ocal _currency

| MPORTI NG
| ocal _anount
EXCEPTI ONS
no_rate found =

p_wa_sbook-| occuram

overfl ow =
no factors found =
no_spread_found =
derived_2 tinmes =
OTHERS =

| F sy-subrc <> 0.
MESSACE €080 W TH sy-subrc.

ENDI F.

ENDFORM " CONVERT_TO LOC_CURRENCY

o U A W N P

K o o o o o e - *
* & ___ *
*& Form CREATE_CHANGE_DOCUMENTS

* & ___ *

FORM cr eat e_change_docunent s.
LOOP AT itab_sbook_nodi fy | NTO sbhook.
* read unchanged data frombuffer table into *-work area
READ TABLE itab_cd FROM sbook I NTO *sbook.
* define objectid fromkey fields of sbook
CONCATENATE sbook- mandt sbook-carrid sbook-conni d
sbook- f | dat e sbook- booki d sbook-custom d
| NTO obj ectid SEPARATED BY space.

* fill interface paraneters of function, which itself is encapsul ated
* in form CD _CALL_BC BOXX
MOVE: sy-tcode TO t code,
sy-uzeit TO uti ne,
sy- datum TO udat e,
Sy- unane TO usernane,
‘U TO upd_sbook.

* performcalls the neccessary function to create change docunent
* 'in update task’
PERFORM cd_cal | _bc_book.
ENDL OOP.
ENDFORM " CREATE_CHANGE_DOCUMENTS

Authorization Checks

Contents:

® Authorization objects
® Authorizations

® Authorization checks

a4 SAPAG 1999

Y ou can check authorizations using the SAP authorization concept.
The authorization concept uses authorization objects and authorizations.

Authorization objects are repository objects and are maintained in the ABAP Dictionary. They
consist of aname and up to ten logically-related fields that are used in the authorization check.
Authorization objects define alogical grouping of fields whose values will be used in the
authorization check. The above example uses the authorization object S CARRID, which combines
airline (CARRID) and activity (ACTVT, with the four possible values create, change, display, and
delete).

An authorization for an authorization object is a concrete set of values for the fields of an
authorization object.

Authorizations are grouped by profiles (business activities), which are assigned to usersin their user
master records.

For further information, see the ABAP Editor keyword documentation for the term Authorization
concept

m |nan authorization check, you specify the object and values that the user needs in an authorization
in his or her user master record.

m In our example, we want to check whether the user has authorization for the object S CARRID in
which the field CARRID (airline) has the value 'LH' and the field ACTVT (activity) has the value
'03 for 'display’. The activity codes are listed in tables TACT and TACT Z and are aso documented
in the relevant authorization objects.

m Inthe AUTHORITY CHECK, you must specify all fields of the object, otherwise, the return code
will be unegqual to zero. If you do not want to perform a check for one field, enter DUMMY in the
fidd.

m The most important return codes for the AUTHORITY -CHECK statement are:
- 0: The user has an authorization with the correct values.
- 4: The user does not have the required authorization.
- 8 Youdid not list al of the fields in the authorization object, so the check was unsuccessful.

m For afull list of dl return codes, see the keyword documentation in the ABAP Editor for
AUTHCORI TY- CHECK.

m You can only enter single fields after the FIELD addition, not selection tables. However, there are
function modules that can perform an AUTHORITY -CHECK for al valuesin a selection table.

m Usethe modd for the AUTHORITY -CHECK in the ABAP Editor. This modd inserts all names of
the authorization object fields.

m The R/3 System contains tools that help you to administer authorizations and assign them to user
master records.

m Authorizations are aways assigned to a user using authorization profiles

m Authorization profiles consist of a set of authorizations and are used to administer authorizations that
are required for a particular activity (work center description).

When you call atransaction using its transaction code, a system program starts to perform automatic
authorization checks.

Firstly, a system program checks whether the transaction is listed in the table TSTC and whether it is
locked. Using the entries in the TSTC table, the system program determines the name of the ABAP
program and the number of the first screen.

Next, the system program uses the authorization object S TCODE to see whether the user is
authorized to use the transaction.

After that, it checks whether a particular field of an authorization object is assigned to the
transaction. The user calling the transaction must have an authorization for the authorization object
listed in table TSTCA in his or her user master record, that also contains the values specified in table
TSTCA.

If the user has this authorization, the system starts the transaction. If not, the transaction is not
started, and the system displays an error message.

After this, the authorization checks in the ABAP program (AUTHCORI TY- CHECK) are processed.

Section: Enhancements and Modifications

8 SAP AG 1999

Content: Enhancements and Modifications

Unit Course Overview Unit Business Transaction

Events
Unit Changing the SAP Standard
Unit Business Add-Ins
Unit Personalization
Unit Modifications
Unit Enhancements to
Dictionary Elements Unit Summary

Unit Enhancements using
Customer Exits

a4 SAPAG 1999

Introduction: Contents

Course goal

Course objectives
Course contents

Course overview diagram
Main business scenario

Introduction

8 SAP AG 1999

Changing the SAP Standard

Contents:

® Overview of the Change Levels
® Decision diagram

® Change techniques

8 SAP AG 1999

m You can adjust the R/3 System to meet your needs in the following ways:

Customizing: This means setting up specific business processes and functions for your system
according to an implementation guide. The need for these changes has aready been foreseen by
SAP and an implementation procedure has been devel oped.

Per sonalization: This means making changesto certain fields global display attributes (setting
default values or fading fields out atogether), as well as creating user-specific menu sequences.

Modifications: These are changes to SAP Repository objects made at the customer site. If SAP
delivers a changed version of the object, the customer's system must be adjusted to reflect these
changes. Prior to Release 4.0B these adjustments had to be made manually using upgrade
utilities. From Release 4.5A, this procedure has been automated with the Modification
Assistant.

Enhancements: This means creating Repository objects for individual customers that refer to
objects that already exist in the SAP Repository.

Customer Developments: This means creating Repository objects unique to individual
customers in a specific namespace reserved for new customer objects.

m Customizing and most personaization is done using tools found in AcceleratedSAP; customer
developments, enhancements, and modifications are all made using the tools available in the ABAP
Workbench.

If your requirements cannot be met by Customizing or personalization, you may either start a
development project or try using a CSP solution (= Complementary Software Product).

A development project falls into the customer development category if the SAP standard does not
aready contain functions similar to the one you are trying to develop. If, however, asimilar SAP
function exists, try to assimilate it into your development project by either enhancing or modifying it,
by using a user exit, or smply by making a copy the appropriate SAP program.

Modifications can create problems, as new versions of SAP objects must be adjusted after an
upgrade to coincide with modified versions of SAP objects you have created. Prior to Release 4.0B
these adjustments had to be made manually using upgrade utilities. From Release 4.5A, this
procedure has been automated with the Modification Assistant.

Thus, you should only make modifications if:

* Customizing or personalizing cannot satisfy your requirements

* Enhancements or user exits are not planned

* It would not make sense to copy the SAP object to the customer namespace.

m The Business Engineer is made up of al SAP implementation tools. These include:

* The R/3Reference M odel
contains al of the models used to describe R/3 (the process model, the data model, the
organization model)

* The Implementation Guide (IMG)
* A complete list of al Customizing changes

m Persondization accelerates and ssmplifies how business cases are processed by the R/3 System.
During persondization, individual application transactions are adjusted to meet the business needs of
your company as awhole or even to the needs of specific user groups within your company. All
unnecessary information and functions found in the transaction are switched off.

m Globa display attributes allow you to define default values for specific screen fields. You can aso
suppress individual fields or table control columnsin a particular transaction, or even awhole screen.

m Role-based menus, favorites, and shortcuts allow you to adjust menu sequences to reflect the needs
of different user groups within your company.

m Modifications are changes to SAP objectsin customer systems. They are:

* executed with the help of user exits (these are subroutines reserved for customers that have been
inserted in objects in the SAP namespace)

* ‘hard-coded' at various points within SAP Repository objects.

m Customer developments are programs developed by customers that can call SAP Repository objects.
Example: A customer creates a program that calls an SAP function module.

m The enhancement concepts embody the reverse of this principle: SAP programs call Repository
objects that you, as a customer, created or changed. Example: Y ou use a function module exit called
by an SAP program. Y ou can enhance your system at the following levels:

* in ABAP programs (function module exit)
* on GUI interfaces (menu exit)
* on screens by inserting a subscreen in an area specified by SAP (scr een exit)

* 0n screens by processing customer code that refers to a specific field on the screen (field exit)

in ABAP Dictionary tables or structures (table enhancement)

SAP provides two ways to enhance tables and structures with fields.
* Structures
* Customizing includes ("Cl includes")

Both techniques allow you to attach fields to a table without actually having to modify the table
itself.

Append structures may only be assigned to asingle table. A table may, however, have severa
append structures attached to it. During activation, the system searches for all active append
structures for that table and attaches them to the table.

Append structures differ from include structures in how they refer to their tables. In order to include
fields from an include structure in atable, you must add an .INCLUDE..." line to the table. In this
case, the table refers to the substructure. Append structures, on the other hand, refer to their tables. In
this case, the tables themselves are not atered in any way by the reference.

m Append structures alow you to attach fields to a table without actually having to modify the table
itself. Table enhancements using append structures therefore do not have to be planned by SAP
developers. An append structure can only belong to exactly one table.

m In contrast, Cl_includes alow you to use the same structure in multiple tables. The include statement
must already exist in the SAP table or structure. Table enhancements using Cl_includes do, however,
have to be planned by SAP developers.

m Field exits need not be prepared by the SAP application developer. You can create afield exit for
any screen input field that has a Dictionary reference. The reference object is the data element.

m The unit "Enhancements to Dictionary Elements’ discusses how the field exits work.

m The purpose of a program enhancement is always to call an object in the customer namespace. Y ou
can use the following techniques here:

* A specid exit function moduleis called by the SAP application program. The function module is
part of afunction group that is handled in a special manner by the system.

* Business transaction events
The SAP gpplication program dynamically calls a function module in the customer namespace.

* Business add-ins

The application program calls amethod of aclass or instance of aclass. Thisclassliesin the
customer namespace.

m Program enhancements permit you to execute additional program logic in SAP application programs.
SAP currently provides the techniques outlined above.

m The advantages and restrictions of the particular enhancement techniques will be discussed in detail
in later units.

m Menu enhancements permit you to add additional menu entries to an SAP standard menu. The
system provides two options here:

* Customer exits
* Business add-ins
m The additional menu entries are merged into the GUI interface.

m When the function code is implemented, you can change the text of the menu entry, and - provided
the SAP developer specified this option - change the icons.

m Screen exits belong to the customer exits. They allow you to display additional objectsin an SAP
application program screen. The SAP developer must:

* Define the subscreen areas

* Specify the corresponding calsin the flow logic
* Provide the framework for the data transport

* Include the screen exit in an enhancement

* Maintain the documentation

m Y ou can implement screen exits by creating subscreens, possibly with flow logic. You also have to
implement the data transport.

m How you implement screen exits will be discussed in the "Enhancements using Customer Exits' unit.

Any change that you make your system to an object that has been ddivered by SAP isknown as a
modification.
Modifications can lead to complications at upgrade. When SAP ddlivers anew version of the object,

you must decide whether the new object should be used, or whether you want to continue using your
old object.

Prior to Release 4.0B, modifications were only recorded at Repository object level (for example, an
include program).

Since Release 4.5A, the granularity for recording modifications has been finer. This has been made
possible by the Modification Assistant, as we will see in the "Modifications’ unit.

The modification adjustment process has aso been overhauled. How modifications are adjusted is
aso part of the "Modifications" unit.

Key toiconsin the exercises and solutions

)\ Exercises

= Solutions

i) Objectives

DD Businessscenarios
@ Hints and tips

4 Warning or caution

Data used in exercises

Type of data

Data in training system

Tables SFLIGHTOO .. SFLIGHT18
Data elements S CARRID00 .. S CARRID18
Programs SAPBC425 EXIT_00..

SAPBC425 EXIT 18

Transaction codes

BC425_00.. BC425 18

Programs

SAPBC425_BOOKING_00 ..
SAPBC425 BOOKING_00

Personalization F'
SAP

Contents:

® Personalizing the workplace

® Personalizing transactions

8 SAP AG 1999

The SAP System adjusts itself to the user's style of working: When the system is started, the users
are only offered functions that are typical in their daily work. There is no unnecessary navigating
through functions that are not used. In the past, user menus could be caled in the Session Manager
or in the dynamic menu in R/3. With Release 4.6A, the role-based menu is output in the form of a
tree for each user.

When you select afunction, it is started in the same session. This function replaces the role-based
menu. The role-based menu appears again automatically when you leave a transaction or when you
start anew session.

In the maintenance screen for activity groups (Transaction PFCG), the administrator can combine the
menu structure for an activity group consisting of transactions, reports, and Internet/Intranet links to
auser menu. Y ou can choose any structure and description for the functions contained.

The enterprise menu is no longer available with Release 4.6A.

Typica questions at awork center are:

» What function should be performed at this work center?

* Which menus are needed?

* What authorizations do the users need?

* Which users are involved here?

The goal of personalization is to answer these questions in the R/3 System.
The tools provided by R/3 for this purpose are area menus and activity groups.

We will now see how these tools can be used to adapt the work center to the user's needs as
effectively as possible.

m Areamenus were also included prior to this release. They can contain:
* Transactions
* Referencesto other area menus
* Executable programs (new)
* Listscreated by programs (new)
m From this release onwards, you can include programs in area menus that create lists directly.

m Y Ou can assign users an area menu as their start menu. These users no longer see the complete SAP
menu when they log onto R/3, but only the menu items that they require. By integrating the report
trees, users obtains a complete view of their work environment.

m Areamenus can aso be linked to activity groups.

m In contrast to previous releases, area menus are displayed in tree form starting with Release 4.6. This
gives the user a clearer overview of the available options.

m The objects that can be included in the area menu are listed in the right part of the graphic.

m Use Transaction SE43 to create an area menu. You can call this transaction with the given path.
m Assign aname in the corresponding customer namespace and create the area menu.

m You can include the area menus in your list of favoritesin the GUI for faster editing at a later time.

Y ou build area menus by creating entries in the tree structure. Position the cursor and choose the
corresponding icon for insertion at the same level or one level down. In the popup window that now
appears, choose a description and the corresponding transaction code.

Y ou can also insert reports (objects that create lists, such as ABAP programs, queries, and so on)

Y ou can no longer store listsin report trees as of Release 4.6A. Report trees have been integrated in
the new area menus.

With List--> Save --> Report treeyou can store lists for the program. Since the lists are stored
program-specifically , you can display them in the corresponding area menus.

m During an upgrade, existing area menus are automatically migrated to the new structure. Y ou can
make further entriesin these new area menus.

With Release 4.6, SAP has implemented user-oriented R/3 operations. When the R/3 gpplication is

started, atree structure appearsin the initial screen containing the entries the user needs for his daily
work.

These role-based menus go beyond the scope of the area menus. Only the menu structure can be
defined for areamenus. Y ou can define them as you like for role-based menus. They aso use the
functions of the Profile Generator.

By using specific role-based menus you can set the following individualy:
* Menu structure

* Profiles

e User assgnments

The term "activity group” is synonymous in R/3 with "role-based menu.” Y ou can edit activity
groups using the Profile Generator.

m Before you create your own activity groups, you should evaluate the predefined workplace examples
that SAP deliversin Release 4.6A. Y ou can use these workplace examples just as they aredelivered
in the SAP System.

m Deélivered activity groups should not be changed. Y ou can combine several activity groups to form a
composite activity group. which may also include activity groups delivered by SAP.

m To create an activity group, choose the appropriate button on the initial R/3 screen.

m Assign aname for the activity group in the customer namespace and press Create. The system
displays the maintenance screen for activity groups.

m The activity group naming conventions are defined as follows:
* SAP* delivered by SAP
* Rest customer namespace

m There are severa ways to build the menu for your activity group. Y ou can copy sub-trees and menu
entries from

* the SAP menu
* another activity group
* an area menu
m You can aso maintain single entries. These can be
* atransaction code
* areport in which a transaction code is automatically generated
* ahyperlink (e.g. web address or a path on the loca machine)

m You cannot maintain single entries if it is a composite activity group.

The system determines the authorization objects used in the given transactions. The assignment of
single authorization objects for a transaction using Transaction SU22 provides the basis for this
determination.

Transaction SU22 aso specifies for the particular authorizations whether or not:
* there must be a check
* there are default values

Using these default values makes maintaining authorizations much smpler. You only haveto
maintain authorizations marked with the yellow icon. If you do not do so, full authorization is
automatically given.

In the last step, a profile is generated from your entries. The system proposes a name T-<number>,
which you can change here, but not later on. Enter a meaningful name.

m Next assign the relevant users to the activity group.
m Once you have assigned the users, you must adjust the user master profiles accordingly. The profile
that was created is automatically assigned to the given users.

m A user can be assigned to more than one activity group. Each time you change an activity group, you
must also adjust the user masters again.

m SAP delivers more than one hundred preconfigured activity groups. Choose the one most suitable for
the particular work center and assign the users. Adjust the user master records.

m You can change activity groups delivered by SAP. However, these changes are lost during an
upgrade. We therefore recommend that you copy the delivered activity groups and adjust the copy.

m Inthelast section we introduced the user-specific appearance of the interface, which isimplemented
using activity groups. In addition, there are ways to set single transactions to the needs of your
enterprise or of individual user groups. In this section we will see how atransaction can be

smplified without being modified.

m In this example you see two screens of an SAP transaction that should be redesigned using a
transaction variant.

m Screen 100 is changed as follows: Fields are hidden; field attributes are changed; buttons are hidden.

m Screen 200 shows the following changes: buttons moved and screen inserted (with GuiXT). We will
be discussing the use of GuiXT in more detail |ater.

m A transaction variant is areference to a st of screen variants.

m Y ou can create any number of screen variants for a screen. The transaction variant consists of these
screen variants.

m You can create different kinds of transaction variants for an SAP transaction:
e astandard variant
 any number of "norma" transaction variants

m The standard variant is executed at runtime instead of the SAP ddlivered transaction. No new
transaction code is required.

m A normal transaction variant will be called with its own transaction code of type "variant
transaction”.

To create transaction variants, choose the component Personalization from the entry AcceleratedSAP
in the SAP menu and then Transaction variant. Y ou go to the transaction for maintaining transaction
variants.

Enter the name of the transaction from which you want to create a variant. The name of the variant
must be unique in the system and be in the customer namespace.

With the menu option Goto, choose whether you want to create a client-specific or a cross-client
transaction variant.

To create the variant, choose the appropriate button in the application toolbar.

m Pressing "Screen entries’ starts the transaction in CALL mode.

m Triggering adialog also triggers PAI of the current screen. The system sends another screen in which
you can evaluate the fields of the screen.

m Also read the online documentation about transaction variants.

m The screen that was evaluated is stored as a screen variant when you continue. Thiswill be discussed
next.

m A screen variant is an independent Repository object, which has a unique name in the system. The
name is constructed as follows:

e Variant name

* Client (only for client-specific transaction variants)
* Screen number
m Here you specify whether or not field contents should be copied to the screen variant. Y ou can set

various attributes for the individual fields: Y ou can undo or hide the input status of afield. You can
find a detailed list of options in the online documentation about transaction variants.

m The GuiXT tool permits you to design the individual screens in a more flexible manner. GuiXT uses
a script language to

* Position objects on the screen,
e Set attributes,
* Include new objects.

m |f you press"GuiXT", an editor window appears where you can enter the script. Y ou can also choose
GuiXT files stored on your local machine.

m You can aso import scripts created on the local machine and export them there.

m Y ou can change the layout of a screen with the script language used by GuiXT. You can
* Move objects

¢ |nsart screens

Insert pushbuttons

Insert value helps
Change the input attributes of fields

Delete screen € ements

m You are provided with a complete documentation of GuiXT with the installation. Y ou can find more
information on the homepage of the GuiXT vendor (http://www.synactive.com).

m You have the following options for starting a transaction variant:
* Test environment
* Transaction code of type "variant transaction”
e User menu

m You can test the transaction flow in the test environment of the transaction variant maintenance
routine. Thisis intended primarily for developers creating transaction variants.

m Toinsert avariant transaction in a user menu or activity group, you must create a transaction code of
type "variant transaction".

m To dart atransaction variant from a menu, you must create a transaction code of type "variant
transaction”. Y ou can navigate there directly from the maintenance screen for the transaction
variants. Alternatively you can start the corresponding transaction from the ABAP Workbench.

m You can insert the transaction in a menu by choosing one of the following two options. maintenance
of

* Activity group or
* Areamenu.

m The user can immediately see the changes made in thisway.

Unit: Personalization
Topic: Creating a development class

*e e

For correct development you need a development class.

>,

1-1 Create adevelopment class.
1-1-1 The development class should be named ZBCA425 ##. (## = group number).
1-1-2 Assign the development class to a change request.

Exercises

Unit: Personalization

Topic: Create and enhance ar ea menus, create user
roles

*ee

At the conclusion of this exercise, you will be able to:

Create an area menu that you will use asinitial screen for the rest
of the training course. This area menu will contain all the entries
you need for working efficiently during the course. This includes

both the transactions specific to this course and all the
transactions of the ABAP Workbench.

Only some R/3 functions will be actively used at awork center.
- The user should therefore only see a small selection of the
) / transactions of the complete R'3 menu.

1-1

1-2

2-1

How do | create an area menu?

1-1-1 Which transaction / menu path can be used to create area menus? Include
the transaction in your list of favorites.

1-1-2 Create an areamenu called ZBC425 _##. Adhere to the naming convention
(## = group number).

Create afolder "Application programs" in the structure you created.

1-2-1 Create entries for the following topics that you will use during the training
Course:
Transaction BC425_##.

1-2-2 Create another folder named "Development” and include the following
transactions: SHDO, SPRO, PFCG.

1-2-3 Insert areference to area menu SO001 (ABAP Workbench) in your structure.

1-2-4 Enter the area menu you created as the start menu in your user fixed values.
What does your start menu look like when you start a new session?

1-2-5 Check your results.

Create auser role.

2-1-1 Which transaction can be used to create a user role? How can you get there
quickly?

2-1-2 Create auser role named ZBCA425 _## (## = group number).

2-1-3 Include the area menu you created in the user role.
2-1-4 Create anew folder. Insert the program SAPBC425 BOOKI NG_## here.

It is not the aim of this training course to fully explain the
SAP authorization concept. In this exercise we will simply
create a menu that can be used as a user-specific menu,
without maintaining the profile.

2-1-5 Maintain the authorization data: Assign full authorization for the displayed
Ub-trees.

~ L~ Assign full authorization by selecting the corresponding
~ _ traffic light icon for the relevant sub-tree.

2-1-6 Insert authorization object S CARRI D in the authorizations manually.
Assign the following authorization here:

Actions All
Airline Everything except
for U*

2-1-7 Assign your user BC425-## this user role. Adjust the user master records.
2-1-8 Check your results. What options do you now have to start transactions?

_~ L~ Thechangestake effect immediately. Create a new session
— toseethe changesin the initial menu. Check your user in the
user maintenance screen (SUOL).

—

Exercises

Unit: Personalization
Topic: Transaction variants

*ee

At the conclusion of this exercise, you will be able to:

Significantly simplify use of atransaction with screen variants
and transaction variants.

Your users complain that Transaction BC425_TAVAR ismuch
too difficult to use (despite the Enjoy initiative). Actually you

) / only have to fill in afew fields. A number of other figlds,

1-3

1-4

1-5

however, are superfluous. Help your users by ssmplifying use of
the transaction.

Create atransaction variant for Transaction BC425_ TAVAR.

1-1-1 How do you get to the maintenance screen for transaction variants? Include
the corresponding transaction in your list of favorites.

1-1-2 Givethe variant aname: ZBC425## (## = group number).

Go through the transaction screen by screen and create a screen variant for each of
the screens. Y ou should make the following changes:

1-2-1 Initial screen: Initidize the first two fields with "DE", "Frankfurt" and
cancel the ready for input status.

1-2-2 Second screen: Set column "APT" of the table control to not visible.
Deactivate menu function "BACK".

1-2-3 Third screen: Deactivate menu function "BACK".
Create a transaction code for the variant. Transaction name: ZBC425##.
Include the variant in the area menu you created.

Test your resullts.

7

1-1

1-2

2-1

Unit: Personalization
Topic: Creating area menus

Y ou can create an area menu by choosing the following menu path in the SAP

menu:

Tools® ABAP Workbench® Development® Other tools® Area menus

1-1-1
1-1-2

Alternatively you can choose Transaction SE43

Choose the menu path System ® User profile® Expand favoritesto
include the transaction in your list of favorites.

Create the folder using the corresponding pushbutton or menu entry.

1-2-1

1-2-2

1-2-3

1-2-4

1-2-5

Enter the transaction code in the right column: After you confirm your
entry, the short text for the transaction is displayed. Complete the entries.

Create another folder as described above. Insert transactions SHDO, SPRO,
PFCGinthelist.

Position the cursor on the root node and choose Insert. Enter transaction
code S001 and set attribute "Reference”’. Complete the entry.

Choose the menu path System ® User profile® Own datato define the
area menu as start menu. Y ou can no longer go to the SAP menu.

Create a new session. If you choose "SAP Menu", the menu you defined as
start menu is displayed.

Creating arole (activity group).

2-1-1

2-1-2

2-1-3
2-1-4

2-1-5

2-1-6

Choose the corresponding pushbutton "Create menu” in the initial screen or
the entry in the area menu you created or choose transaction code PFCG.

Create an activity group named ZBC425 ## an (## = group number). Give
it a short description and maintain the description of the activity group.

Include the area menu you created in the activity group.

Create a new folder. Insert the program SAPBC425_BOCKI NG_## by
choosing the pushbutton "+Report”.

Maintain the authorization data: Choose the appropriate tab title. Choose
"Change authorization data’. A list with atree-like structure appears. The
individual sub-trees have a yellow traffic light. Give full authorization for
the displayed sub-trees by selecting the traffic light and confirming the next
modal dialog box.

Insert authorization object S CARRID by choosing pushbutton "+Manual".
The object appears in an appropriate sub-tree which now has the attribute
"manua”. Expand the sub-tree and maintain the field values:

Field name or data class Values

Action *
Airline AtoT*
V to Z*

Save the authorizations. Copy the profile name. Generate the profile.

2-1-7 Choosetab title "User". Enter your user BC425-##. Save your entry. Adjust
the user master records by selecting the right pushbutton.

2-1-8 Create anew session. You can now toggle between the user menu and the
SAP menu.

7

1-1

1-2

1-3

Solutions

Unit: Personalization
Topic: Transaction variants

Create a transaction variant for Transaction BC425_TAVAR:

1-1-1

1-1-2

Y ou can go to the maintenance screen for transaction variants in different
ways, for example with

SAP Menu - Tools—> AcceleratedSAP - Personalizing > Transaction
variants

Transaction SHDO is started. Choose

System - User profile> Expand favorites to include the transaction in
your list of favorites.

Enter the name of the transaction from which you want to create a variant in
field "Transaction”. Enter the name of the variant in field "Variant":
ZBCA25## (## = group number).

Execute the transaction screen by screen. Enter the corresponding values in the
input fields. Leave the screen with the appropriate pushbutton and create a screen
variant for each of the screens.

1-2-1

1-2-2

1-2-3

1-2-4

Initial screen: Assign the first two fields the values "DE" and "Frankfurt"”.

L eave the screen by pressing the appropriate pushbutton. In the next popup
window mark the checkbox "Copy field values' and the corresponding
checkboxes for the screen objects. Give the screen variant a short
description: Save the screen variant.

Second screen: Leave the screen by pressing the appropriate pushbutton.
Mark "Copy values' again in the next dialog box. Mark column"FLH" of
the table control as not visible. Choose the pushbutton for menu functions
and deselect function code "BACK". Save the screen variant.

Third screen: Leave the screen with the "Save" function. Deactivate menu
function "BACK" analogoudly to 1-2-2. Save the screen variant.

A list with a summary of all the screen variants that were created appears.
Y ou can now check your entries again. Save them to finally create the
transaction variant.

To create a transaction code for the variant you can call the transaction code
maintenance routine. Alternatively you can select the menu path Goto ->
Createtransaction code from transaction SHDO. Give it the name ZBCA425##.

1-4 Go to the area menu maintenance routine (Transaction SE43). Include the
transaction variant in your area menu ZBC425_## . Proceed as described in the
exercise on maintaining area menus.

Enhancements to Dictionary Elements

Contents:

® Table enhancements

® Field exits

8 SAP AG 1999

Tables and structures can be expanded in one of two different ways:

Append structures allow you to enhance tables by adding fields to them that are not part of the
standard. With append structures, customers can add their own fields to any table or structure they
want.

Append structures are created for use with a specific table. However, a table can have multiple
append structures assigned to it.

If itisknown in advance that one of the tables or structures delivered by SAP needs to have
customer-specific fields added to it, the SAP application developer includes thesefieldsin the table
using a Customizing include statement.

The same Customizing include can be used in multiple tables or structures. This ensures consistency
in these tables and structures whenever the include is extended.

Nonexistent Customizing includes do not lead to errors.

Append structures alow you to attach fields to a table without actually having to modify the table
itself.

Append structures may only be assigned to asingle table. A table may, however, have severa
append structures attached to it. Whenever atable is activated, the system searches for dl active
append structures for that table and attaches them to the table. If an append structure is created or
changed and then activated, the table it is assigned to is aso activated, and al of the changes made to
the append structure take effect in the table as well.

Y ou can use the fields in append structures in ABAP programs just as you would any other field in
the table.

Note: If you copy atable that has an append structure attached to it, the fields in the append structure
become normal fields in the target table.

m You create append structures in the customer namespace. This protects them from being overwritten
at upgrade or during release upgrade. New versions of standard tables are loaded during upgrades.
The fields contained in active append structures are then appended to the new standard tables when
these new standard tables are activated for the first time.

m From Release 3.0, the field sequence in the ABAP Dictionary can differ from the field sequencein
the database. Therefore, no conversion of the database table is necessary when adding an append
structure or inserting fields into an existing one. All necessary structure adjustment is taken care of
automatically when you adjust the database catalog (ALTER TABLE). The table's definition is
changed when it is activated in the ABAP Dictionary and the new field is appended to the database
table.

m Pay attention to the following points when using append structures.
- You cannot create append structures for pool and cluster tables.

- If atable contains along field (either of datatype LCHR or LRAW), then it is not possible to
expand the table with an append structure. This is because long fields of this kind must always
be the last field in their respective tables. No fields from an append structure may be added
after them.

- If you use an append structure to expand an SAP table, the field names in your append structure
must be in the customer namespace, that is, they must begin with either YY or ZZ. This
prevents naming conflicts from occuring with any new fields that SAP may insert in the future.

Some of the tables and structures ddlivered with the R/3 standard contain specia include statements:
Customizing includes. These are often inserted in those standard tables that need to have customer-
specific fields added to them.

In contrast to append structures, Customizing includes can be inserted into more than one table. This
provides for data consistency throughout the tables and structures affected whenever the include is
atered.

Customizing include programs are part of the customer namespace: al of their names begin with
'Cl_". This naming convention guarantees that nonexistent Customizing includes do not lead to
errors. No code for Customizing includesis delivered with the R/3 standard.

Y ou create Customizing includes using specia Customizing transactions. Some are aready part of
SAP enhancements and can be created by using project management (see the unit on 'Enhancements
using Customer EXxits).

The Customizing include field names must lie in the customer namespace just like field namesin
append structures. These names must al begin with either 'YY' or 'ZZ'.

When adding the fields of a Customizing include to your database, adhere to same rules you would
with append structures.

m Every timethey define a data e ement, the SAP application programmers define keywords in
different lengths and a short description for each data element.

m You create field exitsin Project management. Field exits are processed when the user leaves a screen
that contains a field which refers to a data element containing afield exit.

SAP lets you create afield exit for every input-ready screen field that has been created with
reference to the ABAP Dictionary. The additional program logic is stored in a function module and
isexecuted at a specific point in the PAI logic.

The dide shows the order in which processing takes place. Before the PAI logic of the screenis
executed, the system performs the following checks. First the system checksiif al the required fields
have been filled in. If arequired field is empty, the screen is shown again.

The system then checks that data has been entered in the correct format.

Any defined field exits are executed next. For example, by sending an error message you can have
the screen sent again.

Once all the field exits have been checked, the screen is processed as normal.
* Fied transport

* Foreign key check

* Processing the PAl module

Field exits take you from a screen field with a data element reference to afunction module. Field
exits can be either globa or local:

Global field exits are not limited to a particular screen: If agloba exit's data element is used on
severd screens, the system goes to the function module for al these screens after activating the field
exit. Here you can, for example, edit the contents, force a new entry to be made by outputting an
error message, or prohibit certain users from proceeding further.

Local field exits are valid for one screen only. If you assign a screen from a specific program to a
field exit, then the system will go to the appropriate function module from this screen once the exit
has been activated.

Y ou can ether create a globa field exit or up to 36 local field exits for a data element, but not both.

Each exit number refers to a different function module. Field exit function modules adhere to the
following naming convention:

* Prefix: FIELD_EXIT_
* Name: <Dataelement>
* Suffix (for local field exit): _0Oto_9, Ato_Z

To create field exits, choose Utilities in the ABAP Workbench. Choose Enhancements and then
Project management to edit field exits and to implement customer exits. Do not create field exits
directly from the Function Builder.

Choose Goto -> Global enhancements -> Field exits to start the transaction for maintaining field
exits. To create a new enhancement, use the menu path Text Enhancements -> Create.

Enter the name of the data element to which your screen field refers in the modal dialog box. The
Function Builder is started with a special naming convention and interface options. The system
specifies the name of the field exit. Do not change this name. Create the function modulein a
customer function group.

The function module must be assigned to an existing customer function group.

The function module interface is fixed and cannot be changed. The function module has an import
parameter | NPUT and export parameter OUTPUT. The contents of the screen field are stored in
parameter | NPUT . The contents of OUTPUT are returned in the screen field when you leave the
function module.

m Field exits are not transported automatically. Therefore, you must assign the value of INPUT to
OUTPUT in your source code. Otherwise the screen field would be blank after executing the field

exit.

m Thefollowing ABAP statements are not alowed in field exit function modules:

CALL SCREEN, CALL DIALOG, CALL TRANSACTION, SUBMIT
COMMIT WORK, ROLLBACK WORK

COMMUNICATION RECEIVE

EXIT FROM STEP-LOOP

MESSAGE |, MESSAGE W

STOP, REJECT

m When you debug a screen that is referenced by afield exit, the field exit code is ignored by the
debugger. As with any normal function module, you can, however, debug the field exit code in the
Function Builder's test environment.

m You can create loca field exits that relate to a specific screen. A globa field exit must aready exigt.
Edit the local field exit based on the global field exit.

m You can create up to 36 local field exits, each of which carries a unique suffix. The system proposes
aname for the function module; you should use this name.

m Defining loca field exits means that the function module of the global field exitsinitially created is
no longer used. However, you must not delete it, for technical reasons. The field exitsin the system
would be deleted if you deleted the global function module of the field exit from the li<t.

m You must activate the field exit as well as the function module. Also note that field exits are only
taken into account during screen execution if the R/3 profile parameter abap/fieldexit = YES has
been set for dl application servers. (This profile parameter is set to ‘'NO' by default).

m |f you declare field exits for multiple screen fields, you have no contr ol over the order in which they
are procesesd. lin particular, you cannot access the contents of ather screen fieldsin afield exit.

m Also Read Note 29377 about field exits.

*e e

Unit: Enhancementsto Dictionary Objects
Topic: Tableenhancements

At the conclusion of this exercise, you will be able to:

Enhance tables with append structures.

Y ou work as a computer specialist for alarge travel agency. Your
company uses R/3. One of the transactions in your R/3 System
has been speciadly tailored to process air travel data. Y our fellow
employees use transaction BC425_ ## to display flight
information when helping customers. They would like more
information about a flight, for example the pilot's name or the
main medl.

Your flight data is stored in table SFLI GHT##. Y ou need to add
two columns to this table without modifying it.

1-1 How can you add these two fields to table SFLI GHT## without modifying it?

1-1-1
1-1-2

How do you go about enhancing table SFLI GHT##7?

Enhance table SFL1 GHT## with a technique that does not require
modifications.

1-2 Create an append structure for table SFLI GHT##.

1-2-1

1-2-2

N
~
-

Include two fields in the structure:
One should contain the pilot's name (character string of length 25)
and one should contain the meal (character string of length20).

Define the types of the fields. Choose the type that strikes you as most
suitable.

~ 1/~ Youwill usethese fields later onin a screen. Doing alittle

— more work now will save you work later on.

Exercises

Unit: Enhancementsto Dictionary Elements
Topic: Field exits

*ee

At the conclusion of this exercise, you will be able to:

Implement afield exit that can be used to make supplementary
checks of a screen field.

The transaction that your co-workers use to display flight
information (BC425_##) alows you to access datafor al airline

> / carriers. The customer service personnel, however, should only

1-1

1-2

1-3

be able to access the airlines for which it has explicit
authorization.

What is the name of the program for the above transaction?

1-1-1 What isthe name of the data element referenced by the input field for the
airline?

1-1-2 Are the requirements met for linking afield exit to this screen field?

How can you create afield exit?

1-2-1 Create afidld exit for the screen field found under 1-1. Reference the
corresponding data el ement.

1-2-2 The Function Builder is started. Can you change the interface of the
Function Builder? If you need a function group, create one named
ZBCA25 ##.

1-2-3 What do you have to code in the source text? Program an authorization
check. Y ou can you perform an authorization check?

1-2-4 If the check is negative, send a message to this effect. Y ou can create it
yourself (message class ZBC425_##) or use message 010 in message class
BC425.

1-2-5 Activate the function module and the field exit.

Check your results.
1-3-1 For which airling(s) do you not have authorization?

1-4 Create alocal field exit for screen 0100 of Transaction BC425_## based on the

global field exit.
~ 4/~ Useasecond session.

7

1-1

1-2

1-3

Unit: Enhancementsto Dictionary Objects
Topic: Tableenhancements

An append structure is the only way to enhance a transparent table (FLI GHT## is
such atable) without modifying it.

1-1-1

1-1-2

How do you go about enhancing table SFL1 GHT##? Y ou can work with
append structures just like with "normal™ structure definitions. They are
created from atable (or structure). Call the ABAP Dictionary (Transaction
SE11 or the Object Navigator Single objects > Edit Dictionary objects).
Enter table name SFLI GHT## and choose Display.

Enhance table SFL1 GHT## with the append technique. The detailed
procedure is described below:

Create your gppend structure using either the menu option Goto - Append
structures... or its corresponding pushbutton; accept the name that the system
suggests. Give the append structure a short description and save it under the
development class you created.

1-2-1

1-2-2

Include two fields in the structure: The field names must begin with YY or
ZZ. For example YYPI LOT and YYMEAL.

One should contain the pilot's name (character string of length 25)

and one should contain the meal (character string of length20).

Create one data element each to define the field type. Ideally you should use
forward navigation. Enter the name Z_ Pl LNAME## and double-click on the
field. Give the data element a short description and an adequate field label.
Create adataelement called Z_MEAL## for the meal. Don't forget to
activate the data element.

Activate the append structure. If an error occurs, you can find details in the
activation log.

Solutions

/ Unit: Modificationsto Dictionary Elements

Topic: Field exits

1-1

1-2

The name of the program for transaction BC425_## iSSAPBC425_FLI GHT##.
You can get this information with the menu path System - Status.

1-1-1 The name of the data element to which the input field for the airline refersis
S CARRI D##. You get it by placing the cursor on the "Airline" field in the
corresponding screen. Choose F 1 there and Technical info in the next
dialog box.

1-1-2 To check that the requirements are satisfied, go to the ScreenPainter for
screen 0100. Y ou can see there that attribute "Dictionary” is set in the
general attributes of the element list.

You can create afield exit for transaction CMOD (menu path in the ABAP
Workbench: Utilities-> Enhancements—> Project management). In the menu,

choose Goto = Text enhancements > Field exits You are now in program
RSMODPREF, which creates field exits.

1-2-1 Inthe menu, choose Field exit > Create. In the next dialog box enter
S _CARRI D as data element name and choose "Continue'.

1-2-2 The Function Builder is started. The name of the function module is already
defined in the input field. If you choose "Create", the function module is
created.

~_You have to assign the function module to a function group.
— Create function group ZBCA25_## in a second session.

AL
~

Can you change the interface of the Function Builder?

1-2-3 Use the statement pattern to add the source text for the AUTHORITY-CHECK.
The source text should be as follows:

out put = input.
AUTHORI TY- CHECK OBJECT 'S CARRI D
I D' CARRID FIELD input
| D ' ACTVT' FIELD '03'.
| F sy-subrc <> 0.
MESSAGE e010(bc425).

1-3 Activate the function module. Go back. The list of field exits appears again.
Activate the field exit with Field exit > Activate

Enhancements Using Customer EXxits

Contents:

Introduction
Enhancement management
Function module exits

Menu exits

Screen exits

8 SAP AG 1999

Application enhancements allow customers to enhance their application functions. Customer exits
are preplanned by SAP and generally consist of several components.

Application enhancements are inactive when delivered and can be completed and activated by
customers as they are needed.

Application enhancement characteristics:

Each enhancement provides you with a set of preplanned, precisely defined functions.

Each interface between SAP and customer functions is clearly defined.

As a customer, you do not need in-depth knowledge of how to implement SAP applications.

Y ou do not need to adjust enhancements at upgrade because of new functions that SAP has
devel oped.

m The SAP application programmer creates SAP enhancements from function module exits, menu exits
and screen exits. A management function is provided for this purpose (transaction code SMOD).

m Customers are given a catalog containing an overview of existing SAP enhancements. They can then
combine the SAP enhancements they want into an enhancement project using transaction CMOD.

m SAP enhancements are made up of component parts. These components include function module
exits, menu exits, and screen exits. A specific component may be used only once in asingle SAP
enhancement (this guarantees the uniqueness of SAP enhancements).

m Customer enhancement projects consist of SAP enhancements. Each individual SAP enhancement
may be used only once in a single customer enhancement program (this guarantees the uniqueness of
acustomer project).

m The SAP application programmer plans possible application enhancements in an application and
defines the necessary components. These components are combined in SAP enhancements.

m The programmers document their enhancements as best they can, so that customers can implement
the enhancements without having to analyze program source code or screen source code.

m First, create an enhancement project and then choose the SAP enhancements that you want to use.

m Next, edit your individua components using the project management function and document the
entire enhancement project.

m Finadly, activate the enhancement project. This activates al of the project's component parts.

m Transaction CMOD darts the project management function. Y ou must give your enhancement
project a name. SAP recommends that you think up a naming convention for al of your projects.
Y ou can, for example, include the project's transaction or module pool in its name. All enhancement
project names must be unique.

m Next, go to the project's attributes and enter a short text describing the enhancenent project. The
system inserts al of the project’s other attributes (such as created by, created on, or status).

m Use the project management function to assign SAP enhancements to customer enhancement
projects. Enter the names of the SAP enhancements you want to use on the appropriate screen.

m The search function gives you a catalog-like overview of existing SAP enhancements. From there
you can select those enhancements that are of interest to you.

m Use the product management function to edit the components of your enhancement project.

m Depending on whether the component you are editing is a function module, a menu entry, or a
subscreen, you branch to either the Function Builder, a dialog box for entering menu entries, or to

the Screen Painter.

m Activation of an enhancement project affects al of its components. After it has been activated
successfully, the project has the status active.

m During activation, all programs, screens, and menus containing components that belong to the

project are regenerated (programs at the time they are executed). After activation, you can see the
effect of the enhancements in your application functions.

m The Deactivate function alows you to reset an active enhancement project's status to inactive.

m When the enhancement project was created, you should have assigned it to a change request. Each of
the component pieces (include programs, subscreens, menu exits, and so on) should be assigned to
the same change request. Using the same change request alows you to transport the entire
enhancement at the same time.

m Function module exits allow customers to implement additional logic in application functions. SAP
application programmers define where function module exits are inserted and what kind of data they
transfer. SAP programmers also create an exit's corresponding function modules complete with short
text, interface, and documentation, as well as describing each function module exit's intended
purpose in the SAP documentation.

m You write the source code for the function modules yoursdlf. If need be, you can aso create your
own screens, text eements, and includes for the function group.

m The system processes your ABAP code when the enhancement project (of which your function
module is a component) is activated. Function module exits have no effect prior to enhancement

project activation.

m This graphic shows the flow of a program providing an enhancement in the form of afunction
module exit.

m The exit function module is called in the PAI logic of a screen at a position determined by the SAP
application developer. Within the function module, the user can add functions in the customer
namespace using an include.

m SAP application programmers use the ABAP statement CALL CUSTOVER- FUNCTI ON ' nnn' to
call function modules, where nnn is athree-digit number. (where 'nnn' is a three-digit number). The
application programmer must aso create the function module he wants to call and its related function

group.
m These function modules belong to function groups whose names begin with X (X function groups).
m The following naming convention applies to these function modules:

- Prefixc EXI'T

- Name: name of the program that calls the function module

- Suffix: three-digit number

- Thethree parts of the name are separated by two underscores.

m The CALL CUSTOVER- FUNCTI ON statement is only executed if the enhancement project has been
activated. Multiple calls of the same function module are all activated at the same time.

m The most frequently asked question concerning enhancements is: how can you see if an application
program offers a function module exit? There are a number of ways to find the answer to this
question.

m To see quickly if an application program offers a function module exit, you can follow the path on
the left-hand side of the graphic: (The menu path System - Status aways displays the name of the
current application program). In our example a suitable character string would be "CALL
CUSTOMER". Use the Find icon and search globally in the program. If your search does not
provide any results, you can define alarger search area. Determine the environment for the
corresponding program and look for the specific character string in the program environment.

m Theright side of the graphic shows you how to find the name of the required enhancement using
search tools. You can restrict the search in the R/3 Repository Information System using different
criteriac These are:

* Development class (also try generic entries)
* Technical name of the enhancement

Use the project management (transaction: CMOD) function to edit function modules for function
module exits.

Use the button for editing components to go directly to the function module editor (display mode).

DO NOT change the function module itself. It is especialy important that you do not ater the
interface in any way. The function module, however, contains an | NCLUDE statement for an include
program that you have to create in the customer namespace.

Double-click on the include name beginning with ZX. This automatically takes you to the editor of
the include program, where you can enter your code.

m To understand how an X function group works, you need to understand how a normal function group
works:

* A function group consists of includes. The system assigns unique names to the includes for
different objects. Some of the include names are smply proposals and some cannot be changed.

» Global datais stored in the TOP include. This include is generated automatically when a function
group is created.

* Function modules are stored in includes with sequential numbering, and they in turn are al stored
in an include ending with UXX.

* You can freely choose the names of the includes for all other objects (subroutines, modules,
events, etc.). However, we advie you to accept the proposed names.

m Exit function groups created by SAP application programmers for enhancment exits contain include
programs that begin with either 'LX" or 'ZX". Y ou can only edit includes beginning with a'Z', since
they are stored in the customer namespace.

m No further function modules may be added to the function group.

m Theinclude program ZxaaaUnn contains the source code for the function modules of afunction
module exit.

m SAP application programmers can declare global datain include program LXaaaTAP.
m You can declare your globa datain include ZXaaaTOP.

m Include program LXaaaTOP aso containsthe FUNCTI ON- POOL statement, which may not be
changed. Therefore, you must always include the message class in parentheses when outputting
messages - for example, MESSAGE E500 (EU).

m The | NCLUDE statement for program ZXaaalnnisina FUNCTI ON - ENDFUNCTI ON block.
Because of this, neither events, nor subroutines(FORM) , nor modules (MODULE) are allowed here.
They can, however, be created in separate includes, which is explained later. Data declarations made
here with DATA are valid localy in this function module.

m The SAP application programmer can aso make a proposal for the source text. In this case, an
I NCLUDE LXaaFnn iscreated (wherenn isthe internal number for the function module in the
include LXaaaUXX). Documentation is also provided within the SAP enhancement. Y ou can copy
the source code from this include into your own customer include program ZXaaaUnn using the
project management transaction.

m You can create your own text elements for the function group.

m SAP application programmers can supply you with default subroutines in include L XaaaF01.
m There could be further includes containing specific sub-objects.

 LX...FO1 contains subroutines delivered by SAP.

» LX...EQ1 contains the events belonging to the X function group.

* LX...001 contains PBO modules for screens to be delivered.

» LX...101 contains the corresponding PAI modules.

Subroutines, modules, and interactive events (AT..) are created asinclude programs and included
enhancements using include program ZXaaaZZZ.

Additional includes must adhere to the following naming convention:
 ZXaaaFnn for subroutines,

» ZXaaaOnn for PBO modules,

e ZXaaalnn for PAl modules,

» ZXaaaEnn for events.

m Youcanuse CALL SCREENto call your own screens. Create the related include programs for the
PBO and PAI modulesin include program ZXaaaZZZ.

m Useforward navigation (select an object and then double-click on it) to create your own screens and
modules.

m Screens created in this manner are automatically given the name of the function module's main
program (SAPLXaaa). The PBO modules for these screens can be found in include
ZXaaa@1, thePAl modulesininclude ZXaaal 01.

m Y ou can enhance SAP applications by adding your own processing logic at predefined points.

m Such enhancements can include your own screens with their corresponding processing logic and
graphical user interface, as well as text elements created by customers.

m Menu exits allow you to attach your own functions to menu optionsin SAP menus. SAP application
programmers reserve certain menu entries in your GUI interface for this. This alows you to define a
text for the reserved menu entry and add your own logic, often in the form of arelated function
module exit. Once you activate menu exits, they become visible in the SAP menu. Whenever this
menu option is chosen, the system processes either a function provided by SAP application
programmers or your own function that you have implemented in a function module exit.

m In order for you to be able to implement menu exits, SAP application programmers must equip the
GUI interface with function codes that begin with aplus sign ('+).

m These function codes are inactive at first and do not appear in the GUI until you have activated them.
They do not appear on the screen.

m Menu exits are edited with the project management transaction (CMOD).

m The pushbutton for editing components calls a dialog box where you can enter short descriptions and
choose alanguage for each additional menu entry.

m You may not make any changes to the GUI interface.

m SAP application programmers determine where a program reads additional function codes and how it
reacts--- either with a function module exit or with a predefined function.

m Y ou can implement menu exits based on reserved function codes. The SA P application programmer
defines the relevant function codes, assigns them to menus, and often provides a function module
exit.

m Menu exits and function module exits are both part of the same SAP enhancement.
m No pushbuttons may be assigned to additional function codes.

m You can, however, make changes to the various menu entries and activate their function codes.

m Screen exits allow you to make use of reserved sections of a main screen (subscreen areas). Y ou can
either display additiona information in these areas or input data. Y ou define the necessary input and
output fields on a customer screen (subscreen).

m Subscreens are rectangular areas on your screen that are reserved for displaying additional screens at
runtime. Each subscreen area can be filled with a different screen (of type subscreen) at runtime.

m The R/3 System determines which screen will be displayed in a subscreen area at PBO. The genera
syntax is as follows:
CALL SUBSCREEN <subscreen_area> | NCLUDI NG <prg> <screen_no>.

m For each subscreen, PAI and PBO events are processed just asiif the subscreen were anormal screen.

m The sequence of "CALL SUBSCREEN' statementsin your main screen's flow logic directly
determines in what order the flow logic of individual subscreens is processed.

m Caution:
- Function codes are only processed in the main screen's flow logic
- You are not allowed enter a name for a subscreen's command field

Y ou are not alowed to define GUI statuses for subscreens

No value for next screen may be entered in a subscreen'sflow control

The SAP application programmer can reserve multiple subscreen areas for a screen.

The subscreen is called during flow control of the main screen with the CALL CUSTOMVER-
SUBSCREEN statement. The name of the subscreen area must be defined without apostrophes. The
function group to which the subscreen belongs is defined statically in apostrophes, but the screen
number can be kept variable by using fields; it must dways have four places.

Screen exit calls are inactive at first, and are skipped when a screen is processed.

Only after a corresponding subscreen has been created in an enhancement project, and this project
has been activated, will the system process the screen exit.

Y ou create subscreensin X function groups. Normally, these function groups aso contain function
module exits.

m Whenever the statement CALL CUSTQOVER- SUBSCREEN <ar ea> | NCLUDI NG <X-
function-pool > <screen_nunber > occursat PBO in the flow control of a screen, a
subscreen is included in the subscreen area defined by SAP application programmers. At this point,
al modules called during the PBO event of the subscreen are also processed.

m The PAI event of a subscreen is processed when the calling screen calls the subscreen during its PAI
event using the statement CALL CUSTOVER- SUBSCREEN <ar ea>.

m The globa data of the caling programis not known to the X function group that contains your

subscreen; SAP application programmers use function module exits to explicitly provide this data to
subscreens.

m |n order to facilitate data transport, modules are called in the flow control of the calling program that
contain function module exits for transferring data via interface parameters.

m Function modules belonging to these kinds of function module exits can be found in the same
function groups as their corresponding subscreens.

m Data must be transported in the other direction as well, since global data from the X function group
that contains your subscreen is not known to the calling program either. For this reason, SAP
application programmers use function module exits to return any data to the calling program that was

changed in the subscreen.

m Thisisdone by calling a module during the main screen's PAI event that contains a function module
exit for returning customer data via interface parameters.

m Subscreens are edited with the project management transaction (CMOD).

m The technical names of screen exits consist of the name of the calling program, a four-digit screen
number, and the name of the subscreen area, followed by the name of the X function group's
program and the number of the subscreen.

m Y ou must create the subscreen as well as the corresponding PBO and PAI modules. The SAP
development environment supports creation with forward navigation.

m Make sure that your subscreens are of screen type subscreen the first time you create them.

m You are not allowed to change any of the interfaces in the X function group that the subscreen and
the function module exits belong to, nor are you alowed to add any of your own function modules.

m See aso therestrictions listed on the dide entitled 'Calling Subscreens.

m Screen exits alow you to determine the layout of certain portions of a screen yoursalf. Y ou can use
these areas to display additional information, or to collect and process data

m Screen exits must be predefined (planned) by an SAP application programmer. Use the statement
CALL CUSTOMVER- SUBSCREEN to integrate these preplanned subscreen areas into the flow
control of the calling screen at PBO and PAI events.

m ASS0On as you activate an enhancement project that contains a subscreen as acomponent, the calling
screen is regenerated and the subscreen is displayed the next time the application function is called.

Unit: Customer exits
Topic: Function module exit

*e e

At the conclusion of this exercise, you will be able to:

Implement an enhancement with a function module exit.

Y our co-workers have asked you to alter Transaction BC425_##
so that every time they try to display the details of aflight in the

)))past,awarningm&sageisdisplayed.

1-1

1-2

Adjust the program so that there is a warning when aflight in the
past is selected. Try to avoid modifying the program.

Check if it is possible to enhance the transaction.

1-1-1 Did the SAP developer implement a customer exit for the given transaction
that you can use to add the required functionality?

1-1-2 What is the name of the corresponding enhancement? Choose the
enhancement that you can use to implement a supplementary check when
you leave the first screen of the transaction.

Implement the enhancement.
1-2-1 Name the enhancement project TG##CUSL.

1-2-2 Program the following check:
Check that the date that was entered is prior to today's date (that is,. liesin
the past). If thisis the case, display a warning containing an appropriate
text.

1-2-3 Create a suitable message in message class ZBCA425 _ ## or use message
011 in message class BC425.

1-2-5 Check you results.

Exercises

Unit: Customer exits
Topic: Menu exit

*ee

At the conclusion of this exercise, you will be able to:

Implement an enhancement with a menu exit in combination
with a function module exit.

Y our co-workers are thrilled with the rew functions that you have
built into the system. The new warning messages in transaction

> / BC425_#t# help them to avoid selecting flights from the past.

1-1

1-2

1-3

However, they want more...

They want you to allow them to display alist of bookings for
their current flight from within the flight display transaction.
They aready use a program that generates this kind of list, but up
until now they have always had to call the program separately. It
iscalled SAPBC425_ BOOKI NG_##.

Examinetransaction BC425_##. Arethere any points in the transaction where you
could call another program (or perhaps even a menu option that could alow you to
call another program)?

1-1-1 Did the SAP developer implement a customer exit for the given transaction
that you can use to add the required functionality?

1-1-2 What is the name of the corresponding enhancement? Choose the
enhancement with which you can implement a menu enhancement.

Implement the enhancement.
1-2-1 Name the enhancement project TG##CUS2.

1-2-2 Edit the components of the enhancement. Start the specified program by
choosing the supplementary menu entry. Return to Transaction BC425 ##
again when you leave the ligt.

1-2-3 Passtherelevant parametersto Program SAPBC425 BOOKI NG_##. Note
the data provided in the function modul e exit.

Check your results.

Exercises

Unit: Customer exits
Topic: Screen exit

At the conclusion of this exercise, you will be able to:

Display further fields in the screen of an SAP transaction and
fill them.

*ee

"It would be redlly great if the details lists of Transaction
BC425_## for displaying flights would also display further

))) dawar

Y ou accept this new challenge from your co-workers and try to
solve the problem without having to modify the transaction.
Specificaly, you start looking for away to add a couple of new
fields to the second screen of this transaction (screen number
200).

1-1 What kind of possibilities are there to place additional fields on a screen? Take a
closer look at screen 200 in Transaction BC425_## and seeif thisis possible.

1-1-1 Isthere a screen exit for enhancing the screen?
1-1-2 If thisisthe case, what is the name of the corresponding enhancement?

1-2 Implement the enhancement for doing the following (project name: TG##CUS3):
1-2-1 Enhance the screen with three fields. The following should appear:

Pilot's name

Meal

Number of seats still free on this flight.
1-2-2 Ensure that the data is correctly transported to the subscreen.

1-3 Check your results.
~ .~/ Consult the ABAP Help for the SUBMIT statement.

~
- ~

7

1-1

1-2

Unit: Customer exits
Topic: Function module exit

Y ou can check if the transaction offers customer exits as follows:

1-1-1

1-1-2

System ® Status gives you the name of the corresponding program
(SAPBCA25_FLI GHT##)

Y ou now have severa ways to look for customer exits: Y ou can either
search for the character string CALL CUSTOVER- FUNCTI ON globally in
the program or you can use the R/3 Repository Information System to
search for enhancements containing the program name in the technical name
of the component (restrict the search with * SAPBC425 FLI GHT##* in
the component name).

The enhancement you were looking for has the name SBC##EQ1. The
documentation for the enhancement shows that it is intended for
supplementary checks of the first screen of the transaction.

Choose transaction CMOD to implement the enhancement.

1-2-1

1-2-2
1-2-3

1-2-4

Y ou can go to transaction CMOD with the menu path Tools ®
ABAP Workbench® Utilities® Enhancements® Project management.
Create a project named TG##CUS1 here and saveit.

Include enhancement SBC##EQ1 that you found in your project.

Edit the components. The source text of the exit function module appearsin
the Function Builder. Create the include by double-clicking. Y our source
text could be as follows:

IF flight-fldate < sy-datum
MESSAGE wWO011(bc425) W TH sy- datum
ENDI F.

Activate your include. Go back to project management and activate your
enhancement project.

7

1-1

1-2

Solutions

Unit: Customer exits
Topic: Menu exit

Examine the transaction as in the last exercise. It is advisable to search with the R/3
Repository Information System.

1-1-1

1-1-2

Idedlly you can use the R/3 Repository Information System to search for a
suitable enhancement containing the program name in the technical name of
the component (restrict the search with * SAPBC425 _FLI GHT##* inthe

component name).
The enhancement you were looking for has the name SBC##EOQ2.

Choose transaction CMOD to implement the enhancement.

1-2-1

1-2-2

1-2-3

Y ou can go to transaction CMOD with the menu path Tools ®
ABAP Workbench ® Utilities® Enhancements® Project management.
Create a project named TG##CUS2 here and saveit.

Include enhancement SBC##E02 that you found in your project. Edit the
enhancement's components. Assign a menu text. Edit the function module
exit by double-clicking. Create the customer include using forward
navigation.

The source text of the include should be as follows for group:
SUBM T sapbc425_ booki ng_00

WTH so _car = flight-carrid

W TH so_con = flight-connid

WTH so _fld = flight-fldate
AND RETURN.

Activate the include program. Activate the enhancement project.

Solutions

Unit: Customer exits
/ Topic: Screen exits

1-1

1-2

1-3

Look at the transaction screens in the Screen Painter. Y ou will see that screen 200
of transaction BC425_## offers a screen exit.

1-1-1 Examine the flow logic of the screens for character string CALL
CUSTOVER SUBSCREEN. Y ou will see that screen 200 of transaction
BC425 ## offers a screen exit.

1-1-2 You can get the name of the enhancement for example by searching in the
R/3 Repository Information System (see previous exercises). The name of
the enhancement is SBC##EO3.

Implement the enhancemert in the same way as described in the previous exercises.
Create aproject called TG##CUS3 in transaction CMOD. Include enhancement
SBCH##EO3 in your project. Edit the enhancement’'s components.

1-2-1 Use the screen exit to enhance the screen. Y ou can create screen 0500 by
double-clicking on the enhancement component. Make sure that you choose
screen type " Subscreen”. Copy the fields from the corresponding structure
SFLI GHT## of the Dictionary. Y ou have two options for placing afield on
the screen for the free places:

Y ou can declare a variable in the TOP include of the X function group,
generate the program. Y ou can then place this program field on the screen.
Generate the screen. (or: Y ou can enhance your append structure. Y ou
should not do this in the exercise since the trainer fills the fields of the
append structure with a program. Enhancing the append structure could
result in errorsin this program.).

1-2-2 Use the function module exit for a correct data transport. Create the
customer include and enter the following source text (example for group

00):
MOVE- CORRESPONDI NG flight TO sflight00.
seatsfree =
flight-seatsmax — flight-seatsocc.
TOP include:
TABLES: sflight00.
DATA: seatsfree type s_seatsocc.

Activate the programs. Activate the enhancement project.

Fxecute transaction BC425 ## and check vour results.

Business Transaction Events

Contents:

What are business transaction events (BTE)?
Different kinds of interfaces
Using business transaction events

Finding business transaction events

Differences between customer exits and business
transaction events

8 SAP AG 1999

m Compared with earlier releases, the software delivery process now looks quite different. Previoudly,
only two parties were involved in the delivery: SAP produced the software, and delivered it to its
end-customers. Customers could enhance this standard using customer exits.

m However, now that the software is more component-oriented, more parties have become involved in
the process. SAP provides the R/3 standard to each SAP Industry Solution, which usesit as abasisto
add on its own encapsulated functions. The next link in the chain might be a partner firm, which
builds its own Complementary Software Program (CSP) solution based on R/3. Thelast link in the
chain is the customer, as before.

m All of the parties involved in this process are potential users and providers of enhancements. This
requirement cannot be satisfied by customer exits, which can only be used once. Consequently, SAP
developed a new enhancement technique in Release 4.0, which alows enhancements to be reused.

Business Transaction Events (BTE) alow you to attach additional components, in the form of a
function module, for example, to the R/3 system.

Business Transaction Events use one of the following types of interfaces:

Publish & Subscribeinterfaces
These interfaces inform external software that certain events have taken place in an SAP standard
application and provide them with the data produced. The external software cannot return any data to

the R/3 System.

Process interfaces
These interfaces are used to control a business process differently than the way in which it is handled

in the standard R/3 System. They intervene in the standard process, and return data to the SAP
application.

Y ou can attach various external developments to the R/3 System. Y ou can create additiona
developments using the ABAP Workbench.

m The example above pertains to Publish & Subscribe interfaces. In this case, data only flowsin one
direction - from the SAP application to the additional component.

m SAP application developers make interfaces available to you at certain callup pointsin atransaction.
Y ou can deposit additional logic at these points.

m Inavery basic scenario, SAP partners and customers can use the interfaces themselves. In this case
business transaction events function in much the same manner as customer exits (see the unit on
"Enhancements using Customer Exits").

m The above scenario aso pertains solely to Publish & Subscribe interfaces.

m |n contrast to customer exits, business transaction events allow you to use an interface for multiple
types of additiona logic.

m |f thisisthe case, you must decide which bit of logic you want to execute at what time.

m Both of your enhancements exist side by side with out impeding each other; however, a runtime
only one of the enhancements can be processed.

m Publish & Subscribe interfaces:

 Allow you to start one or more (multiple) additional operations when a particular event is
triggered. They do not influence the standard R/3 program in any way.

* Multiple operations do not interfere with each other.

* Add-on components can only import data.

* Possible uses: Additional checks (authorizations, existing duplicates, and so on)
m Process interfaces:

* In contrast to Publish & Subscribe interfaces, data exchange takes place in both directions with
process interfaces. This influences the number of additions that can be attached to the interface.

* When an event istriggered, a process in the standard program can only be replaced by a single
external process using the process interface.

* |f you are using an add on from an SAP partner that uses a process interface, this enhancement is
processed at runtime. If you choose to use this same process interface for one of your own
developments, the partner enhancement is dismissed and your own enhancement is processed at
runtime instead.

m The graphic shows the flow of an SAP program. The program contains an enhancement in the form
of a Business Transaction Event. The program calls a service function module, which determines and
processes the active implementation of the enhancement. The naming convention for these function
modulesis OPEN_FI_PERFORM_<n>_E (or OPEN_FI_PERFORM_<n>_P).

m This function module determines the active implementations for each enhancement and stores them
in aninterna table. The implementing function modules are processed in the sequence defined by
theinternal table. At this point the system aso considers the conditions under which the function
module will be processed in the customer namespace - for example, the country or application. These
conditions are also shown as filter values.

m This graphic shows the syntax used to call a program enhancement using a business transaction
event.

m |n the SAP application program, a function module is called with the name
"OPEN_FI_PERFORM_<no>_E" (or, for process interfaces, "OPEN_FI_PERFORM_<no>_P").
The application program passes data to the service function module using the interface. SAP
developers have aready designed the interface.

m The service function module searches for active implementations and places them in an internal
table. They are then processed in aloop.

m Business transaction events adlow you to implement additional logic in atask function, similar to
function module exits. SAP application programmers determine where to place business transaction
eventsin atask function and what data should be transferred at each point. They also create sample
function modules complete with short texts, an interface, and documentation, and describe the
functions possible with the enhancement in the accompanying SAP documentation.

m First, SAP application programmers assign a business transaction event an eight digit number by
which it can be identified. These numbers should observe a particular convention. For example, the
fifth and sixth digits should be identical with events in the same program.

m The SAP developer registers the event and creates a template function module,
sanpl e_i nt er f ace_<n> , which establishes the interface for the user.

m Tofind out directly whether an application transaction offers business transaction events, you can
use the procedure described on the left-hand side of the graphic. In the program source text, search
for the character string "OPEN_FI_PERFORM". The number that completes the name of the
function module is aso the name of the event.

m |n the SAP Customizing Implementation Guide (IMG), you will find the entry "Use business
transaction events " under the "Financial Accounting Global Settings' node of the Financial
Accounting area. Choosing this entry calls a transaction (FIBF) where you can execute al of the
actions necessary for using Business Transaction Events.

m Under Environment, you will find search functions that you can use to identify appropriate business
transaction events. Y ou can view the documentation for the event from the list.

m The "Environment "menu of the service transaction FIBF contains two programs that you can use to
search for BTES. You can restrict the search by using various parameters.

m The BTEs that the system finds are displayed in alist. You can then:
* Digplay the mode function module (start the Function Builder and copy it, for example)
* Display the interface
* Display the documentation

m The documentation provides a clear explanation of how to use the enhancment and any restrictions
that apply to it.

m Use service transaction FIBF to create a product. A product groups together a collection of
enhancements.

m You can create products for various layers in the delivery chain. They define a sequence for
processing the implementations of a business transaction event.

m You can only switch each product on or off asawhole entity. This alows the user to control which
enhancements should be processed and which should not. It also ensures the integrity of the whole
enhancement.

Y ou can use the transaction FIBF (called when you sdlected "Use business transaction events' from
the financia accounting hierarchy) to carry out al necessary activities prior to using a business
transaction event.

Firg, you must choose an interface to attach your function module to. The Interface button displays
the parameter structure for the interface you have selected. Y ou can also use the documentation to
determine what functions each interface alows you to perform.

Use the ABAP Workbench to copy the sample function module sanpl e_i nt er f ace_<n> to the
customer namespace (z_*) of a customer function group. Y ou must not change the interface. You
can fill the module with any source text except COMMIT WORK. Don't forget to activate the
function module.

Create a product in transaction FIBF.
Assign a number to your function module and product.

m In contrast to customer exits, business transaction events are client-specific. This means that the
same event can be used in different clients for different purposes.

m Business transaction events may also be used more than once.
m With Publish & Subscribe interfaces, you can choose which enhancement you want to use.

m With process interfaces, the system executes a single component in the hierarchical sequence SAP
application, add on, customer.

Business Add-Ins: F’
DA

Contents:

® Interfaces in ABAP Objects
® Implementing business add-ins

® Defining business add-ins

8 SAP AG 1999

m A classisan abstract description of an object. Each object only exists while the program is running.
In this unit, when we talk about objects, we may actually mean the abstract description (the class),
depending on the context.

m An object is described by its class and consists of two layers - an inner and an outer layer.

- Public components. The public components are those components of the class (for example,
attributes and methods) that are visible externally. All users of the class can use the public
components directly. The public components of an object formitsinterface.

- Private components. These components are only visible within an object. Like the public
components, the private components can be attributes and methods.

m The aim of object orientation isto ensure that a class can guarantee its own consistency.
Conseguently, the data of an object is normally "interna”, that is, represented using private
attributes. The interna (private) attributes of a class can only be changed by methods of the class.
Asarule, the public components of a class are methods. The methods work with the data in the class
and ensure that it is always consi stent.

m Objects also have an identity to differentiate it from other objects with the same attributes and
methods.

m Until Release 4.0, the nearest thing to objects were function groups and function modules.

m When you call afunction module, an instance of its function group - with al of its data definitions -
is loaded into the memory area of the internal session. Aninstanceis areal softwareobject. An
ABAP program can therefore load instances of different function groups by calling function
modules, but only one instance of each function group can exist at atime.

m The principle difference between real object orientation and function modulesis that a program can
work with instances of different function groups, but not with several instances of a single function
group. For example, suppose a program wanted to manage severa independent counters, or several
orders at the same time. If we did this using afunction group, we would have to program an instance
management to differentiate between the instances (using numbers, for example).

m Inpractice, it is very cumbersome to implement instance management within a function group.
Consequently, the data is usualy in the calling program, and the function modules work with this
data. This causes various problems. For example, all of the users have to work with the same data
structures as the function group. If you want to change the internal data structure of a function group,
you will affect alot of users, and the implications of the changes are often hard to predict.

m Another problem isthat all users have copies of the data, and it is difficult to keep them consistent
when changes are made.

m Working with globa datain function groups is dangerous, because it is amost impossiblein a
complex transaction to control when each function group is loaded.

m These problems have been solved with the introduction of classes. Data and functions are defined in
classes instead of function groups. An ABAP program can then work with any number of runtime
instances that are based on the same template. Instead of loading a single runtime instance of a
function group implicitly when you cal afunction module, ABAP programs can create runtime
instances of classes explicitly. Theindividua runtime instances are uniquely identifiable objects,
and are addressed using object references.

Interfaces are defined independently of classes.
They can contain declarations for elements such as attributes and methods.
Interfaces are implemented by classes

The classes then have a uniform external point of contact. They must provide al of the functions of
the interface by implementing its methods.

In a program, you can create r efer ence var iables with reference to interfaces. However, you cannot
instantiate an interface.

Interface references can, however, point to objects of different classes.

Business add-ins, unlike customer exits, take into account the changes to the software delivery
process. The top part of the graphic illustrates the typical delivery process. It no longer merely
consists of software provider and end user. Instead, it can now contain awhole chain of intermediate

software providers like SAP Industry Solutions (IS) and partners.

Below thisis adiagram explaining how business add-ins work. Enhancements are made possible by
SAP application programs. This requires at least one interface and an adapter class that implements
it. Theinterface isimplemented by the user.

The main advantage of this concept is the capacity for reuse. Once implemented, a business add-in
can be reimplemented by other linksin the software chain (as shown on the right in the graphic).

Furthermore, an implementation can a so offer business add-ins of its own.

m A business add-in contains the components of an enhancement. Currently, each business add-in can
contain the following components:

* Program enhancements
* Menu enhancements

m |n future releases, the other components included in customer exits will also be available as add-in
components.

m Several components are created when you define a business add-in:
* Interface
* Generated class (add-in adapter)

m The generated class performs the following tasks:

* Filtering: If you implement a filter-dependent business add-in, the adapter class ensures that only
the relevant implementations are called

* Control: The adapter class calls the active implementations.

This graphic shows the process flow of a program that contains a business add-in call. It enables us
to see the possibilities and limitations inherent in business add-ins.

Not displayed: You must declare areference variable in the declaration part.

In the first step, an existing service class, CL_EXITHANDLER, creates an object reference. We
will discuss the precise syntax later on. This completes the preparations for using the program
enhancement.

When you define a business add-in, the system generates an adapter class, which implements the
interface. Incal (2), the interface method of the adapter classis called. The adapter class searches
for al of the implementations of the Business Add-In and calls the implemented methods.

This graphic contains the syntax with which you call a business add-in. The numbered circles
correspond to the calls from the previous page.

First, you must define a reference variable with reference to the business add-in interface. The name
of the reference variable does not necessarily have to contain the name of the business add-in.

In the first step (1), an object referenceis created. This creates an instance of the generated adapter
class, restricted to the methods of the interfaces ("narrowing cast").

Y ou can use this object reference to call the required methods (2).

There are various ways of searching for business add-ins.

Y ou can search in arelevant application program for the string "CL_EXITHANDLER". If a business
add-in is called from the program, the "GET_INSTANCE" method of this class must be called.

Y ou can then reach the definition of the business add-in using forward navigation. The definition
also contains documentation and a guide for implementing the Business Add-In.

You can aso use search tools: Since SAP provided fewer than 50 Business Add-Ins in Release
4.6A, even aligt of them dl is gill manageable.

However, you can also use the application hierarchy to restrict the components in which you want to
search. Start the Repository Information System, then choose Environment -> EXIT techniques ->
Business Add-Ins’ to start the relevant search program.

Alternatively, you can use the relevant entriesin the IMG.

m To implement business add-ins, use transaction SE19 (Tools -> ABAP Workbench -> Utilities ->
Business Add-Ins ->Implementation).

m Enter aname for the implementation and choose Create. A diaog box appears. Enter the name of
the business add-in. The maintenance screen for the business add-in then appears.

m Alternatively, you can use the Business Add-In definition transaction to reach its implementations.
The menu contains an entry "Implementation™, which you can use to get an overview of the existing
implementations. Y ou can aso create new implementations from here.

m You can assign any name to the implementing class. However, it is a good idea to observe the
proposed naming convention. The suggested name is constructed as follows:

* Namespace prefix, Y, or Z
CL_ (for class)
* IM__ (for implementation)

* Name of the implementation
m To implement the method, double-click its name. The system starts the Class Builder editor.
m When you have finished, you must activate your objects.

m Inthe implementing class, you can create your own methods that you then call from the interface
method.

m Y ou cannot create them using forward navigation. Instead, you must define a regular method in the
Class Builder (dlong with its interface). Specify a visibility for the method, and implement it.

Use the "Activate" icon to activate the implementation of a Business Add-In. From now on, the
methods of the implementation will be executed when the relevant calling program is executed.

If you deactivate the implementation, the methods will no longer be called. However, the
corresponding calls in the application program are still processed. The difference isthat the instance
of the adapter class will no longer find any active implementations. Unlike the "CALL
CUSTOMER-FUNCTION" call, the"CALL METHOD CL_EXITHANDLER=>GET_INSTANCE"
call is still executed even if there are no implementations. The same applies to the statement calling
the method of the adapter class.

You can only activate or deactivate an implementation in its origina system. Changing it anywhere
else congtitutes a modification. The activation or deactivation must be transported into subsequent
systems.

If abusiness add-in can only have one implementation, there can still be more than one
implementation in the same system. However, only one can be active a any time.

m Aswith customer exits, you can use menu enhancements with Business Add-Ins. However, the
following conditions must be met:

* The developer of the program you want to enhance must have planned for the enhancement.
* The menu enhancement must be implemented in a BAdI implementation.

m Function codes of menu enhancements begin with a plus sign '+'.

m The menu entry will only appear if there is an active business add-in implementation containing the
corresponding enhancement.

m You can only create function codes for business add-ins that can only be used once. Moreover, the
business add-in cannot be filter-dependent.

m These redtrictions are necessary to ensure that there are no conflicts between two or more
implementations.

m If the user chooses the menu entry in the program to which the function code "+<exit>" is assigned,
the system processes the relevant method call.

m The method call and the menu enhancement belong inseparably to one another. Having the former
without the latter would make no sense. For this reason, it is important that the two enhancement
components are combined in a single enhancement - the business add-in.

m To create aBAdI, use the BAdI Builder (Tools -> ABAP Workbench -> Utilities-> Business Add-
Ins-> Definition).

m A business add-in has two important attributes that you must define:
* Reusable
* Filter-dependent

m |f you want the business add-in to support multiple paralel implementations, select Reusable. The
sequence in which the implementations will be processed is not defined. Even if the business add-in
does not support multiple use, you can still have more than one implementation for it. However,
only one implementation can be active at atime.

m |f you make a business add-in filter-dependent, you can make calls to it depending on certain
conditions. Y ou must specify the filter type in the form of a data element. The value table of the

domain used by the data element contains the valid values for the implementation.
m When the enhancement method is called, afilter value must be passed to the interface.

m You can include function codes in a Business Add-In definition (smilarly to menu exits in customer

exits). To do this, enter the program name and function code, and a short description in the relevant
fields.

m Restrictions;

* Itisnot currently possible to create BAdls that consits only of menu enhancements (function
codes).

* |If you use menu enhancements, you cannot reuse a BAdl or make it filter-dependent.

m The system proposes a name for the interface and the generated class. Y ou can, in principle, change
the name of the interface to anything you like. However, your BAdI will be easier to understand if
you retain the proposed name.

m The name of the generated classis composed as follows:
* Namespace prefix
* CL_(todgnify aclassin generd)
e EX_ (standsfor "exit")
* Name of Business Add-In

m |f you double-click on the interface name, the system switches to the Class Builder, where you can
define the interface methods.

m A BAdI interface can have severd interface methods.

m You can usedl of the normal functions of the Class Builder. For example, you can:
* Define interface methods

* Define interface parameters for the methods
* Declarethe attributes of the interface

m |f the business add-in is filter-dependent, you must define an import parameter flt_val for each
method. Otherwise, you define the interface parameters you need for the enhancement.

m Once you have finished working on your interface, you must activate it. This generates the adapter
classfor the Business Add-In.

m |f you change the interface, the adapter classis automatically regenerated.

m You can aso generate the adapter class explicitly at any time by choosing Utilities -> Regenerate
from the initial screen of the Business Add-In maintenance transaction.

To call abusiness add-in method in an application program, you must include three statements in the
program:

Declare areference variable (1) with reference to the business add-in interface (in our example,
"exit_ref").

Call the static method GET_INSTANCE of the service class CL_EXITHANDLER (2). Thisreturns
an instance of the required object. Thisinvolves an implicit narrow cast, so that only the interface
methods of the object with the reference variable "exit_ref" can be addressed.

Y ou can now call dl of the methods of the business add-in. Make sure you specify the method
interfaces correctly.

m If your Business Add-In is filter-specific, you must pass an appropriate value to the parameter
flt_val.

Business add-ins are a natural extension of the conventional enhancement technique. They have
taken over the administration layer from customer exits, along with the availability of the various
enhancement components.

They adopted the idea of reusability from Business Transaction Events, and have been implemented
using a consistent object-oriented approach.

The object-oriented implementation provides previoudy unavailable opportunities. For example, it
would be possible to enhance the object "Document”. It would be possible to provide a new instance
of the enhancement for each individual document.

The components in parentheses in the graphic have not yet been implemented:
* Screen enhancements
* Table enhancements

These enhancement components are planned for later releases. There will then also be amigration
tool for converting previous enhancements into the new form.

Unit: Business Add-Ins
Topic: Using Business Add-Ins

*e e

At the conclusion of this exercise, you will be able to:

Implement an enhancement with business add- ins

The customer service personnel of the agency wants the list of
bookings that you implemented in the exercise on menu exits to

)) / contain more information. The list should contain the name of the

1-1

1-2

1-3

1-4

customer in addition to his customer number.

Check if program SAPBC425 BOOKI NG_## (## = group number) can be
enhanced.

1-1-1 Check the program for ways in which it can be enhanced.

1-1-2 Check if an enhancement option is suitable for outputting further
information in the list.

Implement the enhancement you found. Name of the implementation:
ZBCA25| MH#.

1-2-1 What datais passed to the interfaces of the methods? Are there aready
fields here that should be displayed in the list?

1-2-2 Table SCUSTOM contains the information about the customers. Get the
customer's name from his customer number. Output the name.

Format the list.

1-3-2 How can you move the vertical line so that the additiona fields are
displayed within the frame?

1-3-2 Isthe CHANGE_VLI NE method suitable for changing the position of the
vertical line? If so, useit.

Check your results.

Exercises

Unit: Business Add-Ins
Topic: Create Business Add-Ins

*ee

At the conclusion of this exercise, you will be able to:

Create a business add-in and offer an enhancement in a
program with business add- in technology

Develop your own supplementary components for the R/3
System. Y ou want to offer an enhancement that can implement

> / subsequent software layers in a program.

1-1

1-2

1-3

1-4

You deliver a program that outputs list of flight connections. Y ou
want to provide your customers with the following enhancement
options using a Business Add In: Double-clicking on aline
should implement further actions. Y our customers should be able
to built a details list.

Test your enhancement in the second part of the exercise: This
details list should show al the flights for a connection.

Create a program that outputs list of flight connections.

1-1-1 Todo so, copy program SAPBC425 TEMPLATE to the name
ZBC425 BADI _##t.

1-1-2 Assign your program to a development class and a change request.

Create a business add-in.

1-2-1 The name of the business add-inisZBCA25##.

1-2-2 Create a method. Define the interface.

1-2-3 Which parameter do you have to pass to the interface?

Edit the program so that a user can double-click on aline to output the details list.
1-3-1 Implement event AT LI NE- SELECTI ON.

1-3-2 Insert the statements that are necessary for calling a business add-in in the
program: Declare a reference variable; instantiate an object of the business
add-in class; implement the call of the business add-in method at the right
place in the program.

Imblement the enhancement (name of the implementation: ZB425##1 M).

1-5

1-4-1 A detailslist should be output when you double-click on aline of the list of
the application program. The flight dates of the selected connection should
be output in the details list. Table SFLI GHT## contains the flight dates.

1-4-2 Read the relevant data from table SFLI GHT## to an internal table with
Array-Fetch. Then output selected fields of the internal table.

1-4-3 Which variables (attributes of the implementing class) do you have to
declare? How do you declare an internal table? Where can you declare a
table type?

Check your results.

Unit: Business Add-Ins
/ Topic: Using Business Add-Ins

1-1

1-2

1-3

Check if program SAPBC425_ BOOKI NG_## (## = group number) can be
enhanced as follows:

1-1-1 Fromthe list display: Place the cursor in the list and choose F1 - Technical
info. Double-click on the program name (Y ou can aso start directly in the
ABAP Editor.). Look for the character string CL__ EXI THANDLER in the
program. Double-click on the transfer parameter exi t _book. Double-
click on the interface used to define the type of exit_book. The Class
Builder is started. Make awhere-used list for the interface in classes. A
classCL_EX BADI _BOOK## is displayed. The name of the business add-

inisthus BADI _ BOOK##.

1-1-2 Start transaction SE18 (business add-in definition). Read the documentation
about business add- ins,

Implementing the enhancement From transaction SE18 you go to the transaction
for creating implementations of business add-inswith Implementation - Create.
Name of the implementation: ZBC4251 Mg#.

1-2-1 You can display the interface parameters by double-clicking on the method
in transaction SE18. The transfer structure does not contain the fields that
you want to display in the list. You have to read the corresponding data
Separately.

1-2-2 Double-click on the method name to go to the Editor. A proposal for
implementing the methods is given below (group 00):

VETHOD i f _ex_badi _book00O~out put .
DATA:
nanme TYPE s_cust nane.
SELECT SI NGLE nane
FROM scust om
| NTO nane
WHERE id = i _booki ng- cust om d.
WRI TE: nane.
ENDVETHOD.

Thechange_vl i ne method is provided for formatting the list. You can move the
right edge of the list here.

1-3-1 Parameter ¢ pos defines the position of the right vertica line.

1-3-2 The method can be implemented as follows:
METHOD i f _ex_badi _book0OO~change_vl i ne.
C_pos = c_pos + 25.
ENDMETHOD.

Solutions

Unit: Business Add-Ins
/ Topic: Creating Business Add-Ins

1-1 Copy the template program as specified in the exercise.

1-2 To create business add- ins, start transaction SE18 (in the ABAP Workbench:
Utilities > Enhancements - Business add-ins = Definition).

1-2-1 Choose ZBC425## as the name of the business add-in. Enter a short
description and save your entries.

1-2-2 Choose the tab page "Interface’. Double-click on the name of the interface.
The Class Builder is started. Enter the name of a method. Give a short
description. Choose "Parameters' to define the interface.

1-2-3 Define two importing parameters whose types are defined with
S CARR I D (airline) and S_CONN _I D (connection number). Activate the
interface. The adapter classis also generated.

1-3 Source text of the program with business add-in:

L3 *
& Report SAPBC4A25_ TEMPLATE
L3 *

REPORT sapbc425 badi .

DATA:
wa_spfli TYPE spfli,
it spfli TYPE TABLE OF spfli WTH KEY carrid connid.

* Reference Vari abl e for BAdI
DATA:
exit _ref TYPE REF TO zif_ex_bc42500.

* Sel ection Screen
SELECTI ON- SCREEN BEG N OF BLOCK carri er
W TH FRAME TI TLE text-car.
SELECT-OPTI ONS: so_carr FOR wa_spfli-carrid.
SELECTI ON- SCREEN END OF BLOCK carri er.

* & __ *
*& Event START- CF- SELECTI ON

* & __ *
START- G- SELECTI ON.

CALL METHOD cl _exi t handl er =>get _i nst ance
CHANG NG
i nstance = exit _ref.

SELECT *
FROM spf | i
| NTO CORRESPONDI NG FI ELDS OF TABLE it _spfli
VWHERE carrid IN so_carr.

L2 2 *
*& Event END- OF-SELECTI ON
L2 - *

END- OF- SELECTI ON.

LOOP AT it_spfli I NTO wa_spfli.

WRITE: / wa_spfli-carrid,
wa_spfli-connid,
wa_spfli-countryfr,
wa_spfli-cityfrom
wa_spfli-countryto,
wa_spfli-cityto,
wa_spfli-deptine,
wa_spfli-arrtine.

H DE: wa_spfli-carrid,
wa_spfli-connid.

ENDL OOP.

CLEAR wa_spfli .

*& __ *
*& Event AT LI N& SELECTI ON.

AT LI NE- SELECTI ON. .

CHECK NOT wa_spfli-carrid IS I N TIAL.

CALL METHOD exit _ref->linesel ection
EXPORTI NG

i _carrid wa_spfli-carrid

i_connid = wa_spfli-connid.
clear wa-spfli.

1-4 Implement the business add-in. From transaction SE18 choose | mplementations -
Create. Give the implementation the name ZBC425## IM. Choose the tab
"Interface” and double-click on the name of the method. The Editor is started. Enter
the source text here:

METHOD zi f _ex_bc42500~I i nesel ecti on.

DATA:
it _flights TYPE TABLE OF sfli ght 00,
wa_flights TYPE sflight0O0.

FORVAT COLOR COL_HEADI NG
WRITE: / text-hea, i_carrid, i_connid.
FORVAT COLOR COL_NORMAL.

SELECT *
FROM sf | i ght 00
| NTO CORRESPONDI NG FI ELDS OF TABLE it _flights
WHERE carrid =i _carrid AND
connid = i _connid.

LOOP AT it_flights INTO wa_flights.
VWRITE: / wa_flights-fldate,

wa_f | i ght s- pl anet ype,
wa_flights-price CURRENCY wa_flights-currency,
wa_flights-currency,
wa_fli ght s- seat snax,
wa_fli ghts-seatsocc.

ENDLOOP.

ENDVETHQOD.

Activate the implementation.

Modifications F'
AP

Contents:

What are modifications
Making modifications
Modification Assistant
Modification Browser
Non-registered modifications

User exits

Modification adjustments

8 SAP AG 1999

m Anobjectisorigina in only one system In the case of objects delivered by SAP, the original
system is at SAP itsalf. These objects are only copiesin customer systems. This applies to your
development system and al other systems that come after it.

m |f you write your own applications, the objects that you create are origina in your development
system. You assign your developments to a change request, which has the type
Development/Correction.

m Thisrequest ensures that the objects are transported from the development system into the
subsequent systems.

Changesto an original are called corrections. They are recorded in a change request whose tasks
have the type "Devel opment/correction”.

If, on the other hand, you change a copy (an object outside its own origina system), the changeis
recorded in atask with the type "Repair”. Repairs to SAP objects are called modifications.

When you repair your own objects (for example, if something goes wrong in your production
system), you can correct the origina in your development system straight away. When you change
copies, you must correct the original immediately!

However, you cannot do this with SAP objects, because they are not original in any of your systems.

Y ou should only modify the SAP standard if the modifications you want to make are absolutely
necessary for optimizing workflow in your company. Be aware that good background knowledge of
application structure and flow are important prerequisites for deciding what kind of modificationsto
make and how these modifications should be designed.

Whenever you upgrade your system, apply a support package, or import a transport request, conflicts
can occur with modified objects.

Conflicts occur when you have changed an SAP object and SAP has dso delivered a new version of
it. The new object delivered by SAP becomes an active object in the Repository of your system.

If you want to save your changes, you must perform a modification adjustment for the objects. If
you have alot of modified SAP objects, your upgrade can be slowed down considerably.

To ensure consistency between your development system and subsequent systems, you should only
perform modification adjustments in your development system. The objects from the adjustment can
then be transported into other systems.

m A registered developer must register registers changes to SAP objects. Exceptions to this registration
are matchcodes, database indexes, buffer settings, customer objects, patches, and objects whose
changes are based on automatic generation (for example, in Customizing). If the object is changed
again at alater time, no new query is made for the registration key. Once an object is registered, the
related key is stored locally and automatically copied for later changes, regardiess of which
registered developer is making the change. For the time being, these keys remain valid even after a
release upgrade.

m How do you benefit from SSCR (SAP Software Change Registration)?

* Quick error resolution and high availability of modified systems
All objects that have been changed are logged by SAP. Based on thisinformation, SAP's First
Level Customer Service can quickly locate and fix problems. This increases the availability of
your R/3 system.

* Dependable operation
Having to register your modifications helps prevent unintended modification. Thisin turn ensures
that your R/3 software runs more reliably.

» Simplification of upgrades

Upgrades and release upgrades become considerably easier due to the smaller number of
modifications.

m If you want to change an SAP Repository object, you must provide the Workbench Organizer with
the following information:

* SSCR key
* Change Request

m We saw above how you get an SSCR key. If you now continue to change the object, you must
confirm the following warning dialogs. At this point, you can still cancel the action without
repairing the object.

m The Workbench Organizer asks you to enter a change request, asit would for your own objects. The
object is automatically added to a repair task. The change request has the following functions:

» Change lock
After the task has been assigned, only its owner can change the object.

* Import lock

The object cannot be overwritten by an import (upgrade or support package).
* Versions

The system generates a new version of the object (see below).

m After development isfinished, the programmer releases the task. At this point, the programmer must
document the changes made. The objects and object locks vaid in the task are transferred to the
change request. If the developer confirms the repair, the import lock passes to the change request. I
the developer does not confirm the repair when releasing the task, the import lock remains in place.
Only the developer can release this lock.

m Once the project is completed, you release the change request. This removes al of the change
request's object locks. This applies both to the change locks and the import locks.

m When the change request is released, the objects are copied from the R/3 database and stored in a
directory at operating system level. They can then be imported into subsequent systems by the
system adminstrator.

m After the modifications have been imported into the quality system, the developer must test them and
check the import log of the request.

When you release a change request, a complete version of al objects contained in the change request
is written to the versions database.

If you transport the Repository object again later, the current object becomes a complete copy and

the differences between the old and the new object are stored in the versions database as a backwards
delta

Whenever you assign a Repository object to atask, the system checks whether the current version
agrees with the complete copy in the versions database. If not, a complete copy is created. This
processis aso initiated the first time you change an object, since SAP does not deliver versions of
Repository objects.

The versions of a Repository object provide the basis for modification adjustment. To support
adjustment, information on whether the version was created by SAP or by the customer is also
stored.

m Encapsulate customer source code in modularization units instead of inserting it directly into SAP
source code (with, for example, customer function module calls in program source code, or customer
subscreen calls for additiona screen fields).

When encapsulating the customer portions of a program, be sure to use narrow interfaces.

Y ou should define a standard for all of your company's modification documentation (see the
following dlides).

Y ou should aso maintain alist of al modifications to your system (a modification log - see the
following dides).

All requests that contain repairs must be released before an upgrade so that all relevant customer
versions can be written to the versions database (the system compares versions during adjustment) .

Repairs must aso be confirmed prior to upgrade, otherwise the object being repaired is locked and
cannot be imported.

m Any modifications that you make to ABAP Dictionary objects that belong to Basis components are
lost at upgrade--- these objects revert to their earlier form and no adjustment help is offered. This
can lead to the contents of certain tables being lost.

m The am of the Modification Assistant is to make modification adjustments easier. In the pagt, the
granularity of modifications was only at include program level. Today, afiner granularity is
available. Now, modifications can be recorded at subroutine or module level.

m Thisis because (among other ressons) the modifications are registered in a different layer. Aswell
as providing finer granularity, this means that you can reset modificaitons, since the original version
is not changed.

m If, in the pagt, you modified an include for which SAP provided a new version in an upgrade, a
modification adjustment was necessary. The modification adjustment had to be performed line by

line. The system provided little support.

m The Modification Assistant has changed this situation considerably. Modifications are now recorded
with finer granularity. For example, if you modify a subroutine, the rest of the include remains
unchanged. If SAP delivers anew version of the include, the system looks to seeif thereisaso a
new version of that subroutine. If thisis not the case, your changes can be incorporated into the new
version automatically.

m The origina version of each software layer comprises the originas from the previous layer plus
current modifications.

Aboveisalist of the tools supported by the Modification Assistant.

In the ABAP Editor, you can use modification mode to change source code. Only arestricted range
of functionsis available in thismode. Y ou can add, replace, or comment out source code, all under
the control of the Modification Assistant.

Changes to layout and flow logic in the Screen Painter are also recorded.

The Modification Assistant aso records changes in the Menu Painter and to text elements, aswell as
the addition of new function modules to an existing function group.

To avoid conflicts in the upgrade, table appends are aso logged by the Modification Assistant.

If you want to change an SAP object, you must provide the following information:
* SSCR key
* Change request

The system informs you that the object is under the control of the Modification Assistant. Only
restricted functions are available in the editor.

Y ou can switch the Modification Assistant on or off for the entire system changing the R/3 profile
parameter eu/controlled_modification. SAP recommends that you aways work with the
Modification Assistant.

Y ou can switch off the Modification Assistant for single Repository Objects. Once you have done
S0, the system no longer uses the fine granularity of the Modification Assistant.

m In modification mode, you have access to a subset of the normal editor tools. Y ou can access these
using the appropriate pushbuttons. For example, in the ABAP Editor, you can:

Insert

The system generates a framework of comment lines between which you can enter your source
code.

Replace

Position the cursor on a line and choose Replace. The corresponding line is commented out, and
another line appears in which you can enter coding. If you want to replace severa lines, mark
them as ablock first.

Delete
Sdlect aline or ablock and choose Delete. The lines are commented out.

Undo modifications
This undoes al of the modifications you have made to this object.

Display modification overview
Choose this function to display an overview of all modifications belonging to this object.

m The graphic shows the result of changes made with Modification Assistant.

m The Modification Assistant automatically generates a framework of comment lines describing the
action. The comment also contains the number of the change request to which the changeis
assigned, and a number used for internal administration.

m The "modification overview" icon provides you with an overview of the modifications you have
made in the current program.

m Thedisplay is divided up according to the various modularization units. This corresponds to the
structure used by the Modification Assistant to record the modifications.

m You canreset dl of the modifications that you have made to the current object using the
Modification Assistant by choosing this function. The record of the modifications is also deleted.

m Remember that you cannot selectively undo modifications to an object. Y ou can only undo
modifications based on the "al or nothing" principle.

m The Modification Browser provides an overview of al of the modified objects in the system. The
Modification Browser differentiates between modifications made with the Modification Browser and
those made without.

m On theinitial screen of the Modification Browser, you can restrict the selection according to various
criteria. This alows you to find modifications in a particular area.

m The Modification Assistant displays the hit list in tree form. Objects are arranged by:
* Modification type (with/without the Assistant)
* Object type (PROG, DOMA, DTEL, TABL, ...)

m SAP recommends that you use Modification Assistant to make changes to R/3 objects. Changes
without the use of the Modification Assistant should be avoided. However, should this be necessary,
you should document your modifications in the source code as follows:

* Preliminary corrections
SAP note, repair number, changed by, changed on, valid until

* Customer functionsthat have been inserted
ubject area, repair number, changed by, changed on, INSERTION

» Customer functionsthat have replaced SAP functions
subject area, repair number, changed by, changed on, REPLACEMENT The SAP functions that

you do not need should not be deleted, but commented out instead

m Subject areas are specified in the relevant process design blueprint (for example, subject area
SD_001 = pricing).

m SAPrecommendsthat you keep arecord of all modifications that have been made to your system
(that is, of any changes you have made to Repository objects in the SAP namespace).

m The following information should be logged for each modification:

Object type (program, screen, GUI status, ...)

Object name

Routine (if applicable)

Subject area (according to process design blueprint or technical design)
Repair number

Changed on

Changed by

Preliminary correction? (yes/no)

OSS note number, valid until Release x.y

Amount of time necessary to recreate maodification during adjustment (measured in hours).

m A module pool is organized as a collection of include programs. Thisis particularly useful for
making the program easier to understand. The organization is similar to that of function groups. In
particular, the naming convention, by which the last three letters of the name of the include program

identify its contents, is identical.

m Themain program, as arule, contains the include statements for all of the include programs that
belong to the module poal.

m Theincludes described as "specid” includes in the program are themselves only include programs -
technically, they are not different. These programs are only delivered once.

User exits are atype of system enhancement that were originally developed for the R/3 Sales and
Distribution Module (SD). The original purpose of user exits was to allow the user to avoid
modification adjustment.

A user exit is considered a modification, since technically objects in the SAP namespace are being
modified.
The SAP developer creates a specid include in amodule pool. These includes contain one or more

subroutines routines that satisfy the naming convention user exi t _<nanme>. The callsfor these
subroutines have already been implemented in the R/3 program. Usualy global variables are used.

After delivering them, SAP never aters includes created in this manner; if new user exits must be
delivered in a new release, they are placed in a new include program.

User exits are actually empty subroutines that SAP developers provide for you. Y ou can fill them
with your own source code.

The purpose behind this type of system isto keep al changes well away from program source code
and store them in include programs instead. To this end, SAP developers create various includes that
fulfill the naming conventions for programs and function groups. The last two letters in the name of
the include refer to the include that the customer should use: "Z" is usualy found here.

Example: Program SAPMASA
Include MA5AFZB

This naming convention guarantees that SAP developers will not touch thisinclude in the future. For
this reason, includes of this nature are not adjusted during modification upgrade.

The subroutine cdl is aready implemented in the programt. The interface is aready defined.
Normally, subroutines of this type only work with global data.

If any new user exits are delivered by SAP with a new release, then they are bundled into new
includes that adhere to the same naming convention.

m Youcanfindaligt of al user exits in the SAP Reference Implementation Guide.

m There, you will also find documentation explaining why SAP developers have created a particular
user exit.

m Follow the steps described in the Implementation Guide.

m The set of objects for adjustment is derived from the set of new objects ddlivered by SAP in a new
release. Thisis compared with the set of objects you have modified on your R/3 system..

m Theintersection of these two setsis the set of objects that must be adjusted when you import an
upgrade or support package.

During modification adjustment, old and new versions of ABAP Repository objects are compared
using transactions SPDD and SPAU.

You do not have to call transaction SPDD to adjust Dictionary objectsif:
- No changes have been made to SAP standard objects in the Dictionary

- You have only added customer objects to your system. Only SAP objects that have been
changed must be adjusted using this transaction.

All other ABAP Repository objects are adjusted using transaction SPAU. Upgrade program R3up
tells you to start the transaction after upgrade has finished. Y ou have 30 days to use transaction
SPAU after an upgrade. After 30 days, you must apply for a SSCR key for each object that you want
to adjust.

Transaction SPAU first determines which objects have been modified. Then it determines which of
these objects have a new version in the current upgrade. Modification adjustment alows you to
transfer the modifications you have made in your system to your new R/3 Release.

Use transaction SPDD to adjust the following ABAP Dictionary objects during the modification
adjustment process:

Domains
Data elements
Tables (structures, transparent tables, pool, and cluster table, together with their technical settings)

These three object types are adjusted directly after the Dictionary object import (before the main
import). At this point in time, no ABAP Dictionary objects have yet been generated. To ensure that
no dataislog, it is important that any customer modifications to domains, data elements, or tables
are undertaken prior their generation.

Changes to other ABAP Dictionary objects, such aslock objects, matchcodes, or views, cannot result
in loss of data. Therefore, these ABAP Dictionary objects are adjusted using transaction SPAU after
both main import and object generation have been completed. Y ou can use transaction SPAU to
adjust the following object types:

* ABAP programs, interfaces (menus), screns, matchcode objects, views, and lock objects.

m During modification adjustment, you should use two different change requests to implement the
changes you have made: one for SPDD adjustments and another for SPAU adjustments. These
change requests are then transported into other R/3 systems you want to adjust. This guarantees that
al actua adjustment work takes place solely in your development system.

m When upgrading additional R/3 systems, al adjustments exported from the first system upgrade are
displayed during the ADJUSTCHK phase. Y ou decide which adjustments you want to accept into
your additiona systems and these are then integrated into the current upgrade. Afterwards, the
system checks to see if al modifications in the current R/3 system are covered by the change
requests created during the first system upgrade. If thisis the case, no adjustments are made during
the current upgrade.

m Note: For this process to be effective, it isimportant that all systemsinvolved have identical system
landscapes. This can be guaranteed by first making modifications in your devel opment system and
then transporting them to later systems before you upgrade the development system. You can aso
guarantee that all of your systems have an identical system landscape by creating your devel opment
system before upgrade as a copy of your production system and then refraining from modifying the
production system again until after upgrade.

m Version compare is aso used during or after an upgrade for modification adjustment.

m During modification adjustment, version compare determines the number of SAP objects that you a)
changed in the system and that b) were then overwritten by SAP at upgrade.

m Version compare alows you to find where changes were made and transfer them to your new SAP
version if you want.

m Theiconsin front of the individual objects that need adjustment show how they can be adjusted.
The possible methods are:

* Automatically
The system could not find any conflicts. The changes can be adopted automatically

* Semi-automatically
The individua tools support you in adjusting the objects.

e Manudly

Y ou must process your modifications with no special support from the system. In this case, the
modification adjustment does alow you to jump directly into the relevant tool.

m Adjusted objects are identified by a green tick.

m |f you want to use the new SAP standard version, use Restoreoriginal. If you do this, you will have
no further adjustment work in future.

Unit: M odifications
Topic: Making modifications

*e e

At the conclusion of this exercise, you will be able to:
Implement modifications using the Modification Assistant.

Implement non-registered modifications

In addition to the robust functions of the R/3 System, you also
want to implement further functions.

/ > / Incorrect functions are very occasionally delivered. This requires

1-1

1-3

1-4

1-5

inserting corrections before the corresponding support package
can be applied.

The Modification Assistant does not allow some modifications. If
they are implemented nevertheless, you can deactivate the
M odification Assistant.

Modify R/3 objects. Use the Modification Assistant where possible. The objectsto
be changed are specified below:

Modify program SAPBC425 BOOKI NG_##.

1-2-1 Enhance the header so that the column with the customer's name also has a
header.

1-2-2 Create anew variable for counting the data records. Output the counter in
the last column of the list.

1-2-3 Also read fields LUGGWEI GHT and WUNI T of table SBOOK and output

them in the list.
Modify program SAPBC425_FLI GHT##.

1-3-1 Change the layout of screen 0100: Insert a frame around the three input
fields. Create a pushbutton and assign it function code MORE.
Modify dataelement S_CARRI D##.
1-4-1 Change the field labels to:
short: "Airl"
medium: "Carrier”.
1-4-2 Modify the documentation for this data element. Create a meaningful text.
Check your modifications in the Modification Browser.

Exercises

Unit: M odifications
Topic: Maodification Adjustments

At the conclusion of this exercise, you will be able to:
Adjust modifications

*ee

Y ou must adjust the modifications made in the system after
applying a support package or an upgrade.

o

1-1 Adjust the modifications you made to the objects you imported into the system.

Unit: Modifications
/ Topic: Making modifications

1-1

1-2

1-3

1-4

1-5

Modification of R/3 objects. The Assistant can usually be used if the modification
icons exist.

1-1-1 <Detailed solution>
1-1-2

Modification of program SAPBC425_ BOOKI NG_##.

1-2-1 You can change the header either directly from the list (System - List >
List header) or in the Editor.

1-2-2 You cancreate a new variable directly in the R/3 program. Use the insert
function of the Modification Assistant. Ideally you keep the changes locally
in subroutine dat a_out put . Also output the counter.

Alternatively you can implement this functionality in the enhancement,
which would not cause a modification.

1-2-3 Read additional fields LUGGWEI GHT and WUNI T of table SBOOK and
output them in the list.
Enhance the SELECT statement by these two fields. Output the fields in
subroutinedat a_out put .

Modification of program SAPBCA25_FLI GHT##.
1-3-1 Use the Screen Painter to change the layout of screen 0100.

Modification of dataelement S CARRI D##.

1-4-1 Start the maintenance transaction for data elements. Place the cursor on the
corresponding object and choose the modification icon. You can enter new
text in the next dialog box.

1-4-2 Choose the "Documentation” pushbutton and enter new text.

To check the modification choose the Modification Browser (transaction SE95).
Limit the selection with the user name or change request/task.

Solutions

Unit: Modifications
/ Topic: Modification Adjustments

1-1 Start the Patch Manager (transaction SPAM). Call transaction SPAU with the menu
path Extras - Adjust modifications. Y ou can adjust the modifications here.

Contents:

® Summary

® Evaluation of the different enhancement techniques

8 SAP AG 1999

m Modifications can be categorized as'critical’ if:
They affect numerous other Repository objects (such as Dictionary objects or function modules)

Modification adjustment is either difficult (as with menus, pushbuttons, and GUI interfaces up
to 4.5A) or not supported by atool (transaction codes, message classes, logical databases)

m Without the Modification Assistant (prior to Release 4.5A), both modifying GUI statuses and GUI
titles, as well as assigning customer function modules to SAP function groups, should be considered
‘critical’ activities.

m SAP only changes the following Repository objects in an upwar dly compatible manner. They
should therefore be considered 'uncritical’ by customers who want to call them:

* Function modules that have been rel eased
* BAPIs

* Includesfor user exits

* Screen, program, menu, and field exits

m After an upgrade, you must test customer reports that call SAP objects, as well as al objects
displayed in the upgrade utility SPAU. Thisis aso true for Repository objects that have been
automatically adjusted using the Modifications Assistant (from Release 4.5A).

m You must be familiar with the processing logic of your application in order to be able to adjust
programs properly.

m Modification adjustment is not necessary if you avoid making changes to SAP objects.

m Use program enhancements and appends with SAP tables to enhance SAP objects in such away that
your changes cannot be overwritten by SAP at upgrade.

m From Release 3.0, you can use Online Correction Servicesto import and cancel support packages
and patches automatically (instead of having to insert preliminary corrections manualy).

m Modification has the advantage that your live Repository objects do not lose their connection to the
SAP standard. Copying, on the other hand, has the advantage that no modification adjustment will be
necessary for your live Repository objects during subsequent upgrades.

m Choose copying instead of modifying if :

* You have to make numerous changes to an SAP program
* Your requirements will not be met by the standard in future R/3 releases

m During copying, pay attention to a Repository object's environment as well. Y ou should only decide
whether to modify or copy after having informed yourself of the consequences for the main program,
aswell asfor al of the includes attached to the main program. The same holds true for function

groups and function modules.

m ABAP development projects can be evaluated according to the following criteria:

* What will implementation cost, measured in manpower (creating the concept, implementation,
testing)?

* How will the ABAP development project influence:
- Production operation performance?
- The amount of adjustment at upgrade?

m By cdling SAP objectsin your own Repository object, you can dragtically reduce the amount of
effort needed to implement your object. However, any changes that SAP makes to the Repository
object you choose to call may make extra adjustment necessary after an upgrade. For example, SAP
could conceivably change the user interface of a screen for which you have written a batch input

program.

m Naming conventions allow you to avoid haming conflicts and give your Repository objects
meaningful names (that can be understood by others).

m The following naming conflicts can occur:

* An SAP Repository object and a customer Repository object conflict
SAP Repository objects and customer Repository objects should be separated from each other by
strict adherence to SAP naming conventions. OSS note 16466 gives you an overview of the
current naming conventions for customer Repository objects (usually names that begin with either
Y or Z).

» Two customer Repository objects conflict
Naming conflicts can also occur between customer Repository objects in decentralized
development scenarios where more than one development system is being used. Y ou can avoid
naming conflicts in this area by reserving a special namespace for development areas within the
customer namespace. The Workbench Organizer checks to make sure that you adhere to these
conventions by making entriesin view V_TRESN.

* Complementary software and customer Repository objects conflict
Y ou can avoid naming conflicts when importing complementary software from SAP partners by
reserving specia namespacesin SAP OSS. In addition, from Release 4.0 SAP partners can apply
for prefixesin SAP OSS that they can tack on to the beginning of their Repository objects names
(For additiona information, refer to OSS notes 84282 and 91032, or the white paper 'Devel opment
Namespaces in the R/3 System’, order number E:50021723 [English] and D:50021751 [German)]).

